
Citation: Pau, D.P.; Aymone, F.M.

Mathematical Formulation of

Learning and Its Computational

Complexity for Transformers’ Layers.

Eng 2024, 5, 34–50. https://doi.org/

10.3390/eng5010003

Academic Editor: Jordan Hristov

Received: 20 October 2023

Revised: 26 November 2023

Accepted: 7 December 2023

Published: 21 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Mathematical Formulation of Learning and Its Computational
Complexity for Transformers’ Layers
Danilo Pietro Pau * and Fabrizio Maria Aymone

Department of Systems Research and Applications, STMicroelectronics, 20864 Agrate Brianza, Italy;
fabrizio.aymone@gmail.com
* Correspondence: danilo.pau@st.com

Abstract: Transformers are the cornerstone of natural language processing and other much more
complicated sequential modelling tasks. The training of these models, however, requires an enormous
number of computations, with substantial economic and environmental impacts. An accurate
estimation of the computational complexity of training would allow us to be aware in advance about
the associated latency and energy consumption. Furthermore, with the advent of forward learning
workloads, an estimation of the computational complexity of such neural network topologies is
required in order to reliably compare backpropagation with these advanced learning procedures.
This work describes a mathematical approach, independent from the deployment on a specific target,
for estimating the complexity of training a transformer model. Hence, the equations used during
backpropagation and forward learning algorithms are derived for each layer and their complexity is
expressed in the form of MACCs and FLOPs. By adding all of these together accordingly to their
embodiment into a complete topology and the learning rule taken into account, the total complexity
of the desired transformer workload can be estimated.

Keywords: complexity; transformers; backpropagation; PEPITA; large language models

1. Introduction

Transformers [1] have revolutionized the field of artificial intelligence (AI) by achiev-
ing unprecedented accuracy results over a broad variety of complex tasks, including natural
language processing (NLP). Their performance, however, has been proven analytically to
scale as a power law of the number of parameters of the model and the dataset size [2]. The
inevitable consequences of such dependence are bigger model footprints, larger datasets
and an increasing number of gradient descent iterations. The associated enormous number
of computations and memory usage has critical economic, time and environmental im-
pacts. As an example, the recent 175-billion-parameter GPT-3 [3] was trained for 300 billion
tokens [4] with a total compute of ∼3640 petaflop/s-days. According to [5], this process
emitted 502 tonnes of carbon dioxide and cost 1.8 million USD. Given the pivotal role
computational complexity plays when training a transformer, it is fundamental to provide
for it an accurate estimation. Moreover, a variety of alternative learning rules to backpropa-
gation (BP) were recently proposed [6,7]. A precise complexity analysis would allow one to
reliably compare these algorithms and quantifying the advantages that forward learning
would bring with respect to BP. Ideally, the training complexity should be obtained by
considering the single operations performed at the hardware level. This is not convenient
for several reasons. First of all, it strictly depends upon the device used, whose knowledge
is generally limited, restricting the generalizability of the prediction. Secondly, it is not
trivial to obtain the low-level implementation of the training algorithm, which in turn
depends on the AI runtime library being used. This paper is organized as follows: Section 2
describes the objectives of this work and its contributions; Section 3 cites the main related
works in the known literature; Section 4 describes the notation and conventions adopted

Eng 2024, 5, 34–50. https://doi.org/10.3390/eng5010003 https://www.mdpi.com/journal/eng

https://doi.org/10.3390/eng5010003
https://doi.org/10.3390/eng5010003
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/eng
https://www.mdpi.com
https://orcid.org/0000-0003-1585-2313
https://orcid.org/0009-0002-2188-1436
https://doi.org/10.3390/eng5010003
https://www.mdpi.com/journal/eng
https://www.mdpi.com/article/10.3390/eng5010003?type=check_update&version=1


Eng 2024, 5 35

during the quantitative analysis of the learning algorithms; Section 5 reports the equations
for learning with BP, PEPITA and MEMPEPITA and estimates their complexity for all
transformer layers; Section 6 presents an example application of the results obtained, and
Section 7 concludes the paper.

2. Key Contributions of This Work

In order to eliminate the dependence from the deployment device, this study intro-
duces a mathematical approach that assesses the complexity of layers in a transformer
topology solely based on mathematical expressions, rather than considering hardware
operations. In this respect, the contributions brought by this paper can be summarized
as follows:

• A description of the equations implemented in BP, PEPITA and MEMPEPITA for all
transformer layers;

• A mathematical derivation of the weights’ and activations’ gradient with respect to
the loss function;

• Quantitative complexity analysis in terms of multiply and accumulate (MACCs) and
floating point operations (FLOPs) of each layer for the forward pass, backward pass
and weight updates.

3. Related Works
3.1. Automatic Differentiation

Currently, most AI algorithms are implemented in two major libraries: Tensorflow [8]
and Pytorch [9]. Both of the aforementioned frameworks use reverse-mode automatic
differentiation (i.e., autodiff) [10], namely BP. Autodiff creates a computational graph from
the mathematical expression considered, where each node describes an operation and
each edge a variable. During the forward pass, intermediate variables are populated,
and each node is complemented with the derivatives of the outputs with respect to the
inputs. During the backward pass, the gradient is obtained by leveraging the chain rule
of differential calculus to compute partial derivatives of the objective with respect to the
weights. The operations involved during training can be referred to as forward pass,
backward pass (gradient of the loss with respect to the activations) and weight update
(gradient of the loss with respect to the weights). In several works [3,11], the complexity
of the backward pass and weight update is assumed to be 2× that of the forward pass,
which is true only in certain specific cases such as fully connected and convolutional layers.
Regarding transformers, Ref. [2] empirically identified the relations between performance,
training time, dataset size, number of parameters and amount of computation. More-
over, also in this case, the computational complexity of training was approximated to be
3× that of a forward pass. To the best of the authors’ knowledge there is no work that has
analytically described the computational complexity of the transformer topology.

