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Abstract: This paper presents the implementation of a Compensatory Adaptive Neuro-Fuzzy Infer-
ence System (CANFIS) controller to control an inverted pendulum. This controller is developed in
order to readjust the parameters relating to the membership functions and the fuzzy rules used as well
as to optimize the dynamics of the latter, using a learning algorithm based on the extended Kalman
filter. The CANFIS controller is developed on the Simulink environment of the MATLAB software
and is implemented on a Raspberry Pi 3 board, with a view to analyzing its real behavior, and testing
its speed as well as its robustness through the use of the “Processor-In-the-Loop” (PIL) technique. The
results obtained through PIL tests showed the effectiveness of the neuro-fuzzy controller equipped
with a compensator.

Keywords: CANFIS; extended Kalman filter; Raspberry Pi 3

1. Introduction

The control of non-linear systems is always a rather complex task in the field of
automation, because several control techniques require a perfect knowledge of the behavior
of the system in order to be able to achieve good performance. The description of a system
equipped with its actuators and sensors and the various physical phenomena that appear
during operation show the high complexity due to numerous non-linearities as well as the
difficulty in perfectly modeling the dynamics of the mechanical sensors-actuators-system.
Controlling the system for performing tasks requiring good performance becomes difficult,
as knowledge of the system is incomplete and imperfect.

Adaptive control using artificial intelligence techniques has been the subject of several
research works in the control of nonlinear systems [1–4]. The combination of fuzzy logic
with neural networks has been recognized as a promising solution to compensate for
the non-structural uncertainties of nonlinear systems. Therefore, combining fuzzy logic
with neural networks in the form of a single network structure allows building more
efficient neuro-fuzzy controllers, and this by taking advantage of the inference capacity
of fuzzy reasoning and computational parallelism of neural networks. Among the most
efficient adaptive neuro-fuzzy systems, we cite the CANFIS (Compensatory Adaptive
Neuro-Fuzzy Inference System) structure, which consists of using a fuzzy compensator
which compensates for the bad choice of membership functions, and which uses techniques
which allow us to adjust the dynamics of fuzzy rules, so as to adapt to the environment [5].
However, the use of such an adaptive structure requires a high computation time and its
implementation in practice then requires powerful control boards in order to minimize the
computational time of the algorithm in order to converge on the desired performance.
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Due to the computational complexity of these algorithms, several processes are gen-
erally necessary so that the controllers are suitable for implementations, because on the
one hand, many development boards do not support the double-precision floating-point
data type on the MATLAB-Simulink software, and on the other hand, designs based on this
floating-point data type consume a significant number of hardware resources compared to
designs based on the fixed-point data type [6]. However, in this design methodology, the
adaptation of the controller is limited by the fixed point encoding. Several research works
have been carried out in this area [7–10]. In this article, we will use MATLAB-Simulink soft-
ware to implement the CANFIS controller on a Raspberry Pi 3 board to control an inverted
pendulum. These control boards are known by their powerful processors, namely the ARM
Cortex processors, and support both fixed and floating point data types. The MATLAB
software therefore allows us to considerably reduce the design time of the algorithm, and to
implement it on the Raspberry board. The use of the Processor-In-the-Loop (PIL) technique
makes it possible to test the behavior of the CANFIS controller on the hardware, while the
rest of the control loop is on the Simulink.

This document is organized as follows: in the second part, we present the structure of
the fuzzy neuro network with a fuzzy compensator as well as the mathematical formalism,
then, we study the learning algorithm. In the third part, we present the control scheme
based on the Raspberry Pi 3 board, suitable for dynamic control of the inverted pendulum
using the CANFIS controller. In the fourth part, we present the results of the PIL tests
obtained by applying this synthesized strategy to the command in tracking of a reference
trajectory of the inverted pendulum. Finally, we end our work with a general conclusion
and some perspectives.

2. Description of the Adaptive Neuro-Fuzzy Network with a Compensator

CANFIS is a fuzzy inference system based on a multi-layered adaptive network, where
the learning algorithm not only adjusts the membership functions, but also optimizes the
dynamics of fuzzy reasoning by adjusting the degree of compensation. In this section, we
develop an ANFIS controller equipped with a fuzzy compensator, where the adaptation
of its parameters is ensured by a learning algorithm based on the extended Kalman filter.
To simplify understanding and without loss of generality, we consider a system with two
inputs x1, x2 and one output u (Figure 1), modeled by a fuzzy system of the Takagi–Sugeno
type, composed of the following four fuzzy rules:

Rule 1 : if x1 is A1 and x2 is B1 then u1 = f1(x1, x2) = a1x1 + b1x2 + c1 (1)

Rule 2 : if x1 is A1 and x2 is B2 then u2 = f2(x1, x2) = a2x1 + b2x2 + c2 (2)

