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Abstract: Background: Diabetes mellitus is an increasing global health emergency, with serious
complications (including osteoporosis). Leptin and adiponectin are among the least-investigated
possible contributing factors of T1D low bone mass. Methods: In this case-control cross-sectional
analysis, we evaluated 40 pairs of T1D children and adolescents and controls. We evaluated body
diameters and skinfolds, leptin, adiponectin, lipids and lipoproteins, bone metabolic markers and
DXA parameters of BMD and fat percentage. Results: Leptin levels were comparable between groups
and correlated well with body mass parameters. Adiponectin levels were found to be higher in the
patient group and correlated with higher levels of HbA1c, triglycerides and s-RANKL. Conclusions:
In this study, leptin levels were no different, but adiponectin levels were found to be higher in
children and adolescents with T1D and correlated with diabetic metabolic derangement indices and
s-RANKL in the patient group. Adiponectin can be considered a surrogate marker of T1D in young
patients’ metabolic status and probably contributes to the diabetic low bone mass phenotype via
activation of the RANKL/OPG metabolic pathway.

Keywords: adiponectin; leptin; type 1 diabetes; children; adolescents; bone metabolism; osteopenia;
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1. Introduction

Diabetes mellitus is an increasing global health emergency with serious complications,
affecting about half a billion individuals worldwide. There is an increasing incidence for
both type 1 (T1D) and type 2 (T2D) diabetes in children and adolescents, and the number
of new cases of T1D in ages 1–19 years is estimated to be 149,500 patients per year [1].
Among the detrimental complications of the disease is osteoporosis, even in the lower ages.
Children and youth with T1D were found to have lower bone mineral content (BMC), lower
areal bone density (aBMD) and deficits in trabecular bone density and micro-architecture [2].
These deficits, along with microvascular complications, are probably responsible for the
observed increased fracture risk across the life span of T1D patients [3]. An increasing
proportion of the medical literature focuses on the pathophysiology of lower bone mass
accrual in young T1D patients, and the interaction between bone and adipose tissue is one
of the systems being lately investigated.

A crosstalk between bone and adipose tissue is well-established [4–6], with peptides
such as the lipokines superfamily acting as mediators of this link, balancing between
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energy conservation and bone quality [4]. Leptin and adiponectin were the first pleiotropic
adipokines that were studied regarding their bone morphogenic role. Leptin, a 16 kDa
protein, mainly secreted by adipose tissue, plays an important role in the energy regulation
of various systems [7,8]. A growing body of cell culture, animal and human studies has
revealed conflicting results about the effect of leptin on the skeleton, leading to a theory of
dual leptin action: one peripheral direct anabolic effect on osteoblasts and chondrocytes
and one central indirect catabolic effect through sympathetic neural activity. The net
action seems to be species specific and analogous to homeostatic body conditions [5,6,9].
Adiponectin is a 28 kDa protein, excreted mainly by adipose tissue. Generally, it has an
inverse relationship with obesity and insulin resistance and decreases circulating lipid
levels [10]. Although most animal studies have been inconclusive about its action on
bone, some cellular line studies have shown an osteoanabolic effect of adiponectin on
osteoblasts [5,11] and inhibition of osteoclasts [5,11], but others have documented an
inhibition of osteoblasts [12–14], especially via the RANKL/OPG (receptor activator of
nuclear factor-KappaB ligand/osteoprotegerin) system [15–17].

In this context of elucidating the role of leptin and adiponectin in bone metabolism,
we performed the study of these lipokines in young patients with T1D and controls
in an effort to investigate their associations with clinical and biochemical parameters
and thus hypothesize their possible role in developing the low bone mass phenotype of
T1D patients.