3.2. Alternatives to Backpropagation

It is well known from theory that BP is not describing the learning process happening
in the human brain [12,13]. There are four main aspects considered to be in contrast
with neuro-biological observations. Firstly, during the backward pass, weights previously
used during the forward pass are utilized to backpropagate the error. Considering that
synapses in the brain are unidirectional, this characteristic of BP gives rise to the “weight
symmetry” problem [14]. Secondly, when calculating the error gradient, the activities of the
neurons computed during the forward pass are left unaffected. The freezing of the activities
during the backward pass is incompatible with the behaving of feedback connections in
neural circuits, through which the signal travels via modulating activities [15]. Thirdly,
the modification of synaptic weights is influenced by downstream neurons and synapses,
whereas synaptic learning in the brain is predominantly governed by localized signals
that are contingent upon the activity of the interconnected neurons [16]. Lastly, in order to
update the weights of the l-th layer, the forward pass has to end, and the backward pass



Eng 2024, 5 36

has to arrive at such layer. This means that learning cannot happen in an online fashion,
contrarily to biological evidence. Such problem is referred to as “update-locking” [17,18].
With the hope of creating a correspondence between deep learning and brain nature, a
vast research field focused on finding biologically plausible alternatives to BP has emerged.
Addressing the “weight symmetry” issue, learning has been found to happen even when
the error is backpropagated with matrices which only share the sign with the forward
weights [19] or that are random and fixed like in feedback alignment (FA) [20]. The latter can
be modified by propagating directly the error from the output layer to each layer through
random connectivity matrices. Such technique is denoted as direct feedback alignment [21].
A broad variety of other algorithms have been proposed in literature [22–26]; however,
their knowledge goes beyond the scope of this work.

3.3. Forward Learning

Recently, two promising bioplausible learning algorithms were proposed: forward-
forward [6] and PEPITA [7]. The use of forward-only passes solves several implausible
aspects of BP. Their effect on memory usage and computational complexity has been
studied by [27] on the MLCommons/Tiny industrial benchmarks [28], suggesting that FF
is unsuitable for multiclass classification [27]. Moreover, Ref. [27] proposed MEMPEPITA,
a memory-efficient version of PEPITA, which introduces an additional forward pass saving
on average a third of RAM at the expense of a third more complexity.

3.3.1. PEPITA

PEPITA [7] performs two forward passes. The first pass, named standard pass,
calculates the error of the model’s output with respect to the ground truth. As the
output and input dimensions are generally different, the error is projected onto the in-
put through a fixed random matrix F, with zero mean and a small standard deviation

(e.g., 0.05
√

2
FANIN [29]). The second pass, named modulated, transforms the input by

adding to it the projected error calculated by the standard pass and computes the corre-
sponding activations. The difference between the activations of the two passes is then
used to update the weights. The weights of the last layer can be updated by the error
at the output layer as in BP without compromising accuracy [7]. Algorithm 1 illustrates
the procedure implemented in PEPITA, where a0, al and aL are the activations of the
first, l-th and last layer, respectively, during the standard pass, aerr

0 , aerr
l and aerr

L are the
activations of the first, l-th and last layer, respectively, during the modulated pass, σl is
the nonlinearity of the l-th layer, and Wl are the weights of the l-th layer. A theoretical
analysis of the learning dynamics of PEPITA was performed in [29]. By observing that the
perturbation is small compared to the input ∥∥Fe∥∥ ≪ ∥∥x∥∥, it was possible to perform a
Taylor expansion of the presynaptic term aℓ − aerr

ℓ thus obtaining the update rule for the
first layer, as described in Equation (1). It was considered that W(t + 1) = W(t)− η∆W,
with η symbolizing the learning rate, and x was used instead of (x − Fe) since the small
perturbation was determined to have a negligible impact on performance.

∆W1 ≊
[
(W1Fe)⊙ a

′
1

]
xT (1)

PEPITA essentially adopts an update similar to DFA and equivalent to FA in two-layer
networks. However, it uniquely employs an adaptive feedback matrix (AF) in which the
network weights modulate the random component. In such a way, the learning effect of
PEPITA found experimentally was justified theoretically.



Eng 2024, 5 37

Algorithm 1: PEPITA

Given: Features(x) and label(target)
Standard Pass
a0 = x
for ℓ = 1, . . . , L do

aℓ = σℓ(Wℓaℓ−1)
end for
e = aL − target
Modulated pass
aerr

0 = x + Fe
for ℓ = 1, . . . , L do

aerr
ℓ = σℓ

(
Wℓaerr

ℓ−1

)
Weight update

Wℓ := Wℓ − η
(
aℓ − aerr

ℓ

)
·
(

aerr
ℓ−1

)T

end for

3.3.2. MEMPEPITA

In its original form, the PEPITA algorithm [7] necessitates retaining activations
calculated during the standard computational pass for the subsequent evaluation of(

aℓ − aerr
ℓ

)
in the modulated pass. This requirement unfortunately aligns with the memory

demands characteristic of backpropagation (BP). To circumvent this memory constraint,
one could introduce a concurrent secondary standard pass alongside the modulated pass.
This approach enables the recalculation of necessary activations for the weight update
process. However, this solution does introduce an additional computational overhead. This
variant of the original algorithm, termed MEMPEPITA, is presented in [27] and significantly
enhances memory efficiency by avoiding the intermediate activations’ storage, which is
detrimental in deep neural networks (DNNs). This variant, detailed in Algorithm 2, while
maintaining the core principles of PEPITA, offers a more resource-conscious alternative,
particularly in scenarios where memory resources are a critical constraint.

