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Abstract: Scoring targets in shooting sports is a crucial and time-consuming task that relies on
manually counting bullet holes. This paper introduces an automatic score detection model using
object detection techniques. The study contributes to the field of computer vision by comparing
the performance of seven models (belonging to two different architectural setups) and by making
the dataset publicly available. Another value-added aspect is the inclusion of three variants of the
object detection model, YOLOv8, recently released in 2023 (at the time of writing). Five of the used
models are single-shot detectors, while two belong to the two-shot detectors category. The dataset
was manually captured from the shooting range and expanded by generating more versatile data
using Python code. Before the dataset was trained to develop models, it was resized (640 × 640) and
augmented using Roboflow API. The trained models were then assessed on the test dataset, and their
performance was compared using matrices like mAP50, mAP50-90, precision, and recall. The results
showed that YOLOv8 models can detect multiple objects with good confidence scores. Among these
models, YOLOv8m performed the best, with the highest mAP50 value of 96.7%, followed by the
performance of YOLOv8s with the mAP50 value of 96.5%. It is suggested that if the system is to be
implemented in a real-time environment, YOLOv8s is a better choice since it took significantly less
inference time (2.3 ms) than YOLOv8m (5.7 ms) and yet generated a competitive mAP50 of 96.5%.

Keywords: bullet holes; object detection; machine learning; convolutional neural networks; deep
learning; YOLO; YOLOv8; detectron2; faster R-CNN; RetinaNet; FPN

1. Introduction

Automating the calculation of the total points from a shooting card is a tedious yet
essential task of shooting sports. At a professional level, electronic targets or target-reading
machines are validated and certified by the International Shooting Sport Federation (ISSF).
At an amateur level, this is often carried out by manually counting the score of each bullet
hole. This process can be time-consuming and subject to miscounting by human error.
This paper, therefore, compared and used neural network (NN)-based object detection
algorithms for calculating the total score of a target after training, validating, and testing
the dataset on seven pre-trained object detection models. The selected pre-trained models
were fine-tuned on a shooting card dataset. The proposed solution classified each bullet
hole according to the score. This means that the models carried out the classification task
based on the relative position of bullets on the shooting card and not the way a bullet
hole appears.

NN models for object detection problems can be classified on a higher level as
single-shot or two-shot detection models. For any object detection problem, choosing
between them is a crucial decision. Two-shot object detection models are accurate, whereas
single-shot detectors are computationally faster, compromising accuracy. So, models from
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both categories were chosen. Three models (variants) of YOLOv8 (You Only Look Once)
from the single-shot detection category were selected, whereas four models were selected
from detectron2. The two models from detectron2, namely Faster RCNN-50 and Faster
RCNN-101, belong to the class of two-shot detectors, while the other two (RetinaNet-50
and RetinaNet-101) are considered single-shot detectors.

The paper primarily focuses on identifying an object detection model suitable for real-
time application in terms of accuracy and speed. The entire methodology is presented in
Figure 1, which starts with collecting and generating the dataset. The dataset was required
to be in the desired shape of 640 × 640 to train all seven pre-trained models. Moreover,
the dataset was expanded, and detectable objects in each image were labeled (including
bullet holes and their corresponding scores). The third step was to split the dataset into
train, validation, and test folders. The models were then trained on the training dataset,
followed by testing on the test dataset. The last phase was to compare the performance
of these models by using different metrics provided by these models. The purpose is to
leverage the powerful features of the single-shot and two-shot detectors to achieve the
highest average precision and recall values on the custom dataset.
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The paper is organized as follows. Section 2 presents the related work, and Section 3
outlines the dataset, methods, and materials used. The results of the experiment are
presented in Section 4. Section 5 provides a discussion, followed by the conclusion in
Section 6.

The main contributions of this paper are summarized below:

• Seven models from two architecturally different object detection domains are used for
performance comparison.

