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Abstract: The rapid penetration of Artificial Intelligence (AI) and all related developments of the
fourth industrial revolution is paving the way for a more sophisticated production sequence that
strives for higher quality, lower emissions and lower cost production. This work reviews and dis-
cusses these developments and correlates them with state-of-the-art changes in materials engineering.
We highlight penetration paradigms of modern computation tools. These technologies sound very
promising in terms of maximizing the production efficiency of modern industries and, thus, minimiz-
ing the required energy input, greenhouse gas emissions and leading the way to a more ecofriendly
economy.
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1. Introduction

In the last three centuries, we have witnessed three major industrial revolutions 1765,
1870 and 1969 [1]. Each one of them almost a century apart. Now, about half a century from
the last one, many experts believe that we are experiencing the fourth one. The industry
4.0 or the Internet of Things (IoT) and Artificial Intelligence (AI).

Digital Twins fall under the big data and AI categories and are programs that simulate
the production line of a factory and how each one of the parameters will affect the final
properties of the product and the overall efficiency of the facility. On the other hand,
according to the Integrated Computational Material Engineering (ICME) approach, detailed
simulations of processes and materials enhance the output of the materials design, reduce
the cost, accelerate the process/materials development time and couple manufacturing
processes at various scale levels providing insights on how various parameter changes
affect the microstructure–properties relationships of advanced materials.

The implementation of the new tools and new technologies are very promising in
terms of a cost-effective production line as well as environmental friendliness. Both of
them stem from the fact that this type of technology can improve the error margins in the
selection of production parameters. An example is the temperature and stress distribution
during rolling. By maximizing the properties of the final product, in the least possible
amount of time, while minimizing the part of the production that is deemed as defective
(home scrap), the result will be a cost and a time effective alternative. This branch of
computer implementation is also known as computer-aided process planning (CAPP) and
it includes Artificial Intelligence (AI), Integrated Computational Materials Engineering
(ICME) as well as industrial twins (IT) and the occasional coupling of these methods. There
are plentiful examples of research papers that are focused on the implementation of the
foresaid methods in metal forming, welding and their defects (indicative work [2–7]) dating
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as far back as the late 20th century, foreshadowing what was to come. Circular economy
is commonly known by its 4Rs (recovery, recycle, reduce, reuse) (Figure 1). ICME and AI
technologies have the potential to assist with “Reduce” through the error margins as stated
above.
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ICME is a discipline composed of various mathematical models (phase field, crystal 
plasticity, CALPHAD, etc.), which are combined in order to develop materials and pro-
cesses. The concept of ICME was first coined in the USA, in 2005, as a response to the 
industrial need to develop durable components by minimizing cost within a short time 
frame. This methodology has the potential to accelerate the development of new materials 
[8]. The core of the ICME approach is to exploit the microstructure–properties relationship 
by investigating how the thermal history of a material affects its response to processing 
and how the processing affects the final properties of the material. In its full form, ICME 
involves the integration of information regarding process, design and material at different 
lengths and time scales within a holistic system [8,9]. The ICME discipline is applied in 
the field of materials technology, mechanical engineering, metallurgical engineering, in-
formation technology and numerical and mathematical science. The required input is 
drawn from thermodynamical databases and is adapted to the specific workflow of each 
situation. Figure 2 shows the correlation between the process parameters and the final 
application of the material. Engineering tries to perfect the process in order to achieve the 
desired properties for the application whereas, the science tries to implement the existing 
procedures for new applications. 

The tools used in this type of modeling have made significant progress in the last few 
years and are able to calculate a number of “variables” as phase fraction, precipitation, 
transus temperatures, material properties, diffusion and microstructure, whereas they are 
still unable to perform inverse modeling. From an industrial point of view, the ICME ap-
proach offers solutions to real problems in ongoing production processes. It can be uti-
lized in the development of new products, optimization of current processes and under-
standing the phenomena occurring during the production process in the material. The 
major advantage of ICME is that it reduces designing effort in terms of cost and time since 
the classical approach of trial and error is avoided. In this way, waste material is reduced, 
and the financial risks are minimized.  

Figure 1. Circular economy’s four R’s.