Algorithm 2: MEMPEPITA

Given: Features(x) and label(target)
Standard Pass
a0 = x
for ℓ = 1, . . . , L do

aℓ = σℓ(Wℓaℓ−1)
end for
e = aL − target
Modulated + 2nd Standard pass
aerr

0 = x + Fe
for ℓ = 1, . . . , L do

Standard Pass
aℓ = σℓ(Wℓaℓ−1)
Modulated pass
aerr
ℓ = σℓ

(
Wℓaerr

ℓ−1

)
Weight update

Wℓ := Wℓ − η
(
aℓ − aerr

ℓ

)
·
(

aerr
ℓ−1

)T

end for

4. Notation and Conventions

The objective of the quantitative analysis in this paper is to accurately model the math-
ematical equations behind BP, PEPITA and MEMPEPITA for estimating the computational
complexity [30–32] of training the transformer architecture. Therefore, it is necessary to



Eng 2024, 5 38

clearly define beforehand the notations and conventions used in the proposed analysis.
Each “mathematical” operation (e.g., exponentiation, sum, product, division) is considered
a FLOP of 32 bits even if the underlying hardware may require performing more operations.
Hence, each MACC is equivalent to two FLOPs, one ADD and one MULTIPLY [33]. Even if
a MULTIPLY operation is more complex than an ADD operation when implemented on
hardware, this work considers them to be both equivalent to one FLOP as they both consist
in one mathematical operation.

For the sake of a clear and lean notation, the symbol ∂y
∂x (i.e., partial derivative) is

used to indicate the gradient, whose adequate symbol would be ∇xy. Such a choice was
determined by the fact that ∂y

∂x highlights the target with respect to which the gradient is
computed. Moreover, for each layer, the total number of MACCs and FLOPs estimated
for the macro-operations (forward pass, backward pass, weight update, etc.) are framed
in a box to highlight them. Lastly, a new operator indicated with ×slice is introduced.
This operator receives a 2d matrix of size N × M as a left operand and a 3d matrix of
size N × M × K as a right operand and outputs a 2d matrix of size N × K. The operator
multiplies the first row of the left operand by the first 2d matrix in the 3d matrix’s right
operand, obtaining a row vector which corresponds to the first row of the output 2d matrix.
Then, it obtains the second row of the output matrix by multiplying the second row of
the left operand by the second 2d matrix of the 3d matrix’s right operand. This process is
iterated N times for each row in the 2d matrix’s left operand.

The transformer is composed of an encoder and a decoder, and its architecture is
reported in Figure 1 [1]. Given such structure, there is a collection of hyperparameters
needed to uniquely identify a specific architecture embodiment. The latter are reported in
Table 1 and they are used as parameters throughout the analysis.

Eng 2023, 1 6

Figure 1. Transformer architecture.

5. Complexity Analysis

The method adopted for estimating the complexity of a specific learning procedure
involves subdividing the latter in a series of macro-operations (e.g., forward pass, backward
pass, weight update, error projection), as reported in Table 2. The total complexity of a
macro-operation is obtained by calculating the complexity of performing such a macro-
operation at each single layer of the transformer and adding it for all layers. In the following
paragraphs, the structure and functionality of each layer is described and their complexity
for the forward pass, backward pass and weight update is computed.

Table 2. Summary of the learning procedures.

Learning Methods BP PEP MPE

Forward pass 1 2 3

Backward pass 1 0 0

Weight update 1 1 1

Error projection 0 1 1

PEP stands for PEPITA and MPE for MEMPEPITA.

5.1. Embedding Layer

The embedding Layer consists of a matrix of Wemb size vocsize × dmodel , where each
row corresponds to the embedding of a token.

5.1.1. Forward Pass

Given a sequence of N tokens, these are represented as a matrix T of size M× vocsize,
where each row is a one-hot-encoded representation of the token. By multiplying the token
matrix with the embedding matrix, a matrix E = TWemb of size M × dmodel is obtained,
where each row corresponds to the embedding representation of the original token in the
sequence. Hence, the complexity of an embedding layer for a forward pass is, as in [11],

MACCs = M× vocsize × dmodel

FLOPs = 2M× vocsize × dmodel

Figure 1. Transformer architecture.

Table 1. Architecture hyperparameters.

Name Description

vocsize Number of word/tokens in the corpus

dmodel Dimension of embeddings

dk Dimension of the single attention head

d f f Dimension of the first layer in the feed forward network

nenc Number of encoder layers

ndec Number of decoder layers

maxlen Maximum number of tokens in the context



Eng 2024, 5 39

5. Complexity Analysis

The method adopted for estimating the complexity of a specific learning procedure
involves subdividing the latter in a series of macro-operations (e.g., forward pass, backward
pass, weight update, error projection), as reported in Table 2. The total complexity of a
macro-operation is obtained by calculating the complexity of performing such a macro-
operation at each single layer of the transformer and adding it for all layers. In the following
paragraphs, the structure and functionality of each layer is described and their complexity
for the forward pass, backward pass and weight update is computed.

Table 2. Summary of the learning procedures.

Learning Methods BP PEP MPE

Forward pass 1 2 3

Backward pass 1 0 0

Weight update 1 1 1

Error projection 0 1 1
PEP stands for PEPITA and MPE for MEMPEPITA.

5.1. Embedding Layer

The embedding Layer consists of a matrix of Wemb size vocsize × dmodel , where each
row corresponds to the embedding of a token.

5.1.1. Forward Pass

Given a sequence of N tokens, these are represented as a matrix T of size M × vocsize,
where each row is a one-hot-encoded representation of the token. By multiplying the token
matrix with the embedding matrix, a matrix E = TWemb of size M × dmodel is obtained,
where each row corresponds to the embedding representation of the original token in the
sequence. Hence, the complexity of an embedding layer for a forward pass is, as in [11],

MACCs = M × vocsize × dmodel

FLOPs = 2M × vocsize × dmodel

5.1.2. Weight Update (Only PEPITA and MEMPEPITA)

In BP, the gradient of the loss function with respect to the input tokens is directly
calculated during the backward pass of the next layer, without involving the embedding
matrix. Such gradient is directly used for updating the rows of the embedding layer
corresponding to the tokens considered. Therefore, in BP no computation is needed by the
embedding layer for the backward pass and weight update. On the other hand, PEPITA
updates the embedding layer as for other layers, by performing a matrix multiplication.
The resulting complexity of the weight update is the same as that of the forward pass.

MACCs = M × vocsize × dmodel

FLOPs = 2M × vocsize × dmodel

5.2. Position Embeddings

A positional embedding matrix P of size maxlen × dmodel is used to store the positional
embeddings for each position up to the maximum number of tokens in the context. To
encode positional information, the first M rows of the positional matrix are added to E.
The obtained matrix of size M × dmodel is indicated with X. A positional embedding matrix
can be learned or it can be already assigned following the sinusoidal positional encoding



Eng 2024, 5 40

proposed in [1]. Being a simple addition operation, its complexity is negligible and can be
considered to be already incorporated in the MACCs/FLOPs of the embedding layer.