2. Materials and Methods
2.1. Study Population

The protocol of this case-control cross-sectional study has been extensively described
in previous publications [18,19]. In brief, we evaluated 40 consecutive Greek Caucasian
children and adolescents with T1DM and 40 healthy age- and gender-matched controls
during a three-year period at the Diabetic Outpatient Clinic of 2nd Department of Pedi-
atrics, University of Athens. Controls were patients’ friends, classmates or relatives and
completely healthy. Inclusion criteria for patients were age greater than 5 years and disease
duration of more than 2 years, while controls had to be over the age of 5 years and be
perfectly healthy. Exclusion criteria for both patients and controls were the use of vitamin
and mineral supplements or dietary restrictions, the coexistence of other chronic diseases
(with a possible impact on bone metabolism) and the use of medications affecting bone
turnover, like corticosteroids and antipsychotic or neuroleptic drugs, as well as adolescents
on contraceptives or subjects having sustained a fracture three months preceding the study.

2.2. Clinical Evaluation

After a thorough clinical examination during the routine visit, body weight and
standing height were recorded and BMI Z-scores (SDS-BMI) were evaluated from national
normative data. The pubertal stage of participants was evaluated by a single examiner
(Ch.T.) using the Marshall and Tanner visual scale. Apart from body diameters (waist, hip,
branchial, thigh and calf), typical skinfolds were evaluated using the Harpenden skinfold
caliper (dial graduation: 0.20 mm; measuring range: 0 to 80 mm; measuring pressure:
10 gms/mm2; constant over range, accuracy: 99.0%; repeatability: 0.20 mm) in order to
evaluate the subcutaneous fat distribution. The mean value of two repeated measurements
was used in the final analysis.

2.3. Biochemical Assays

After an overnight fast, morning blood samples (08:00–10:00 a.m.) were obtained and
stored at −80 ◦C until final biochemical evaluation.

Leptin was measured in plasma with the enzyme immunoassay (EIA) method using a
human leptin kit provided by Biovendor (Biovendor, 62100 Brno, Czech Republic) with a
detection limit of 0.2 ng/mL (intra-assay CV 4.2%, inter-assay CV 6.7%).



Endocrines 2023, 4 711

Adiponectin was measured in plasma with the enzyme immunoassay (EIA) method
using a human adiponectin kit provided by Affymetrix eBioscience (Affymetrix eBioscience,
Bender MedSystems GmbH, Campus Vienna Biocenter 2, 1030 Vienna, Austria) with a
detection limit of 0.01 ng/mL (intra-assay CV 3.1%, inter-assay CV 4.2%).

Bone metabolism markers (Dickkopf-1, sclerostin, total soluble receptor activator
of nuclear factor-KappaB ligand (s-RANKL), osteoprotegerin (OPG), osteocalcin and C-
terminal telopeptide crosslinks of type I collagen (CTX)) were measured in plasma with
the sandwich enzyme-linked immunosorbent assay (ELISA) method, while intact parathy-
roid hormone (PTH) and insulin-like growth factor 1 (IGF1) were measured in serum
with the electrochemiluminescence immunoassay (ECLIA) method that was previously
described [19].

Total serum alkaline phosphatase (ALP), glycosylated hemoglobin (HbA1c), lipids and
lipoproteins were measured with routine biochemical assays in the biochemistry laboratory
of “P.& A. Kyriakou” children’s hospital.

2.4. Bone Density and Fat Mass Evaluation

After informed consent from all parents that was obtained in advance, total body
less head (TB-BMD) and lumbar spine bone mineral density (L1-L4-BMD) were evaluated
with dual energy X-ray absorptiometry (DXA) in the department of bone and mineral
metabolism at the institute of child health in “Aghia Sophia” children’s hospital. In
addition to BMD evaluation, whole body DXA was utilized to evaluate body fat mass and
percentage and body lean mass.

The ethics committee of our hospital and the university of Athens medical school
approved the research protocol (protocol code: 6340/12.04.2011).

2.5. Statistical Analysis

All statistical analyses and data management were performed using STATA for Win-
dows v16, (StataCorp. 2019. Stata Statistical Software: Release 16. College Station, TX, USA:
StataCorp LLC). Data are expressed as mean ± SD for normally distributed variables and
median (interquartile range) for skewed variables.

Power analysis indicated that a sample size of 40 pairs had 85% power to detect a mean
adiponectin difference (delta) of 4500 with a significance level (alpha) of 0.05 (two-tailed).
Exploratory data analysis was performed for all numerical variables both graphically
and statistically, using the Shapiro–Wilk criterion. Numerical variables that were right-
skewed were log-transformed, while two variables were square root-transformed to fulfill
normality assumption.