• The dataset was manually collected by capturing images from the shooting range.
• The dataset was improved and made publicly available to be used by other researchers

for the detection and classification of points from shooting cards.
• Multiple performance evaluation metrics are used to gain a better insight into the

performances of different models.
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2. Related Work

Target or aim detection is a significant part of image processing and recognition [1].
Manual and automatic target scoring are the two main methods used for score calculation.
Manual observation is still used for target scoring calculation in major shooting competi-
tions. While automatic score calculation is time-efficient and less erroneous, it depends
on how accurately bullet holes and the center of the target are detected [2]. Small objects
have mostly low-resolution and noisy representations, making their detection (multiple
occurrences) challenging [3]. The problem of detecting bullet holes with labels is an ob-
ject detection task. The related work can be grouped into two primary object detection
fields. The first field comprises the classical image-processing methods based on several
steps starting with binarization, contour detection, and feature extraction techniques like
Otsu threshold, scale-invariant feature transform (SIFT), and histograms of oriented gradi-
ent (HOG). With the developments of deep learning and convolutional neural networks
(CNNs), a new field has been established in object detection which has outperformed the
conventional methods by extracting more complex and advanced features.

Traditional methods for target detection include the background subtraction method [4]
and the inter-difference method [5]. Implementing the subtraction algorithm has high imag-
ing requirements for the conditions of bullet holes. It is vulnerable to irregular and fuzzy
edge detection of bullet holes, eventually affecting the precision and accuracy of score
calculation. Jie et al. [6] proposed a wavelets transform-based methodology using fusion
rules for bullet hole detection to overcome the limitation of image difference technology.
They first decomposed the image into different frequencies. Then, multiple fusion rules
and processing methods in different frequencies were implemented to increase the wavelet
transform coefficient of the target image. Compared with the subtraction detection algo-
rithm and Gaussian model, their approach worked better by suppressing the noise and
obtaining solid and unbroken edges of bullet holes.

Liu and Chen [7] used different image processing techniques like image binarization,
segmentation, morphological processing, Hough transforms, and the bullet difference
method to calculate the position of the bull’s eye and bullet holes. They managed to
achieve a precision of 98.5% for the calculation of the firing score. Similarly, in another
study for the recognition of bullet holes based on video image analysis, Roulin et al. [8]
designed two approaches to compare the performances; the first approach is based on rough
positioning, support vector machine (SVM), the histograms of oriented gradient (HOG)
algorithm, and convolutional neural networks (CNNs) for the extraction and recognition
of bullet holes. The second approach constitutes rough positioning followed by a deep
CNN. They used classical image processing techniques like frame extraction, the Otsu
method, morphological filtering, and the region labeling process for rough positioning.
Their experiments show that the SVM-based approach performed better, with a precision
value of 98.57%.

In the research by Ali and Mansoor [9], an approach for automatic scoring of shoot-
ing targets was designed which started with morphological processing to thicken the
boundaries of bullet holes, followed by the segmentation of the target area via hysteresis
thresholding. Likewise, Rudzinki and Luckner [10] proposed an approach that relied
on image-handling methods like Prewitt edge detection and Hough Transformations.
The approach detected holes with an accuracy of 92% after eliminating false positives.
Zin et al. [11] worked on automating the scoring system of archery targets. They began
with dilating the edges of arrow hits using morphological processing. Afterward, the target
area was segmented using color and shape features. To handle illumination variations, they
used dynamic thresholding. Su and Chen [12] presented an approach for extracting targets
to automate the scoring system. They applied a perspective transformation to convert
input into a standard rectangle. Then, the flood-filled algorithm was used to eliminate the
interference information.