5.3. Multihead Attention

This is the most important block in the transformer, and it occupies the first stage of
the encoder layer and the first two stages of the decoder layer. Its structure is reported in
Figure 2 [1].

Eng 2023, 1 7

5.1.2. Weight Update (Only PEPITA and MEMPEPITA)

In BP, the gradient of the loss function with respect to the input tokens is directly
calculated during the backward pass of the next layer, without involving the embedding
matrix. Such gradient is directly used for updating the rows of the embedding layer
corresponding to the tokens considered. Therefore, in BP no computation is needed by the
embedding layer for the backward pass and weight update. On the other hand, PEPITA
updates the embedding layer as for other layers, by performing a matrix multiplication.
The resulting complexity of the weight update is the same as that of the forward pass.

MACCs = M× vocsize × dmodel

FLOPs = 2M× vocsize × dmodel

5.2. Position Embeddings

A positional embedding matrix P of size maxlen × dmodel is used to store the positional
embeddings for each position up to the maximum number of tokens in the context. To
encode positional information, the first M rows of the positional matrix are added to E.
The obtained matrix of size M× dmodel is indicated with X. A positional embedding matrix
can be learned or it can be already assigned following the sinusoidal positional encoding
proposed in [1]. Being a simple addition operation, its complexity is negligible and can be
considered to be already incorporated in the MACCs/FLOPs of the embedding layer.

5.3. Multihead Attention

This is the most important block in the transformer, and it occupies the first stage of
the encoder layer and the first two stages of the decoder layer. Its structure is reported in
Figure 2 [1].

Figure 2. Structure of the attention block.

5.3.1. Forward Pass

The first step consists in identifying the input query, key and value matrices XQ of
size M× dmodel and XK, XV of size N × dmodel . Then, for each different head i, Qi, Ki and
Vi are computed where the number of heads h is determined by dividing dmodel by dk. This
is achieved by multiplying the inputs with appropriate weight matrices of size dmodel × dk.

(Qi, Ki, Vi) = (XQWQ
i , XKWK

i , XVWV
i ) (2)

MACCs = M× dmodel × dmodel + 2× N × dmodel × dmodel

FLOPs = 2M× dmodel × dmodel + 4× N × dmodel × dmodel

Figure 2. Structure of the attention block.

5.3.1. Forward Pass

The first step consists in identifying the input query, key and value matrices XQ of
size M × dmodel and XK, XV of size N × dmodel . Then, for each different head i, Qi, Ki and Vi
are computed where the number of heads h is determined by dividing dmodel by dk. This is
achieved by multiplying the inputs with appropriate weight matrices of size dmodel × dk.

(Qi, Ki, Vi) =
(

XQWQ
i , XKWK

i , XVWV
i

)
(2)

MACCs = M × dmodel × dmodel + 2 × N × dmodel × dmodel

FLOPs = 2M × dmodel × dmodel + 4 × N × dmodel × dmodel

Then, the Qi, Ki and Vi matrices are fed into the attention mechanism of each head.
It is assumed, in accordance with the conventions adopted in [11], that computing the
softmax of an array of size N requires 5N FLOPs.

Attention(Qi, Ki, Vi) = softmax

(
QiKT

i√
dk

)
Vi (3)

MACCs = 2M × N × dmodel

FLOPs = 4M × N × dmodel + M × 5N × h + M × N × h

The output of the attention of each head is concatenated and multiplied by a weight
matrix WO of size dmodel × dmodel . Summing up, the output of a multihead attention block is

Multihead
(
XQ, XK, XV) = Concat(head1, . . . , headh)WO

where headi = Attention(Qi, Ki, Vi)
(4)

MACCs = M × dmodel × dmodel

FLOPs = 2M × dmodel × dmodel



Eng 2024, 5 41

The multihead attention block in the decoder builds the query matrix Qi starting from
the output of the previous masked multihead attention block in the decoder Xdec, while the
key and value matrices are obtained from the output of the encoder stack Xenc. Namely,

(Qi, Ki, Vi) =
(

XdecWQ
i , XencWK

i , XencWV
i

)
(5)

The masked multihead attention puts a mask on the softmax output, during training, in
order for tokens not to look for a correlation with the next tokens in the sequence. The
complexity of this operation is not considered, as it consists in putting to −inf certain cells
of the matrix.

The total number of MACCs are

2M × dmodel × dmodel + 2M × N × dmodel + 2N × dmodel × dmodel

The total number of FLOPs are

4M × dmodel × dmodel + 4M × N × dmodel + 4N × dmodel × dmodel + 6M × N × h

5.3.2. Backward Pass and Weight Update

The learnable parameters in the multiheaded attention block are the weight matri-
ces WQ

i , WK
i , WV

i and WO. During bakcpropagation, the derivatives of the output of
the block with respect to these matrices and with respect to the inputs XQ, XK and XV

should therefore be calculated. If it is a multihead encoder or masked multihead decoder:
XQ = XK = XV = X; if it is a multihead decoder: XQ = Xdec and XK = XV = Xenc.
Let us denote f

(
XQ, XK, XV) = multiheadattention

(
XQ, XK, XV) and indicate with L the

loss function.
f = Concat(head1, . . . , headh)WO (6)

∂L
∂WO = Concat(head1, . . . , headh)

T ∂L
∂ f

(7)

∂L
Concat(head1, . . . , headh)

=
∂L
∂ f

(
WO

)T
(8)

Then, the derivatives of the attention module, considering the different heads, result in
the following:

Attention(Qi, Ki, Vi) = softmax

(
QiKT

i√
dk

)
Vi (9)

∂L
∂softmax

=
∂L

∂Attention
VT

i (10)

Every row of the softmax is independent from the other rows. Given a row[
x1 x2 x3 · · · xn

]
and the softmax of that row

[
s1 s2 s3 · · · sn

]
the jacobian

of the softmax with respect to the row is
s1·(1 − s1) −s2·s1 −s3·s1 · · · −sn·s1
−s1·s2 s2·(1 − s2) −s3·s2 · · · −sn·s2

...
...