After mathematical transformation of skewed numerical variables, the paired t-test
was used for comparisons between patients and controls, whereas Fisher’s exact test was
used for categorical variables’ comparison between the aforementioned groups. In each
group, associations of leptin and adiponectin with demographic, somatometric, metabolic
and bone parameters were performed with Pearson’s correlation coefficient for univariate
comparisons, while partial correlation coefficient was utilized for multiple comparisons
(adjusted for gender, chronological age and SDS-BMI). The main research idea was to
compare different association patterns between patients and controls, possibly indicating
activation of certain pathophysiological pathways, contributing to osteoporosis in T1D
patients. p ≤ 0.05 was considered significant.

3. Results

Patients’ and controls’ characteristics are presented and compared in Table 1. Although
patients and controls had comparable levels of SDS-BMI and DXA fat percentage, the
levels of low density cholesterol (LDL-C), apolipoprotein B100 (Apo-B) and triglycerides
were higher in the patient group (Table 1). These results are indicative of the metabolic
derangement of diabetes.
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Table 1. Study variable distribution in T1DM patients and controls. Data are presented as actual
numbers (%) for categorical variables, mean ± SD for normally distributed variables and median
(range) for skewed variables. Comparisons are between patients and controls.

Characteristics Overall (n = 80) Controls (n = 40) Patients (n = 40) p

Gender (boys/girls) 36/44 18/22 18/22 0.58 **
Chronological age (years) 13.02 ± 3.39 13.04 ± 3.53 12.99 ± 3.3 0.39 *

SDS BMI 0.290 ± 0.93 0.298 ± 0.92 0.286 ± 0.83 0.52 *
DEXA fat percentage (%) 27.6 ± 9.7 28.3 ± 8.8 26.2 ± 10.1 0.35 *

Physical activity
(Kcal × kg−1 × day−1) 34.2 ± 3.9 35.88 ± 4.69 33.91 ± 3.8 0.15 *

HbA1c (%)
(IFCC, mmol/mol)

6.50 ± 2.23
(48 ± 24.4)

4.75 ± 0.18
(28 ± 2.0)

8.25 ± 1.95
(67 ± 21.3) <0.001 *

12-month HbA1c (%)
(IFCC, mmol/mol)

6.41 ± 2.00
(47 ± 21.9)

4.75 ± 1.18
(28 ± 2.0)

8.06 ± 1.58
(65 ± 17.3) <0.001 *

Fasting glucose (mg/dL)
(mmol/L)

124.8 ± 41.2
(6.92 ± 2.28)

82.23 ± 5.63
(4.56 ± 0.32)

167.4 ± 71.3
(9.26 ± 3.94) <0.001 *

HS-CRP 0.32 (0.15, 0.97) 0.39 (0.15, 1.13) 0.32 (0.15, 0.72)
Log (HS-CRP) −0.86 ± 1.0 −0.77 ± 1.05 −0.98 ± 0.94 0.22 *

T-CHOL (mg/dL) 160 ± 27 156 ± 25 164 ± 28 0.09 *
LDL-C (mg/dL) 89 ± 21 85 ± 21 93 ± 21 0.05 *
HDL-C (mg/dL) 61 ± 14 62 ± 13 60 ± 14 0.26 *

Triglycerides (Tg’s) (mg/dL) 58 ± 34 52 ± 15 65 ± 46 0.04 *
Non-HDL-C (mg/dL) 97 ± 26 94 ± 23 101 ± 29 0.14 *

Apo-B (mg/dL) 64 ± 15 61 ± 13 67 ± 17 0.03 *
Apo-A1 (mg/dL) 147 ± 24 147.2 ± 24.1 147.5 ± 24.5 0.47 *

Lp(a) (mg/dL) 9.7 (4.9, 20.8) 9.3 (4.3, 21.9) 10.4 (5.4, 17.4)
Log (Lp(a)) 2.3 ± 0.9 2.2 ± 0.9 2.3 ± 0.9 0.35 *