For real-time detection, integrated CNNs are used by researchers to enhance the
detection performance of an algorithm. Continuous advancements in YOLO and SSD
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regression-based algorithms [13] exist. The accuracy of these algorithms for multiscale
targets and small objects is not high. Using a lightweight model is another hot issue in
the target detection domain [14]. So, to reduce the number of network computations,
Ren and Bao [15] used MobileNet as a primary network, and standard convolution was
replaced with inverse residual convolution in the SSD detection layer. Du et al. [3] trained
two neural networks for bullet hole detection, i.e., one is the original Faster-RCNN, and
the second is the improved model based on Faster-RCNN. The experiment showed that
their improved model (based on Faster-RCNN) performed better than the original Faster-
RCNN by enhancing the average precision by 20.3%. That study was published in the
year 2019, and since then, there has been significant development in object detection
algorithms. Different versions of the YOLO model have been released to balance speed
and accuracy in the detection process; among them, YOLOv5 is the most popular model. It
gained popularity because of its performance in terms of accuracy and speed. However,
few studies used YOLOv5 and improvised its design by comparing it with the original
model [16–18]. With better inference time and accuracy, YOLOv6 was introduced, followed
by YOLOv7 during the same year. The YOLOv6 model’s performance and real-time
capabilities were evaluated by a study [19] in which fire detection in Korea was carried
out. The most recent addition to the YOLO family is YOLOv8, which was released in 2023.
Figure 2 shows the development of YOLO over the years.
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The related work shows that the classical approach for detecting bullet holes is based
on multi-phase preprocessing algorithms that lead to significantly high inference times
when running on a new test dataset (as they must be preprocessed before detection).
Moreover, implementing these classical algorithms requires high imaging conditions of
bullet holes. It makes the entire process vulnerable to irregular and fuzzy edge detection of
bullet holes, eventually affecting the precision and accuracy of score calculation. On the
other hand, modern CNN-based object detection algorithms do not require preprocessing,
as the models are trained on all types of images. Initial versions of available object-detection
algorithms detected objects in two stages and are named two-shot detectors. The two-shot
detectors are usually heavyweight and computationally expensive. With time, new object
detection algorithms, known as single-shot detection, were introduced to detect objects
in one stage. Single-shot detectors are lightweight and computationally efficient. The
algorithms/frameworks that are lightweight and have fast detection speeds are generally
low in accuracy, making it hard to find a tradeoff between accuracy and computational
load [20,21]. The choice of lightweight models is interconnected with real-time detection
capabilities since they infer quickly while consuming the least computational resources [18].
It is also observed that the inference time is not significantly discussed as an evaluation
metric in the related work. This could be because some two-shot object detection algorithms
like Faster RCNN do not provide this information. However, single-shot detectors like
YOLO have added speed (time) as an assessment metric.

For bullet hole detection, accuracy and speed are both needed. Single-shot detectors
are lightweight, indicating higher inference speed, while two-shot detectors are recognized
for accuracy. The three recent variants of YOLOv8 are used to investigate their precision on
bullet holes and score detection. Furthermore, two-shot detectors, famous for their better
accuracy, are also included. In a nutshell, seven different models are trained to explore
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whether single-shot detectors (e.g., YOLOv8n, YOLOv8s, YOLOv8m, RetinaNet-50, and
RetinaNet-101) can perform better than two-shot detectors (e.g., Faster RCNN-50 and Faster
RCNN-101) in terms of accuracy and precision in addition to being faster.

3. Materials and Methods
3.1. Dataset and Preprocessing

The collection and processing of data are crucial steps in any research. The section
explains how the dataset was gathered, followed by some processing techniques to prepare
it. The images were distributed into three folders: 2784 images for training, 202 images for
validation, and 113 images were kept aside for final testing.

3.1.1. Initial Data Collection

The initial data for the paper were collected from shooters at a shooting range in
Haarlem, the Netherlands. The dataset comprises ten unique cards, each of which is 26 by
26 cm in size and has ten different rings. These rings are assigned a score value ranging
from 1 to 10, with a value of 0 assigned for a missed shot. If a shooter shoots inside the
7-ring but breaks the 8-ring’s line, a score of 8 is given for that shot. Similarly, if a shooter
shoots the same bullet hole, the same score is assigned for that shot. Figure 3 shows an
example of the shooting card obtained from the shooting range with annotations to provide
a clear understanding of the various elements of the card.
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The following is a numbered list of the different components and their respective meanings:
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a. Label 1 is the main target of 10 concentric rings, with the outer ring worth 1 point and
the bull’s eye worth 10 points.

b. Label 2 is a bullet hole representing a shot fired by a shooter with a score of 2.
c. Label 3 is a bullet hole that crosses the next ring and refers to a bullet hole where the

major part was shot in the 6-point area, but the mark touches the 7-point boundary. In
such cases, a score of 7 is awarded to the shooter.

d. Label 4 is a bullet hole that crosses the next ring and denotes a shot fired on the
bullseye line, where the highest score ring is considered for scoring purposes. In this
instance, the shooter hits the bullseye, and a score of 10 is assigned for this shot.

e. Label 5 is the Shot score, where the shooter records the score for each of the five shots
fired during the session. These scores are added to obtain the total score.

f. Label 6 is the club’s and shooter’s names.
g. Label 7 is where the shooter indicates the shooting range’s location and the ses-

sion’s date.
h. Label 8 is the logo of the shooting club.