...
. . .

...
−s1·sn −s2·sn −s3·sn · · · sn·(1 − sn)

 (11)

It is possible to define a 3-dimensional matrix composed of the Jacobian of each row of the
softmax layer, denoted as ∂softmax

∂X , where X is a 2-dimensional matrix in softmax(X). In
order to maintain a concise notation, we also introduce a new type of matrix product ×slice



Eng 2024, 5 42

which multiplies each row of the first 2-dimensional matrix by each slice of the 3d matrix.
The complexity of this product is the same as the regular matrix product.

∂L
∂QiKT

i
=

∂L
∂softmax

×slice

∂softmax

∂
QiKT

i√
dk


T

1√
dk

(12)

Now, the derivative of the loss function with respect to Qi, Ki, Vi is obtained.

∂L
∂Qi

=
∂L

∂QiKT
i

Ki (13)

∂L
∂Ki

=

(
∂L

∂QiKT
i

)T

Qi (14)

∂L
∂Vi

= softmaxT ∂L
∂Attention

(15)

The derivatives with respect to the inputs XQ, XK and XV for each head i are
the following: (

∂L
∂XQ

)
i
=

∂L
∂Qi

(
WQ

i

)T
(16)(

∂L
∂XK

)
i
=

∂L
∂Ki

(
WK

i

)T
(17)(

∂L
∂XV

)
i
=

∂L
∂Vi

(
WV

i

)T
(18)

Then, the derivatives with respect to the weight matrix are computed:

∂L
∂WQ

i

=
(

XQ
)T ∂L

∂Qi
(19)

∂L
∂WK

i
=
(

XK
)T ∂L

∂Ki
(20)

∂L
∂WV

i
=
(

XV
)T ∂L

∂Vi
(21)

To obtain the derivative with respect to XQ, XK and XV , it is required to add all heads.
As XQ, XK and XV are the same for the encoder, they are all added together. In the decoder,
only the derivatives with respect to XK and XV are added together as they come from the
encoder. Let N be the dimension of XK and XV and M be the dimension of XQ.

The complexity for each operation during the backward pass can be calculated
as follows:

∂L
Concat(head1, . . . , headh)

=
∂L
∂ f

(
WO

)T
(22)

MACCs = M × dmodel × dmodel

FLOPs = 2M × dmodel × dmodel

∂L
∂WO = Concat(head1, . . . , headh)

T ∂L
∂ f

(23)

MACCs = dmodel × M × dmodel

FLOPs = 2dmodel × M × dmodel



Eng 2024, 5 43

In order to compute the derivative of the loss function with respect to XV and WV
i , the

following complexities are obtained:

∂L
∂Vi

= softmaxT ∂L
∂Attentioni

(24)

MACCs = N × M × dk × h = N × M × dmodel

FLOPs = 2N × M × dmodel(
∂L

∂XV

)
i
=

∂L
∂Vi

(
WV

i

)T
(25)

∂L
∂XV =

h

∑
i=1

(
∂L

∂XV

)
i

(26)

MACCs = N × dk × dmodel × h = N × dmodel × dmodel

FLOPs = 2N × dmodel × dmodel

∂L
∂WV

i
=
(

XV
)T ∂L

∂Vi
(27)

MACCs = dmodel × N × dk × h = dmodel × N × dmodel

FLOPs = 2dmodel × N × dmodel

In order to compute the derivative of the loss function with respect to XQ, XK, WQ
i

and WK
i , the following complexities are obtained:

∂softmax

∂
QiKT

i√
dk

(28)

MACCs = 0

FLOPs = N × N × M × h

∂L
∂QiKT

i
=

∂L
∂Attention

VT
i ×slice

∂softmax

∂
QiKT

i√
dk


T

1√
dk

(29)

MACCs = M × dmodel × N + M × N × M × h

FLOPs = 2M × dmodel × N + 2M × N × M × h + M × N × h

∂L
∂Qi

=
∂L

∂QiKi
T Ki (30)

MACCs = M × N × dmodel

FLOPs = 2M × N × dmodel(
∂L

∂XQ

)
i
=

∂L
∂Qi

(
WQ

i

)T
(31)

∂L
∂XQ =

h

∑
i=1

(
∂L

∂XQ

)
i

(32)

MACCs = M × dmodel × dmodel

FLOPs = 2M × dmodel × dmodel

∂L
∂WQ

i

=
(

XQ
)T ∂L

∂Qi
(33)



Eng 2024, 5 44

MACCs = dmodel × M × dmodel

FLOPs = 2dmodel × M × dmodel

∂L
∂Ki

=

(
∂L

∂QiKi
T

)T
Qi (34)

MACCs = N × M × dmodel

FLOPs = 2N × M × dmodel(
∂L

∂XK

)
i
=

∂L
∂Ki

(
WK

i

)T
(35)

∂L
∂XK =

h

∑
i=1

(
∂L

∂XK

)
i

(36)

MACCs = N × dmodel × dmodel

FLOPs = 2N × dmodel × dmodel

∂L
∂WK

i
=
(

XK
)T ∂L

∂Ki
(37)

MACCs = dmodel × N × dmodel

FLOPs = 2dmodel × N × dmodel

In the case of the multihead attention encoder and of the masked multihead attention
decoder, it should be considered that XQ = XK = XV (M = N), and the derivatives with
respect to XQ, XK and XV are added. Conversely, in the multi-head attention decoder, it
holds that XQ ̸= XK = XV (M ̸= N), and only the derivatives with respect to XK and XV

are added. The complexity of these operations is marginal and can be considered to be
already integrated in previous MACCs/FLOPs.