T-CHOL/HDL-C 2.7 ± 0.6 2.6 ± 0.5 2.8 ± 0.6 0.06 *
LDL-C/HDL-C 1.5 ± 0.5 1.4 ± 0.5 1.6 ± 0.4 0.06 *
LDL-C/APO-B 1.3 ± 0.1 1.39 ± 0.2 0.38 ± 0.1 0.42 *

Tg’s/HDL-C 1.06 ± 0.8 0.9 ± 0.4 1.2 ± 1.1 0.06 *
APO-B/APO-A1 0.44 ± 0.12 0.42 ± 0.1 0.46 ± 0.13 0.06 *

Non-HDL-C/HDL-C 1.7 ± 0.6 1.6 ± 0.5 1.8 ± 0.6 0.06 *
Leptin (ng/mL) 6.6 (2.6, 14.3) 8.2 (3.07, 13.1) 5.1 (1.5, 15.9)√

Leptin 2.7 ± 1.4 2.8 ± 1.3 2.5 ± 1.4 0.16 *
Adiponectin (ng/mL) 13,586 (10,192, 18,667) 12,503 (9693, 15,431) 16,979 (11,683, 23,682)

Log (adiponectin) 9.5 ± 0.4 9.4 ± 0.4 9.7 ± 0.5 0.005 *
Adiponectin/leptin 2380 (914, 5304) 1628 (764, 4224) 3404 (1074, 11,226)

Log (adiponectin/leptin) 7.8 ± 1.3 7.5 ± 1.1 8.1 ± 1.4 0.01 *
Insulin dose

U × Kgr−1 × day−1 0.96 ± 0.22 -

* Student’s t test (one-sided); ** Fisher’s exact test; SDS BMI—standard deviation score of body mass index;
HbA1c—glycosylated hemoglobin; HS-CRP—high sensitivity C-reactive protein; T-CHOL—total cholesterol;
HDL-C—high density cholesterol; LDL-C—low density cholesterol; Apo-B—apolipoprotein B100; Apo-A1—
apolipoprotein A1; Lp(a)—lipoprotein α.

Adiponectin and leptin exhibited skewed distributions (adiponectin skewness 1.45,
kurtosis 5.53, Figure 1; leptin skewness 1.31, kurtosis 4.72, Figure 2). Leptin levels were
found to be comparable in patients and controls, but adiponectin levels were significantly
higher in T1D patients. The difference in the adiponectin to leptin ratio was mainly
attributed to the difference in adiponectin levels (Table 1).
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We also evaluated the associations of adiponectin and leptin with demographic, so-
matometric, metabolic and bone parameters in patients and controls, as presented in
Tables 2 and 3. In the patient group, leptin exhibited strong and significant associations
with gender, Tanner pubertal stage, SDS-BMI, fat mass and percentage, lean mass, waist
and hip diameters and almost all skinfolds, while its association with whole body BMD
Z-score might reflect the general association with body mass, as already described. These as-
sociations were largely observed in the control group as well (Tables 2 and 3). Adiponectin
exhibited a different pattern of associations. There were strong correlations in patients
with glycosylated hemoglobin (both basal and 12-month HbA1c), triglycerides and soluble
receptor activator of nuclear factor-KappaB ligand (log (s-RANKL)) that were not observed
in the controls (Tables 2 and 3).
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Table 2. Associations of leptin and adiponectin with demographic, somatometric and metabolic
parameters in patients and controls, using Pearson’s coefficient for univariate associations and partial
correlation coefficient for multiple comparisons, adjusted for gender, age and SDS-BMI.