3.1.2. Data Generation

To include samples in the dataset with shots from different locations on the shooting
card, a Python script was written to generate more data. To create data, a series of images
of a blank target was generated, and then, five times randomly, a spot within the target
was chosen for a bullet hole to be placed. The generator has around sixty different bullet
holes in total. These bullet holes are cut out from actual images of shooting cards and have
had their background removed. The bullet holes were randomly rotated and regenerated
based on the width and height of the detected target. If the randomly generated proposed
bullet location is in the black circle, the bullet hole PNG kept it as realistic as possible. The
generation of bullet holes on the target is shown in Figure 4.
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In total, around forty percent of the dataset consists of generated data. An argument
against using this type of generation could be that this could make the model too focused
to detect a specific type of bullet hole. Still, the model predicts the bullet holes directly as
classes. The model learns the class of the annotated bullet hole mainly based on the context
of where it is located and not by the way it looks.

3.1.3. Data Annotation

A total of 1243 original images were annotated using Roboflow API. Table 1 shows all
of the different classes annotated in the dataset. Technically, only the bullet hole classes are
necessary to calculate the score, but the target and the black inner circle were also annotated.
This can be a helpful feature when the photo taken has a shooting card at varied distances.
The last column of the table represents how many times each class has been annotated in
the dataset. Classes like the “Target” and the “Black contour” were most annotated because
they appear on every image. The lowest annotated class is ten since this is the smallest area
and the least likely to be hit by either random generation or actual humans.

Table 1. Classes annotated in the dataset.

Class Description Numbers of Annotations

Target Bounding box around the biggest circle 1257

Black_contour Bounding box around the black
circle, which contains the 7, 8, 9, and 10 1250

Bullet_0 A bullet hole on paper but not in any rings 839

Bullet_1 Bullet hole in the first ring 376

Bullet_2 Bullet hole in the second ring 440

Bullet_3 Bullet hole in the third ring 506

Bullet_4 Bullet hole in the fourth ring 480

Bullet_5 Bullet hole in the fifth ring 555

Bullet_6 Bullet hole in the sixth ring 595

Bullet_7 Bullet hole in the seventh ring 712

Bullet_8 Bullet hole in the eighth ring 588

Bullet_9 Bullet hole in the ninth ring 541

Bullet_10 Bullet hole in the tenth ring 257

An example of annotations is shown in Figure 5. Every bullet has a different class
concerning the score. Figure 5 shows an edge case when a bullet hole touches the boundary.
The hole appears to be more in ring eight than in ring nine. In the dataset, this is annotated
as a nine. This is because corners of the bullet hole cross into ring nine, which means the
advantage could be given to the shooter.

3.1.4. Data Augmentation

Before the annotated dataset was used for model training, images were resized to
640 × 640. The reason for resizing is to adjust images for the pre-trained models as they
require the images in that shape. Secondly, the dataset was expanded to increase its size
and avoid overfitting. The size of the dataset is developed by creating multiple copies
of each original image. These numerous copies are made by applying operations (e.g.,
rotation, skew, flip, shift, etc.) on the original image. This dataset expansion technique is
known as data augmentation. Table 2 shows all the implemented augmentations using
Roboflow API.
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Table 2. Different annotations implemented on the dataset.