In conclusion, the backward pass has a complexity of

MACCs =
2M × dmodel × dmodel + 2N × dmodel × dmodel + 4M × N × dmodel + M × N × M × h

FLOPs = 4M × dmodel × dmodel + 4N × dmodel × dmodel + 8M × N × dmodel + 2M × N ×
M × h + M × N × h

and the weight update has a complexity of

MACCs = 2M × dmodel × dmodel + 2N × dmodel × dmodel

FLOPs = 4M × dmodel × dmodel + 4N × dmodel × dmodel

5.4. Feed-Forward Network

The feed-forward network (FFN) is a 2-layer neural network, where the first layer is of
size M × d f f and the second M × dmodel . Only the first layer uses an activation function.

FFN(x) = GELU(xW1 + b1)W2 + b2 (38)

5.4.1. Forward Pass

MACCs = 2M × dmodel × d f f

The FLOPs for the GeLU activation are assumed to be 8 FLOPs in the forward pass
and 13 FLOPs for computing the derivative.



Eng 2024, 5 45

The FLOPs accounting for bias and NL are

FLOPs = 4M × dmodel × d f f + 9M × d f f + M × dmodel

5.4.2. Backward Pass

The backward pass is characterized by the following complexity.

MACCs = 2M × d f f × dmodel

FLOPs = 4M × dmodel × d f f + 13M × d f f

5.4.3. Weight Update

The weight update requires the following complexity.

MACCs = 2M × d f f × dmodel

FLOPs = 4M × d f f × dmodel

5.5. Add and Norm

After each multihead attention and feed-forward block, the input to the block, indi-
cated as sublayer, is added, and a layer normalization is applied.

LayerNorm(x + Sublayer(x)) (39)

Layer The normalization normalizes the features across each token, multiplies the results
by γ and adds β, where γ and β are learnable parameters.

LayerNorm(x) =
x − E[x]√

Var[x]
γ + β (40)

5.5.1. Forward Pass

Such operation does not properly constitute a MACC.

MACCs = 0

Operations that are performed for each neuron are considered. The square root is
only performed once. The other operations are addition for the mean, subtract, square
and addition for the variance, subtract, divide, bias (add) and scale (multiply). It results in
8 FLOPs per neuron. Furthermore, the FLOPs relative to the addition between x and the
sublayer should also be considered:

MACCs = 0

FLOPs = 9M × dmodel

5.5.2. Backward Pass and Weight Update

To train the parameters γ and β, we first need to compute the derivative of layernorm.
The layer-normalized activation matrix is denoted as z.

∂L
∂γj

=
M

∑
i

∂L
∂Layernormij

zij (41)

MACCs = M × dmodel

FLOPs = 2M × dmodel



Eng 2024, 5 46

∂L
∂β j

=
M

∑
i

∂L
∂Layernormij

(42)

MACCs = 0

FLOPs = M × dmodel

∂L
∂zij

=
∂L

∂Layernormij
γij (43)

MACCs = 0

FLOPs = M × dmodel

The Jacobian of activation vector zi with respect to xi is defined as

jaci =

{
∂zij
∂xik

= 1
σ

(
δjk − 1

dmodel
− (xj−µ)(xk−µ)

dmodel σ
2

)}
jk

. By combining the various Jacobians

for each row zi, a 3d matrix jac is obtained, where each slice corresponds to the Jacobian of
a row vector. The operations involved in such a computation do not properly constitute
MACCs. The FLOPs to calculate the Jacobian is 3 muls, 2 divisions, 4 adds, namely 9 FLOPs
for each element.

MACCs = 0

FLOPs = 9 × M × dmodel × dmodel

To obtain the derivative
∂L
∂X

=
∂L
∂z

×slice jac (44)

MACCs = M × dmodel × dmodel

FLOPs = 2M × dmodel × dmodel

Then, FLOPs used to add the derivative for the skip layer should also be taken
into account.

MACCs = 0

MACCs = M × dmodel

The total number of MACCs for backward are

MACCs = M × dmodel × dmodel

FLOPs = 11M × dmodel × dmodel + 2M × dmodel

The total number of MACCs for weight update are

MACCs = M × dmodel

FLOPs = 3M × dmodel

5.6. Softmax Layer

At the end of the transformer, there is a softmax layer where the weight matrix WS is
of size dmodel × vocsize.

Softmax
(

XWS
)

(45)

5.6.1. Forward Pass

The forward pass requires

MACCs = M × dmodel × vocsize



Eng 2024, 5 47

The softmax function requires 5N FLOPs for an array of N elements. Hence, the
number of FLOPs are

FLOPs = 2M × dmodel × vocsize + M × 5vocsize

5.6.2. Backward Pass and Weight Update

The derivative of the loss with respect to Z, with Z being the product of X with Ws is
∂L
∂z = target − s. As the target is usually a one hot encoded vector, it is assumed that such
operation has no FLOPs or MACCs.

∂L
∂X

=
∂L
∂Z

(
WS
)T

(46)

MACCs = M × vocsize × dmodel

FLOPs = 2M × vocsize × dmodel

∂L
∂WS = XT ∂L

∂Z
(47)

MACCs = dmodel × M × vocsize

FLOPs = 2dmodel × M × vocsize

The total number of MACCs for backward are

MACCs = M × vocsize × dmodel

FLOPs = 2M × vocsize × dmodel

The total number of MACCs for weight update are

MACCs = dmodel × M × vocsize

FLOPs = 2dmodel × M × vocsize

5.7. Error Projection (Only PEPITA and MEMPEPITA)

The output error has dimensionality M × vocsize, which is the same dimensionality
as the decoder input. Therefore, a projection matrix to project it to the decoder input is
not needed. On the other hand, an attention mechanism is used to project the error of
dimensionality M × dmodel to the dimensionality of the input to the encoder N × dmodel .

Tenc
err = Attention

(
Tenc, Tdec

err , Tdec
err

)
(48)

MACCs = 2N × M × vocsize

FLOPs = 4N × M × vocsize + 6N × M

6. Exemplary Application

To explain better the applicability of the proposed mathematical formulation, the com-
plexity estimation in terms of MACCs for a one-block encoder-only simplified architecture
trained with BP, PEPITA or MEMPEPITA is reported in this section. The layers involved
in the architecture are the following (sections): embedding layer (Section 5.1), multihead
attention (Section 5.3), add and norm (Section 5.5), feed-forward network (Section 5.4) and
softmax (Section 5.6). To compute the number of MACCs required for a forward pass, its
complexity at each layer is added together.