ICME is a discipline composed of various mathematical models (phase field, crys-
tal plasticity, CALPHAD, etc.), which are combined in order to develop materials and
processes. The concept of ICME was first coined in the USA, in 2005, as a response to
the industrial need to develop durable components by minimizing cost within a short
time frame. This methodology has the potential to accelerate the development of new
materials [8]. The core of the ICME approach is to exploit the microstructure–properties
relationship by investigating how the thermal history of a material affects its response to
processing and how the processing affects the final properties of the material. In its full
form, ICME involves the integration of information regarding process, design and material
at different lengths and time scales within a holistic system [8,9]. The ICME discipline is
applied in the field of materials technology, mechanical engineering, metallurgical engi-
neering, information technology and numerical and mathematical science. The required
input is drawn from thermodynamical databases and is adapted to the specific workflow of
each situation. Figure 2 shows the correlation between the process parameters and the final
application of the material. Engineering tries to perfect the process in order to achieve the
desired properties for the application whereas, the science tries to implement the existing
procedures for new applications.
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structure, which is the driving force for the recrystallization. Therefore, simulation of ther-
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not only aid understanding of the phenomena that take place, but also optimize the ther-
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proach in the hot extrusion process of 6xxx aluminum series. Similar to the thermome-
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The tools used in this type of modeling have made significant progress in the last few
years and are able to calculate a number of “variables” as phase fraction, precipitation, tran-
sus temperatures, material properties, diffusion and microstructure, whereas they are still
unable to perform inverse modeling. From an industrial point of view, the ICME approach
offers solutions to real problems in ongoing production processes. It can be utilized in the
development of new products, optimization of current processes and understanding the
phenomena occurring during the production process in the material. The major advantage
of ICME is that it reduces designing effort in terms of cost and time since the classical
approach of trial and error is avoided. In this way, waste material is reduced, and the
financial risks are minimized.

The major challenge of this approach is that a complete modeling description must
be created corresponding to the manufacturing process, the material’s properties and
the performance in service. In order to meet this demand, a global platform must be
created in which different models describing the material’s properties and production
process will be incorporated allowing the information exchange. Initiatives from all over
the world have emerged offering integration solutions such as COMSOL Multiphysics,
NanoSim, MoDeNa, Kratos, Computational Materials Design Facility (CMDF), AixVipMap,
etc. [10]. The ICME approach can be exploited for the simulation of the thermomechanical
control process in the steel industry. During thermomechanical control processing, various
metallurgical phenomena, such as static and dynamic recrystallization, grain growth and
austenite to ferrite transformation, take place affecting the final microstructure. The force
exerted from the pressure rolls not only deforms the width of the plate, but also introduces
dislocations in the microstructure and alters the stored energy in the microstructure, which
is the driving force for the recrystallization. Therefore, simulation of thermomechanical
processing, coupled with simulation of microstructural evolution, would not only aid
understanding of the phenomena that take place, but also optimize the thermomechanical
process in order to control the microstructure evolution and, subsequently, the mechanical
properties. A similar example would be the application of the ICME approach in the
hot extrusion process of 6xxx aluminum series. Similar to the thermomechanical control
process of steels, 6xxx aluminum alloys undergo alterations in the microstructure due
to the simultaneous recrystallization and precipitation phenomena. Both of which have
significant effects on grain size and dislocation pinning, thus, on the mechanical properties.
This opinion article aims to highlight the current state and trends of the industry, as well as
analyze the opportunities that are still untapped.

2. AI

Artificial Intelligence is the discipline of computer science that is focused in enabling
the computer to perform certain intellectual/intelligent tasks [11]. The computer code is
written in such a way that it performs a correlation between various parameters and the
end results. Each one of these parameters is assigned a weight factor depending on the
degree that it affects the process. These correlations occur through “feeding” the algorithm
with large amounts of data, in the order of a few thousand, called a training set. An
example of this, in the context of Artificial Neural Networks, is shown in Figure 3, where
its node represents a different calculation.

The term AI today usually refers to narrow AI. This is defined as the type of AI that
is capable of performing one very specialized task, such as identifying surface defects,
with some degree of intelligence. A subset of that is known as machine learning (M.L.),
in which the machine is solving a specific problem, predicts an outcome, etc., without
being specifically programmed to do so [12] and it is the part of AI that the present work is
mainly focused on.
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ple of that is that aluminum alloy 5182 is a metal and, thus, is considered as an electric 
conductor whereas ceramics are not. Thus, by connecting the subset aluminum with the 
properties of metals, conductivity is attributed to it. Moreover since it is aluminum it is 
characterized by an FCC crystal structure, etc. Each property is then stored in a virtual 
node. These nodes are also known as artificial neurons (A.N.). The purpose of a neural 
network (N.N.) is to create the desirable connections between the A.N. so that new infor-
mation can be correctly categorized and only calculate the required properties/parameters 
each time, thus reducing the computational cost [14,15]. 

Another type of AI is automated reasoning. This is referring to the sub field of AI 
where the computer is taught how to use deductive logic and implement that towards a 
specific goal such as checking calculations [16]. 