Techniques Used Value

Flipping Horizontal, Vertical
Grayscale 25% of all images
Saturation Between −72% and +72%
Brightness Between −30% and +0%

3.2. Models
3.2.1. You Only Look Once (YOLO)

YOLO belongs to the single-shot detection category, and its first version was published
in 2015 [22]. It carries out object detection by splitting the image into a k × k grid of equal
dimensions. Each grid is responsible for detecting the object if its center falls inside the grid.
A grid can predict a few bounding boxes with a specific confidence value. Each predicted
bounding box comprises five values, i.e., x and y values for the center of the bounding box,
width, height, and confidence value. To choose the most representative bounding box in
the grid and remove the excess boundary boxes, YOLO uses the intersection over union
(IoU) and non-max suppression (NMS) methods, respectively [23]. YOLOv8 is the latest
version of the YOLO algorithm and was released by Ultralytics in July 2023. The entire
architecture of YOLOv8 can be split into two main parts, the backbone and the head, as
shown in Figure 6.
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YOLOv8 uses a modified CSPDarknet53 as a backbone [24]. The backbone starts with
two convolutional layers. Each convolutional layer consists of a convolutional layer and
a batch normalization with the activation function SiLI (Sigmoid Linear Unit). YOLOv8
uses a spatial pyramid pooling fast (SPPF) module at the end of the backbone. The SPPF
layer intends to speed up the computation by pooling features of different scales into a
fixed-size feature map. An SPPF layer consists of one convolutional layer and three max
pooling layers. The output of each pooling layer is then concatenated into a single output.
Then, one more layer of convolution is applied.

YOLOv8 makes use of a decoupled head. This means that the classification and
the object detection are treated separately. The activation function for object detection is
sigmoid, representing the probability of a bounding box containing an object. The softmax
function is used for the classification probability of each class. In Figure 4, the three outputs
in the head region are for objectness, classification, and regression. The head of YOLOv8
is anchor-free, eliminating the need for anchor boxes and thus making the model easy to
train on different datasets. YOLOv8 is also the first version to introduce soft NMS instead
of NMS. This means overlapping bounding boxes are not entirely removed; the target
information is preserved, eventually reducing cases like FP and FN [25].

YOLOv8 has five further variants ranging from nano-scale to extra-large models. The
choice of these models is to be made based on the tradeoff between the required accuracy
and the inference time [26]. In the case of finding the points scored on a shooting card,
speed is of significant importance. For this reason, nano, small, and medium versions of
YOLOv8 are used to identify the model that can provide a good combination of accuracy
and speed.

3.2.2. Detectron2

Detectron was released by Facebook AI Research on 9 October 2019, as an upgrade
to the original detectron2 framework. This framework is primarily designed for object
detection and instance segmentation tasks. The framework is built on the PyTorch deep
learning library, enabling integration with other neural network architectures and facilitat-
ing experimentation. Detectron2 consists of four main components: the backbone, the neck,
the region proposal network (RPN), and the head.

Figure 7 shows the architecture of detectron2. The backbone is responsible for feature
extraction from the input image, using various architectures such as ResNet, ResNeXt, and
MobileNet. These architectures are often pre-trained on large-scale image datasets like
ImageNet. The pretraining process involves training a network on many labeled images
from ImageNet to learn general visual representations. ImageNet is an extensive dataset
that leverages the hierarchical organization provided by WordNet, a lexical database. The
backbone network consists of several convolutional layers organized hierarchically. These
layers gradually down-sample the spatial dimensions of the feature maps while increasing
the number of channels [27].

The neck component, implemented as the feature pyramid network (FPN), refines the
feature maps obtained from the backbone. The FPN combines features from different scales
to create a multiscale feature pyramid, enabling the detection of objects at various sizes
and scales within the image. Feature pyramids are a fundamental element in recognition
systems that enable the detection of objects at multiple scales [28]. However, specific
modern deep learning-based object detectors, like YOLO, do not contain this part and are
called single-shot detectors.

After analyzing multi-scale features, the region proposal network (RPN) generates
approximately 1000 box proposals, each with a confidence score. These proposals represent
potential bounding boxes encompassing objects of interest within the image. Detectron2
utilizes a box head to crop and wrap feature maps into multiple fixed-sized features. A
maximum of 100 boxes are filtered out using NMS.
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From the detectron2 framework, four models are selected. These models are Faster
RCNN-50, Faster RCNN-101, RetinaNet-50, and RetinaNet-101, characterizing FPN and the
backbone with either Resnet 50 or 101. Faster RCNN is a two-shot detector recognized as
the first model that combines the features of region proposals with object classification [29].
It comprises two parts, i.e., the first is CNN-based, which proposes regions, and the second
is the detector [30]. On the other hand, RetinaNet is a single-shot detector that uses an FPN
backbone on the top of the feedforward Resnet to produce a multiscale feature pyramid [28].
RetinaNet is available in 2 sizes, a 50-layer and 101-layer network known as RetinaNet-50
and RetinaNet-101, respectively. RetinaNet uses a focal loss function, enabling it to achieve
an accuracy comparable to the two-shot detector (e.g., Faster RCNN) while having a faster
speed [31].