Eng 2024, 5 48

MACCs f orward = M × vocsize × dmodel + 2M × d2
model + 2M × N × dmodel + 2N ×

d2
model + 0 + 2M × dmodel × d f f + 0 + M × dmodel × vocsize

Analogously, the total number of MACCs for the backward pass and the weight update are
the following:

MACCsbackward =
0+ 2M× dmodel × dmodel + 2N × dmodel × dmodel + 4M× N × dmodel + M× N × M× h+
M × dmodel × dmodel + 2M × dmodel × d f f + M × dmodel × dmodel + dmodel × M × vocsize

MACCsweight−update = M × vocsize × dmodel + 2M × d2
model + 2N × d2

model + M ×
dmodel + 2M × dmodel × d f f + M × dmodel + M × vocsize × dmodel

The first term of the sum in the weight-update MACC estimation shall be discarded when
considering BP. As the output dimension is the same as the input dimension for an encoder-
only architecture, the error projections for PEPITA and MEMPEPITA are not required.
Referring to Table 2, the total numbers of MACCs for training a one-block encoder-only
transformer and adopting the different learning procedures are the following:

MACCsBP = MACCs f orward + MACCsbackward + MACCsweight−update

MACCsPEPITA = 2MACCs f orward + MACCsweight−update

MACCsMEMPEPITA = 3MACCs f orward + MACCsweight−update

7. Conclusions

In this work, the equations behind BP (reverse-mode autodiff), PEPITA and MEM-
PEPITA for the layers of a generic transformer architecture were derived and described.
The computational complexity of the forward pass, backward pass and weight update were
expressed in terms of MACCs and FLOPs for each layer, using the mathematical formulas
previously obtained. An examplary application for the computation of the complexity in
the case of a one-block encoder-only transformer was also reported for illustration purposes.
The method proposed in this work combines the advantages of being device-agnostic with
mathematical rigour, providing a robust estimation of complexity independent of the spe-
cific target. By taking advantage of the results of this paper, the reader can easily provide
a reliable estimation of the computational complexity involved in training a transformer
architecture of their choice using BP and forward learning procedures.

Author Contributions: Conceptualization, D.P.P. and F.M.A.; methodology, D.P.P. and F.M.A.; in-
vestigation, D.P.P. and F.M.A.; resources, D.P.P. and F.M.A.; writing—original draft preparation,
writing—review and editing, D.P.P. and F.M.A.; supervision, D.P.P.; project administration, D.P.P. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: Authors Danilo Pietro Pau and Fabrizio Maria Aymone were employed by the
company STMicroelectronics. The authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential conflict of interest.



Eng 2024, 5 49

References
1. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All you Need. In

Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Curran
Associates, Inc.: New York, NY, USA, 2017; Volume 30.

2. Kaplan, J.; McCandlish, S.; Henighan, T.; Brown, T.B.; Chess, B.; Child, R.; Gray, S.; Radford, A.; Wu, J.; Amodei, D. Scaling Laws
for Neural Language Models. arXiv 2020, arXiv:2001.08361.

3. Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.
Language Models are Few-Shot Learners. arXiv 2020, arXiv:2005.14165.

4. Mielke, S.J.; Alyafeai, Z.; Salesky, E.; Raffel, C.; Dey, M.; Gallé, M.; Raja, A.; Si, C.; Lee, W.Y.; Sagot, B.; et al. Between words and
characters: A Brief History of Open-Vocabulary Modeling and Tokenization in NLP. arXiv 2021, arXiv:2112.10508.

5. Maslej, N.; Fattorini, L.; Brynjolfsson, E.; Etchemendy, J.; Ligett, K.; Lyons, T.; Manyika, J.; Ngo, H.; Niebles, J.C.; Parli, V.; et al.
The AI Index 2023 Annual Report; Technical report; AI Index Steering Committee, Institute for Human-Centered AI, Stanford
University: Stanford, CA, USA, 2023.

6. Hinton, G. The Forward-Forward Algorithm: Some Preliminary Investigations. arXiv 2022, arXiv:2212.13345.
7. Dellaferrera, G.; Kreiman, G. Error-driven Input Modulation: Solving the Credit Assignment Problem without a Backward Pass.

arXiv 2022, arXiv:2201.11665.
8. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv 2016, arXiv:1603.04467.
9. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:

An Imperative Style, High-Performance Deep Learning Library. arXiv 2019, arXiv:1912.01703.
10. Baydin, A.G.; Pearlmutter, B.A.; Radul, A.A.; Siskind, J.M. Automatic Differentiation in Machine Learning: A Survey. J. Mach.

Learn. Res. 2017, 18, 5595–5637.
11. Clark, K.; Luong, M.T.; Le, Q.V.; Manning, C.D. Pre-Training Transformers as Energy-Based Cloze Models. In Proceedings of the

EMNLP, Online, 16–20 November 2020.
12. Crick, F. The recent excitement about neural networks. Nature 1989, 337, 129–132. [CrossRef]
13. Lillicrap, T.; Santoro, A.; Marris, L.; Akerman, C.; Hinton, G. Backpropagation and the brain. Nat. Rev. Neurosci. 2020, 21, 335–346.

[CrossRef]
14. Burbank, K.S.; Kreiman, G. Depression-Biased Reverse Plasticity Rule Is Required for Stable Learning at Top-Down Connections.

PLoS Comput. Biol. 2012, 8, e1002393. [CrossRef] [PubMed]
15. Liao, Q.; Leibo, J.Z.; Poggio, T. How Important is Weight Symmetry in Backpropagation? arXiv 2016, arXiv:1510.05067. [CrossRef]
16. Baldi, P.; Sadowski, P. A theory of local learning, the learning channel, and the optimality of backpropagation. Neural Netw. 2016,

83, 51–74. [CrossRef] [PubMed]
17. Jaderberg, M.; Czarnecki, W.M.; Osindero, S.; Vinyals, O.; Graves, A.; Silver, D.; Kavukcuoglu, K. Decoupled Neural Interfaces

using Synthetic Gradients. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11
August 2017; Volume 70, pp. 1627–1635.