Lastly, there are the theory-trained deep neural networks. This subset of AI differen-
tiates from M.L. since the user inputs mathematical expressions into the computer, e.g., 
the Gibbs energy, phase/system enthalpy, which the computer solves for given boundary 

Figure 3. Schematic representation of a deep neural network. Each nod performs a single task through which the final
outputs/results are synthesized.

The most important part of an M.L. algorithm is the loss function, which calculates
the difference between the real, measured values and those predicted by the computer (like
the least squares method).

The next paragraphs highlight the key points of AI in order to allow for some initial
conclusions.

Taxonomy is the process in which various objects are classified [13]. An example of that
is the AA5182 which is compared to the taxonomy of the human species in Figure 4. Each
“step” in this pyramid is characterized by certain attributes (e.g., chemical composition or
hardening mechanisms).
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By the term ontology, we are referring to a more complex version/subset of taxonomy,
which is enriched with information and relations between the attributes/properties. For
example, metallic alloys are conductive, whereas ceramics are not. Thus the “step” metallic
alloys are connected with the properties of thermal and electrical conductivity, and the
solid is connected with properties such as melting point and so on.

These are process/connections that humans make almost instinctively, but the com-
puter must be programmed to be able to perform. Via the taxonomy routines, the computer
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can give specific attributes to the “input” while eliminating some others. An example of
that is that aluminum alloy 5182 is a metal and, thus, is considered as an electric conductor
whereas ceramics are not. Thus, by connecting the subset aluminum with the properties of
metals, conductivity is attributed to it. Moreover since it is aluminum it is characterized
by an FCC crystal structure, etc. Each property is then stored in a virtual node. These
nodes are also known as artificial neurons (A.N.). The purpose of a neural network (N.N.)
is to create the desirable connections between the A.N. so that new information can be
correctly categorized and only calculate the required properties/parameters each time,
thus reducing the computational cost [14,15].

Another type of AI is automated reasoning. This is referring to the sub field of AI
where the computer is taught how to use deductive logic and implement that towards a
specific goal such as checking calculations [16].

Lastly, there are the theory-trained deep neural networks. This subset of AI differen-
tiates from M.L. since the user inputs mathematical expressions into the computer, e.g.,
the Gibbs energy, phase/system enthalpy, which the computer solves for given boundary
conditions. Their clear advantage over M.L. is that they do not need large volumes of data
as input, but the mathematical background for many of the processes is currently lacking.

Existing studies including AI show the advantages it holds, mostly with regard to
the computational cost [11,12]. However, a large amount of data is required as a training
set. That makes the usage of neural networks counterproductive if the user is switching
between different types of projects. Nowadays in the manufacturing industry, the process
parameters are meticulously recorded, but the data produced are still not exploited. A
possible application of M.L. in the metal sector is to assess data from casting in order to
select the optimum casting temperature and superheat. Similarly, it can be utilized in the
homogenization of alloys in order to select the optimum homogenization temperature
depending on each alloy. Finally, M.L. can be used to exploit the scrap of a factory to the
fullest potential. Having a record of the alloys contained in a scrap yard and the alloys
that can be produced from the scrap, M.L. can be incorporated in order to select the right
proportions of each alloy so as to achieve the chemical composition of the target alloys.
This paradigm indicates how an industrial facility could optimize the recycling process
with the aid of AI and in this way comply with legislation rules.

3. Summary

So far there has been a lot of progress in the field of ICME. The modeling methods
have been improving geometrically with regard to both the application spectrum and the
result accuracy. Currently, using modeling techniques to predict the behavior of various
systems with low operating costs and then, verifying their results with physical models
is considered to be the “best practice available”. Artificial Intelligence is a relatively new
field that has not been applied yet to the full extent of its capabilities. The error margins
are, for the time being, larger and most people are unfamiliar with how these technologies
can be used. However, despite their vast differences, both methodologies can be applied
to model and then simulate how the parameters of a single, targeted, process affect the
properties of its (semi) final product. On the other hand, the industrial digital twin is used
to simulate how every change at any of the stages would affect the whole, downstream,
manufacturing process. That means that a much greater number of calculations are needed
and, thus, the computational cost of such approach is extremely high to be realistic, since
it would require more time to test different scenarios, making it very close to the original
position of physically testing every hypothesis. Therefore, a hybrid model consisting of a
targeted approach to optimize a certain procedure and afterwards, if needed, a digital twin
model could be applied for certain changes followed by physical validation, is considered
to be the best solution.

In the future, where quantum computers would be widely available, and the hardware
of the computer will be neuromorphic, processing times would be practically eliminated
allowing for more complex and “complete” calculations.
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