Rule 3 : if x1 is A2 and x2 is B1 then u3 = f3(x1, x2) = a3x1 + b3x2 + c3 (3)

Rule 4 : if x1 is A2 and x2 is B2 then u4 = f4(x1, x2) = a4x1 + b4x2 + c4 (4)

The degree of activation of a rule is defined by wi.
We consider the pessimistic and optimistic operations, given respectively as follows:

zi = wi (5)

mi = (wi)
1
2 . (6)

The fuzzy compensator expressed by this relation:

Ci(zi, mi, γi) = (zi)
1−γi (mi)

γi , (7)

where γi ∈ [0, 1] is the compensatory degree. Therefore, the net value of the fuzzy neural-
network equipped with a fuzzy compensator is given as follows:
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u =

4
∑

i=1
(aie + bi∆e + ci)(wi)

αi

4
∑

i=1
(wi)

αi

(8)

αi = 1− γi
2

(9)
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Figure 1. Structure of the Adaptive Neuro-Fuzzy Inference System Controller with compensator.

Consider that x1 and x2 are the position error e and its derivative ∆e. We associate two
fuzzy sets for each of the inputs, namely N (Negative) and P(Positive). µN et µP represent
the appropriate membership degrees of the variables xi with respect to fuzzy subsets Ai
and Bi, defined by the following member functions:

µN(x1) = exp

(
−
(

x1 − ρ1

σ1

)2
)

(10)

µP(x1) = exp

(
−
(

x1 − ρ2

σ2

)2
)

(11)

µN(x2) = exp

(
−
(

x2 − β1

δ1

)2
)

(12)

µP(x2) = exp

(
−
(

x2 − β2

δ2

)2
)

, (13)

with: (ρi, σi) and (βi, δi) being the (mean, variance) of the fuzzy set of the membership
functions respectively of x1 and x2.

Learning Algorithm

The controller is characterized by a vector of parameters Φ. Our objective is to find
the values of the vector Φ̂ by minimizing the following criterion [11]:

J(k) =
1
2
(yd(k)− y(k))2 =

1
2
(e(k))2, (14)
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where: y(k) is the real output of the system and yd(k) is its desired output. The extended
Kalman filter approach consists of linearizing the output regulator ud at each step k around
the estimated vector Φd(k). This is equivalent to writing:

ud(k) = u(k) + Ψ(k)(Φd(k)−Φ(k)). (15)

With:

Ψ(k) =
∂u(k)
∂Φ(k)

=

[
∂u(k)

∂Φ1(k)
, . . . ,

∂u(k)
∂Φn(k)

]
, (16)

where n is the dimension of the vector ΨT . Consequently, the parameters are adjusted
according to the following relation [12]:

Φ(k + 1) = Φ(k) + K′(k)ΨT(k)eu (17)

K′(k) =
P(k)

Ψ(k)P(k)ΨT(k) + B(k)
(18)

P(k + 1) = P(k)− K(k)Ψ(k)P(k) (19)

K(k) = K′(k)ΨT(k), (20)

where Ψ(k) is the Jacobian matrix (the observation matrix of the system), P(k) is the
estimation matrix of the error covariance and B(k) is the measurement covariance matrix.
In order to approximate the variation eu, we linearize the inverse model of the system
around y(k) according to the following relation:

u =
∂u(k)
∂y(k)

(y− y(k)) + u(k), (21)

where y(k) is the system output and u(k) its input. For this linearized model, the value
ud(k) can be expressed as follows:

ud(k) =
∂u(k)
∂y(k)

(yd(k)− y(k)) + u(k). (22)

Therefore, we have:

ud(k)− u(k) =
∂u(k)
∂y(k)

(yd(k)− y(k)). (23)

Then:

eu(k) =
∂u(k)
∂y(k)

e(k). (24)

We also have: ∂e(k) = ∂yd(k) − ∂y(k). We assume that yd(k) is constant in the
neighborhood of y(k). Then:

∂e(k) = −∂y(k). (25)

Therefore:

eu(k) =
−∂(k)
∂e(k)

e(k). (26)

The relation (17) can be written as follows:

Φ(k + 1) = Φ(k)K′(k)ΨT(k)
∂u(k)
∂e(k)

e(k). (27)
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In order to eliminate the constraint γi ∈
[

0 1
]

defined in Equation (7), we define:

γi =
pi

2

pi
2 + qi

2 . (28)

Consequently, the parameters vector to be readjusted is given by:

Φi
T(k) = [a1, b1, c1, p1, q1, . . . , a4, b4, c4, p4, q4] (29)

Ψ(k) =
[

∂u(k)
∂a1

,
∂u(k)

∂b1
,

∂u(k)
∂c1

,
∂u(k)
∂p1

,
∂u(k)
∂q1

, . . . ,
∂u(k)
∂a4

,
∂u(k)