√
Leptin Log (Adiponectin)

Pearson’s and Partial Correlation
Coefficients, p-Value

Overall
(n = 80)

Controls
(n = 40)

Patients
(n = 40)

Overall
(n = 80)

Controls
(n = 40)

Patients
(n = 40)

gender * 0.47, <0.001 0.26, 0.09 0.65, <0.001 0.016, 0.88 −0.22, 0.17 0.21, 0.17
age * 0.20, 0.06 0.10, 0.50 0.29, 0.06 −0.25, 0.01 −0.34, 0.02 −0.21, 0.18
Tanner stage * 0.24, 0.02 0.13, 0.41 0.36, 0.02 −0.19, 0.07 −0.27, 0.08 −0.16, 0.29
SDS-BMI * 0.43, <0.001 0.34, 0.03 0.48, 0.001 −0.25, 0.02 −0.10, 0.50 −0.26, 0.09
DXA fat percentage 0.42, <0.001 0.20, 0.22 0.70, <0.001 −0.03, 0.73 −0.14, 0.40 −0.004, 0.98
DXA fat mass 0.43, <0.001 0.27, 0.10 0.65, <0.001 0.11, 0.35 0.16, 0.32 0.12, 0.47
DXA lean mass −0.20, 0.07 −0.01, 0.91 −0.38, 0.02 −0.12, 0.27 −0.25, 0.12 −0.06, 0.73
physical activity −0.13, 0.24 −0.15, 0.34 −0.07, 0.68 −0.20, 0.07 −0.22, 0.17 −0.05, 0.74
insulin dose - - −0.01, 0.93 - - −0.09, 0.59
diabetes duration - - 0.17, 0.31 - - −0.0002, 0.99
HbA1c −0.03, 0.74 0.002, 0.98 −0.18, 0.26 0.39, <0.001 0.03, 0.98 0.39, 0.01
12-month HbA1c −0.05, 0.65 0.002, 0.98 −0.22, 0.17 0.36, 0.001 0.038, 0.98 0.37, 0.02
waist diameter 0.36, 0.001 0.38, 0.01 0.40, 0.01 0.03, 0.76 0.35, 0.03 −0.23, 0.17
hip diameter 0.27, 0.01 0.25, 0.12 0.34, 0.03 −0.09, 0.43 −0.12, 0.47 −0.02, 0.87
branchial diameter −0.11, 0.31 0.17, 0.30 −0.19, 0.23 0.05, 0.60 0.04, 0.78 0.04, 0.80
thigh diameter 0.22, 0.05 0.17, 0.29 0.30, 0.07 −0.049, 0.66 0.17, 0.31 −0.09, 0.56
calf diameter −0.04, 0.67 0.14, 0.40 −0.11, 0.48 0.14, 0.19 0.06, 0.69 0.16, 0.33
biceps skinfold 0.26, 0.01 0.26, 0.11 0.22, 0.17 −0.13, 0.24 0.01, 0.92 −0.31, 0.06
triceps skinfold 0.38, <0.001 0.31, 0.05 0.43, 0.006 0.12, 0.27 0.03, 0.82 0.09, 0.56
subscapular skinfold 0.27, 0.01 0.24, 0.13 0.34, 0.03 −0.10, 0.35 −0.18, 0.27 −0.08, 0.62
suprailiac skinfold 0.40, <0.001 0.40, 0.01 0.45, 0.004 0.04, 0.69 0.05, 0.75 −0.001, 0.99
abdominal skinfold 0.27, 0.01 0.15, 0.34 0.36, 0.02 0.09, 0.41 −0.12, 0.47 0.23, 0.15
thigh skinfold 0.40, <0.001 0.36, 0.02 0.48, 0.002 0.19, 0.09 0.17, 0.30 0.09, 0.57
calf skinfold 0.39, <0.001 0.55, <0.001 0.22, 0.18 −0.02, 0.81 0.13, 0.44 −0.11, 0.48
T-CHOL 0.17, 0.13 0.013, 0.93 0.24, 0.13 0.15, 0.17 −0.06, 0.68 0.12, 0.46
triglycerides 0.08, 0.47 −0.04, 0.78 0.14, 0.39 0.31, 0.005 −0.02, 0.86 0.35, 0.02
HDL-C −0.009, 0.93 −0.06, 0.71 −0.13, 0.42 0.12, 0.26 0.20, 0.22 0.01, 0.91
LDL-C 0.13, 0.25 0.07, 0.67 0.18, 0.27 0.05, 0.61 −0.11, 0.48 0.014, 0.93
Apo-B 0.06, 0.57 −0.07, 0.65 0.16, 0.36 0.09, 0.45 −0.27, 0.11 0.12, 0.50
Apo-A1 −0.05, 0.68 −0.14, 0.39 −0.11, 0.52 0.08, 0.47 0.14, 0.39 0.03, 0.85
log (Lp(a)) 0.04, 0.71 0.10, 0.56 0.008, 0.96 0.04, 0.73 0.06, 0.62 −0.004, 0.98