18. Czarnecki, W.M.; Świrszcz, G.; Jaderberg, M.; Osindero, S.; Vinyals, O.; Kavukcuoglu, K. Understanding Synthetic Gradients and
Decoupled Neural Interfaces. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11
August 2017; Volume 70, pp. 904–912.

19. Xiao, W.; Chen, H.; Liao, Q.; Poggio, T. Biologically-plausible learning algorithms can scale to large datasets. arXiv 2018,
arXiv:1811.03567.

20. Lillicrap, T.; Cownden, D.; Tweed, D.; Akerman, C. Random synaptic feedback weights support error backpropagation for deep
learning. Nat. Commun. 2016, 7, 13276. [CrossRef] [PubMed]

21. Nøkland, A. Direct Feedback Alignment Provides Learning in Deep Neural Networks. In Proceedings of the 30th International
Conference on Neural Information Processing Systems, NIPS’16, Barcelona, Spain, 5–10 December 2016; pp. 1045–1053.

22. Akrout, M.; Wilson, C.; Humphreys, P.; Lillicrap, T.; Tweed, D.B. Deep Learning without Weight Transport. In Proceedings of the
Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; Curran Associates, Inc.: New
York, NY, USA, 2019; Volume 32.

23. Frenkel, C.; Lefebvre, M.; Bol, D. Learning Without Feedback: Fixed Random Learning Signals Allow for Feedforward Training of
Deep Neural Networks. Front. Neurosci. 2021, 15, 629892. [CrossRef] [PubMed]

24. Xie, X.; Seung, H. Equivalence of Backpropagation and Contrastive Hebbian Learning in a Layered Network. Neural Comput.
2003, 15, 441–454. [CrossRef] [PubMed]

25. Scellier, B.; Bengio, Y. Equilibrium Propagation: Bridging the Gap between Energy-Based Models and Backpropagation. Front.
Comput. Neurosci. 2017, 11, 24. [CrossRef]

26. Clark, D.; Abbott, L.; Chung, S. Credit Assignment Through Broadcasting a Global Error Vector. In Proceedings of the Advances
in Neural Information Processing Systems 34—35th Conference on Neural Information Processing Systems, NeurIPS 2021, Virtual,
6–14 December 2021; pp. 10053–10066.

27. Pau, D.P.; Aymone, F.M. Suitability of Forward-Forward and PEPITA Learning to MLCommons-Tiny benchmarks. In Proceedings
of the 2023 IEEE International Conference on Omni-layer Intelligent Systems (COINS), Berlin, Germany, 23–25 July 2023; pp. 1–6.
[CrossRef]

https://doi.org/10.1038/337129a0
https://doi.org/10.1038/s41583-020-0277-3
https://doi.org/10.1371/journal.pcbi.1002393
https://www.ncbi.nlm.nih.gov/pubmed/22396630
https://doi.org/10.1609/aaai.v30i1.10279
https://doi.org/10.1016/j.neunet.2016.07.006
https://www.ncbi.nlm.nih.gov/pubmed/27584574
https://doi.org/10.1038/ncomms13276
https://www.ncbi.nlm.nih.gov/pubmed/27824044
https://doi.org/10.3389/fnins.2021.629892
https://www.ncbi.nlm.nih.gov/pubmed/33642986
https://doi.org/10.1162/089976603762552988
https://www.ncbi.nlm.nih.gov/pubmed/12590814
https://doi.org/10.3389/fncom.2017.00024
https://doi.org/10.1109/COINS57856.2023.10189239


Eng 2024, 5 50

28. Banbury, C.; Reddi, V.J.; Torelli, P.; Holleman, J.; Jeffries, N.; Kiraly, C.; Montino, P.; Kanter, D.; Ahmed, S.; Pau, D.; et al.
MLCommons Tiny Benchmark. In Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks,
Virtual, 6–14 December 2021.

29. Srinivasan, R.F.; Mignacco, F.; Sorbaro, M.; Refinetti, M.; Cooper, A.; Kreiman, G.; Dellaferrera, G. Forward Learning with
Top-Down Feedback: Empirical and Analytical Characterization. arXiv 2023, arXiv:2302.05440.

30. Justus, D.; Brennan, J.; Bonner, S.; McGough, A.S. Predicting the Computational Cost of Deep Learning Models. arXiv 2018,
arXiv:1811.11880.

31. Zargar, B.; Ponci, F.; Monti, A. Evaluation of Computational Complexity for Distribution Systems State Estimation. IEEE Trans.
Instrum. Meas. 2023, 72, 9001512. [CrossRef]

32. Muhammad, N.; Bibi, N.; Jahangir, A.; Mahmood, Z. Image denoising with norm weighted fusion estimators. Form. Pattern Anal.
Appl. 2018, 21, 1013–1022. [CrossRef]

33. Getzner, J.; Charpentier, B.; Günnemann, S. Accuracy is not the only Metric that matters: Estimating the Energy Consumption of
Deep Learning Models. arXiv 2023, arXiv:2304.00897.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TIM.2023.3260268
https://doi.org/10.1007/s10044-017-0617-8

	Introduction 
	Key Contributions of This Work 
	Related Works 
	Automatic Differentiation 
	Alternatives to Backpropagation 
	Forward Learning 
	PEPITA 
	MEMPEPITA 


	Notation and Conventions 
	Complexity Analysis 
	Embedding Layer 
	Forward Pass 
	Weight Update (Only PEPITA and MEMPEPITA) 

	Position Embeddings 
	Multihead Attention 
	Forward Pass 
	Backward Pass and Weight Update 

	Feed-Forward Network 
	Forward Pass 
	Backward Pass 
	Weight Update 

	Add and Norm 
	Forward Pass 
	Backward Pass and Weight Update 

	Softmax Layer 
	Forward Pass 
	Backward Pass and Weight Update 

	Error Projection (Only PEPITA and MEMPEPITA) 

	Exemplary Application 
	Conclusions 
	References