∂b4
,

∂u(k)
∂c4

,
∂u(k)
∂p4

,
∂u(k)
∂q4

]
(30)

With:
∂u
∂ai

=
e[wi]

αi

4
∑

i=1
[wi]

αi

(31)

∂u
∂bi

=
∆e[wi]

αi

4
∑

i=1
[wi]

αi

(32)

∂u
∂ci

=
[wi]

αi

4
∑

i=1
[wi]

αi

(33)

∂u
∂γi

= −1
2

[
4

∑
i=1

aie + bi∆e + ci

]
zi ln(wi)

4
∑

i=1
zi

(34)

∂u
∂pi

= −
[

2pi(qi)
2

(pi)
2 + (qi)

2

]
∂u
∂γi

(35)

∂u
∂qi

=

[
2qi(pi)

2

(pi)
2 + (qi)

2

]
∂u
∂γi

. (36)

We have:

u =

4
∑

i=1
(aie + bi∆e + ci)(wi)

αi

4
∑

i=1
(wi)

αi

=
h
g

. (37)

Then:
∂u
∂e

=
∂h
∂e .g− ∂g

∂e .h
g2 . (38)

With:
∂h
∂e

=
4

∑
i=1

([
a− 2

(
e− ρj

)
(aie + bi∆e + ci)

]
wi

αi
)

(39)

∂g
∂e

= −2
4

∑
i=1

((
e− ρj

)
wi

αi
)
, (40)

where j is the integer part of (i− 1)/2.

3. Implementation of the CANFIS Controller Equipped with a Compensator on the
Raspberry Pi 3 Board: Application on the Inverted Pendulum

In this section, we use the “Processor-In-the-Loop” technique in MATLAB-Simulink,
which allows us to test the behavior of the CANFIS controller on the Raspberry Pi 3
board [13]. In this mode of execution, the CANFIS controller runs in the hardware while the
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rest of the closed loop runs on the Simulink environment. In order to test the performances
of the controller, we considered the stabilization problem of an inverted pendulum on a
cart. The dynamic equations of the nonlinear system are given by [14]:

.
x1 = x2 (41)

.
x2 =

g sin x1 − cos x1(
ml

mc+m x2
2 sin x1 − 1

mc+m τ(t))
4
3 l − ml

mc+m cos2 x1
, (42)

where x1 is the position of the vertical rod (in radian), x2 is the angular velocity and τ(t)
the torque applied to the rod. Its parameters are given in the Table 1.

Table 1. Inverted pendulum parameters.

g Gravity constant 9.8 m/s2

mc Carriage mass 1 kg
m Pendulum mass 0.1 kg
l Rod length 0.5 m

The implementation of the CANFIS controller was done with a frequency of 10 KHz.
The execution diagram of the regulation chain (CANIFIS controller, System and disturbance)
in PIL mode under the MATLAB Simulink environment is presented in Figure 2.
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Figure 2. Execution diagram in PIL mode under Simulink.

4. Results of the PIL Tests

In this section, we present the simulation results of the PIL mode. In order to test the
robustness of the two proposed controllers, we added a disturbance on the input of the
system at the instant t = 20 s, given as follows:

D(t) = 150 sin(t). (43)

Figure 3a,b, Figure 4a,b and Figure 5a,b represent the results of the position tracking,
the position tracking errors as well as the control signals delivered by the CANFIS controller.
From these figures, we can see that the proposed controller has good performance (tracking,
response time and robustness) with a low precision error, in both test cases (with and
without disturbances). This is due to the use of a compensator which compensates for
errors in the choice of membership functions, even readjusting the dynamics of fuzzy rules,
using a learning algorithm based on the extended Kalman filter. The implementation of
the proposed controller allowed us to obtain good performances thanks to the sampling
frequency of the Raspberry Pi 3 board.
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Figure 5. Control signal: (a) Without disturbances; (b) With disturbances.

5. Conclusions

In this article, we have proposed the implementation on a Raspberry Pi 3 board of a
neuro-fuzzy controller CANFIS, in order to control an inverted pendulum. The CANFIS
controller presents good results because it uses a learning algorithm based on the extended
Kalman filter, which converges very quickly, and which readjusts the membership functions
and optimizes at the same time the dynamics of fuzzy reasoning by adjusting the degree of
compensation. The development and implementation of the controller was done through
MATLAB’s Simulink environment, which simplified the study and implementation of the
code on the Raspberry Pi 3 board.

In conclusion, we have tried through this article to show the efficiency of the CANFIS
controller on real hardware (Raspberry Pi 3) in the control of non-linear systems. The
implementation of such a controller using the PIL technique has demonstrated its speed
and robustness to disturbance rejection.
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