* Pearson’s correlation coefficient; SDS BMI—standard deviation score of body mass index; HbA1c—glycosylated
hemoglobin; T-CHOL—total cholesterol; HDL-C—high density cholesterol; LDL-C—low density cholesterol;
Apo-B—apolipoprotein B100; Apo-A1—apolipoprotein A1; Lp(a)—lipoprotein α.

Table 3. Associations of leptin and adiponectin with biochemical and bone parameters in patients
and controls, using partial correlation coefficient for multiple comparisons, adjusted for gender, age
and SDS-BMI.

√
Leptin Log (Adiponectin)

Partial Correlation
Coefficients, p-Value Overall (n = 80) Controls (n = 40) Patients (n = 40) Overall (n = 80) Controls (n = 40) Patients (n = 40)

log (HS-CRP) 0.06, 0.61 0.007, 0.97 0.43, 0.06 −0.15, 0.27 −0.24, 0.19 0.19, 0.40
IGF-1 0.03, 0.78 0.04, 0.77 0.09, 0.55 −0.16, 0.14 −0.01, 0.94 −0.21, 0.20
log (PTH) −0.05, 0.66 −0.12, 0.44 0.12, 0.45 0.08, 0.43 0.04, 0.78 0.20, 0.21√

ALP −0.15, 0.17 −0.09, 0.57 −0.26, 0.13 0.01, 0.89 0.01, 0.92 −0.06, 0.73
dickkopf-1 0.009, 0.93 0.24, 0.13 −0.18, 0.27 −0.009, 0.93 −0.06, 0.72 −0.07, 0.64
sclerostin −0.02, 0.80 −0.20, 0.21 −0.21, 0.20 0.12, 0.26 0.08, 0.63 0.07, 0.67
log (CTX) 0.13, 0.25 0.22, 0.18 0.06, 0.70 −0.03, 0.76 0.12, 0.44 −0.04, 0.77
log (osteocalcin) 0.06, 0.56 0.15, 0.34 0.01, 0.94 −0.004, 0.96 0.19, 0.24 −0.07, 0.65
log (s-RANKL) 0.20, 0.06 0.25, 0.12 0.20, 0.22 0.11, 0.30 −0.18, 0.28 0.35, 0.03
OPG −0.20, 0.07 −0.26, 0.11 −0.21, 0.20 0.23, 0.03 0.16, 0.33 0.16, 0.32
L1-L4 BMD Z-score −0.15, 0.17 −0.10, 0.27 −0.10, 0.51 −0.22, 0.05 −0.22, 0.17 −0.17, 0.30
WB BMD Z-score −0.20, 0.06 −0.09, 0.58 −0.33, 0.04 −0.17, 0.12 −0.10, 0.53 −0.13, 0.41

SDS BMI—standard deviation score of body mass index; HS-CRP—high sensitivity C-reactive protein;
IGF1—insulin-like growth factor 1; log (PTH)—logarithm of intact parathyroid hormone;

√
ALP—square root

of total alkaline phosphatase; log (CTX)—logarithm of C-terminal telopeptide crosslinks of type I collagen; log
(osteocalcin)—logarithm of osteocalcin; OPG—osteoprotegerin; log (s-RANKL)—logarithm of soluble receptor
activator of nuclear factor-KappaB ligand; Z-score L1-L4 and total body BMD—standard deviation score of lumbar
spine and total body less head bone mineral density.
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Leptin associations seemed to follow the body mass distribution, especially the fat
mass and percentage and also subcutaneous fat. Adiponectin associations seemed to follow
the metabolic derangement of diabetes and probably were connected with the derangement
of the RANKL/OPG bone metabolic system (Tables 2 and 3).

4. Discussion

In this work we studied leptin and adiponectin distributions in young patients with
T1D and controls, as well as lipokine associations with various demographic, somatometric,
metabolic and DXA factors. Leptin concentration was found to be comparable in both
groups, and its associations followed the body mass distribution, as expected by its phys-
iology. We also found that adiponectin had higher values in the patient group, and its
associations followed the metabolic derangement of diabetes and also correlated with the
derangement of the RANKL-OPG bone metabolic system, probably contributing to the
pathogenesis of the lower bone mass of patients with T1D.

Leptin, and more extensively adiponectin, has been studied in various conditions.
From a metabolic view, in patients with T2D and insulin resistance, in whom the risk
of cardiovascular disease is high, adiponectin was found in lower concentrations and
leptin was found in higher concentrations [10,20,21]. In T1D, which is characterized by
insulin depletion, leptin is expected to be found in lower concentrations, while adiponectin
concentrations should be higher.

In the published data of young patients with T1D, leptin was found either in lower [22]
or comparable concentrations to the controls [23] and was related positively to body fat mass
in both patients and controls [23]. Leptin was not associated with [23] or was negatively
associated with HbA1c and was positively related to insulin dose [22], and showed no
relation to the disease course [23]. Furthermore, leptin was negatively correlated with OC
and showed no correlation with bone mineral density (BMD) or Z-score values of BMD [22].
In a similar way, in adult T1D patients, leptin did not differ from the controls [20] and was
positively correlated with BMI, fat body mass and daily insulin dose [24].

In previous studies of Polish, North American and German T1D young patients,
adiponectin was found in higher concentrations than in the controls [22,23,25,26] and
was either not associated [22,23,26] or was positively associated with HbA1c in young
patients [25]. Adiponectin serum concentrations were not related to the body fat content in
the study groups and showed no relation to the disease course [23]. Adiponectin was also
positively related to OPG, but was found unrelated to the bone mineral density (BMD) or
Z-score values of BMD [22].

In T1D adults, adiponectin was similarly found in higher concentrations [24,27,28] and
was further elevated in patients with poor metabolic control [29]. One study reported that
this increase was mainly explained by an elevation in the biologically active high molecular
weight (HMW) subform [27]. Adiponectin was also inversely correlated with BMI and
daily insulin dose [24] and found to be uncorrelated with osteocalcin or the RANKL/OPG
system [24].

The differences found in our study, compared with these historic data of young
patients, could be greatly related to the different sample size of each study, regarding
chronological age and diabetes duration, different proportions of patients with good
metabolic control, ethnic differences, high variance in variables such as the Tanner pubertal
stage and gender proportions and, finally, differences in measurement techniques.

The associations of leptin and adiponectin in this work should be viewed as metabolic
signals of adipose tissue to other systems, especially bone tissue in the context of diabetes.
Leptin exhibited an expected neutral profile with significant associations for fat mass indices
in both groups. In contrast to leptin, and in line with previous studies of T1D children and
adolescents, adiponectin in our dataset exhibited a different correlation profile with no
association with fat mass or BMI. The higher values in the patient group and the positive
association with HbA1c, LDL-C and triglycerides probably indicate that adiponectin is a
general alerting metabolic signal.
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T1D is characterized by insulin depletion and glucose starvation of muscle and fat
cells [30]. We have to place adiponectin in this particular frame of pathophysiology as a
signal to preserve and utilize available energy. As leptin has a duality in action, depending
on the homeostasis state, so must adiponectin. So, hyperadiponectinemia should be sec-
ondary due to hyperglycemia and insulin reserve depletion, as adiponectin induces insulin
sensitivity [31,32]. There are several indications that adiponectin signals cellular starvation
and energy depletion. Newly diagnosed patients with T1D and detectable c-peptide had
lower levels of adiponectin than patients with longer standing diabetes and undetectable
c-peptide, both with HbA1c < 6.0% [28]. In adult patients with hyperglycemia in an
acute emergency department setting, normalization of blood glucose caused a decrease
in adiponectin levels, independent of diabetes type and/or body weight, indicating again
that the restoration of energy flow in cells with insulin reduced adiponectin levels [33]. In a
subgroup of patients with new onset T1D in a pediatric T1D longitudinal study, adiponectin
levels increased during follow-up as native insulin secretion declined [26]. Adiponectin
can thus be used as a surrogate marker of metabolic state, as higher adiponectin levels
were found in adult patients with T1D and worse metabolic control [34], and as a surrogate
marker of beta cell function in T1D patients, as it was inversely correlated with fasting and
meal-stimulated c-peptide [35].

Adiponectin in the state of hyperglycemia and relative or absolute insulin deficiency
should thus be recognized as an alerting signal to preserve and utilize available energy and
probably signals the skeleton in an equal manner to reduce energy expenditure. It probably
has a differential action on bone, depending on homeostasis state and other signals that are
all integrated on osteocytes and osteoblasts. Adiponectin’s negative action on bone mass
has been previously recognized. In a large cohort of 4927 normal children, the investigators
concluded that, independent of fat mass, lean mass and height, adiponectin was associated
with lower bone mass in childhood, predominantly due to action on relative endosteal
expansion [36].

In young patients with T1D, there is also an activation of the RANKL/OPG path-
way, with higher levels of both RANKL and OPG, probably contributing to lower bone
mass, as we have previously shown [18]. A negative effect of adiponectin on bone via the
RANKL/OPG pathway has also been previously documented [15–17,37], while in another
study it has been suggested that one of the mechanisms adiponectin influences osteoclasto-
genesis is by increasing osteoclast formation via stimulating RANKL and inhibiting OPG
production in the osteoblasts [38]. In the present study, higher adiponectin levels were
significantly and positively correlated with s-RANKL in the patient group, while, in a
previous work, higher adiponectin levels were positively correlated with OPG [22].

These two observations probably indicate that, in T1D young patients characterized
by hyperglycemia and insulin deficiency, higher adiponectin levels signal the bone tissue
to preserve energy and reduce bone modeling via the RANKL/OPG pathway, possibly
contributing to the low bone mass phenotype of T1D patients. The negative signal is
probably stronger in patients with worse metabolic control, as adiponectin increases in
parallel with HbA1c.

There are some additional examples of adiponectin’s negative action on bone tissue
in other pathologic conditions via the RANKL/OPG pathway. Adiponectin exacerbated
collagen-induced arthritis via enhancing Th17 response and prompting RANKL expres-
sion [39]. Adiponectin also had a negative effect on bone metabolism in adolescent idio-
pathic scoliosis osteopenia via ADR1-RANKL/OPG, a RANKL/OPG pathway activated
by adiponectin receptor 1 (ADR1) [40].

This study contributes to the current literature by recognizing adiponectin as a marker
of cellular starvation and energy depletion and a negative signal of bone metabolism in
order to reduce bone energy expenditure in favor of other critical systems for survival.
Adiponectin, along with HbA1c and glucose variance, could be used in the clinical setting
as an indicator of metabolic derangement and worsening glucose control. It could also
indicate carbohydrate metabolism normalization in efficiently treated patients and could
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be a surrogate index of other metabolic systems’ normalization, such as adipose and bone
tissue after effective treatment.

Although this study inferred interesting results, it has several limitations. The small
number of participants in both groups limits the extent of investigating the adipokines’
association with other covariates. Additionally, the cross-sectional nature of this work im-
pedes its ability to reveal causal relationships between investigated factors. Both limitations
constrain the results of this study from extrapolating to all T1D young patients. Finally,
study results may not be generalizable to individuals of different ethnicities.

Further multicenter and longitudinal studies are necessary in order to clarify the role
of adipokines in bone metabolism of patients with diabetes. Future research should be
conducted using gene expression analyses in blood or tissue from bone of patients and
controls in order to reveal RNA-Seq differential expression and thus elucidate activated
pathways in diabetic bones.

5. Conclusions

In this case-control cross-sectional analysis, leptin concentrations exhibited no differ-
ences, but adiponectin was found in higher concentrations in children and adolescents with
T1D and was correlated with diabetes metabolic derangement indices and s-RANKL in the
patient group. Adiponectin can be considered a surrogate marker of T1D young patients’
metabolic status and probably contributes to the diabetic low bone mass phenotype via
activation of the RANKL/OPG metabolic pathway.
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