3.3. Evaluation Metrics

After training and validating the models, the performance of the trained models is
measured by running the model on the test dataset. Choosing the right metrics for assessing
the performance of object detection models can be challenging. Mostly, the models use
precision, recall, and mean average precision (mAP) as metrics. These metrics are defined
as follows.

3.3.1. Precision and Recall

Precision is the measurement of the correct predictions made by the model, indicating
the model’s reliability for truthful predictions. However, recall refers to the number of
measurements the model correctly predicted as relevant to the pertinent total predictions.
Equations (1) and (2) present the expressions used to calculate these scores.

Precision (P) = TP/TP + FP (1)

Recall (R) = TP/TP + FN (2)

where TP refers to true positives (when the algorithm correctly detects a bullet hole with
the bounding box), FP represents false positives (when the bounding box is generated on a
location without having any bullet hole), and FN corresponds to false negatives (when a
bullet hole is undetected). The IoU between the ground truth and the generated bounding
box is calculated using Equation (4). In each image, for every object, if the value of IoU is
above the predetermined threshold (mostly 0.5), then that is regarded as a TP; otherwise,
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the result is an FP. A trained model generates a TP by using the coordinates of the bounding
box and the confidence score (the confidence for each detection made by the model).

3.3.2. Average Precision and Mean Average Precision

Average precision (AP) is the area under the precision–recall curve and is calculated
as shown in Equation (3).

AP = ∑n−1
k=0 [Recall(k)− Recall(k + 1)]× Precisions(k) (3)

IoU = (Object ∩ Detected box)/(Object ∪ Detected box) (4)

The value of AP is between 0 and 1 to summarize the different precision values into a
single value representing the average of all precisions. Moreover, mean average precision
(mAP) is calculated by taking the average of AP values for all classes and is shown in
Equation (5).

mAP =
1
n∑n

i=1[APi] (5)

Primarily, two different threshold values are used by object detection models, i.e.,
mAP50 (mean of AP with confidence values between 0 and 0.50) and mAP50-90 (the mean
of AP with confidence scores between 0.50 and 0.95). For object detection models, precision,
recall, mAP50, and mAP50-95 are considered the most common metrics [32]. The detectron2
framework generates some other metrics, as listed below:

• AP75: This metric calculates the average precision at 75% overlap. It measures the
precision at different recall values, considering a detection as TP if the IoU overlap is
at least 75%.

• APl: The “average precision (large)” calculates the precision at different recall values
for objects with large sizes (area > 962). It focuses on evaluating the performance of
detecting larger objects accurately.

• APm: This metric is the average precision (medium) and measures the precision at
different recall values for objects with medium sizes (322 > area > 962). It is used to
assess the performance of detecting objects of moderate dimensions.

• APs: The “average precision (small)” calculates the precision at different recall values
for objects with small sizes (area < 322). It evaluates the model’s ability to detect
smaller objects accurately

4. Results

The seven models trained on the custom dataset include RetinaNet-50, RetinaNet-101,
Faster RCNN-50, Faster RCNN-101, and three variants of YOLOv8. Four models (RetinaNet-50,
RetinaNet-101, Faster RCNN-50, and Faster RCNN-101) are trained using the detectron2
framework and based on the feature pyramid network (FPN) architecture. A test dataset
comprising 113 images was used to assess the performance of the trained models. The AP
scores from testing RetinaNet-50, RetinaNet-101, Faster RCNN-50, and Faster RCNN-101 across
thirteen classes are shown in Table 3. The variations in the AP capture the models’ precision
and recall capabilities at different IoU thresholds, providing insights into their ability to localize
the target and bullet holes accurately.

Table 4 shows the different variations in the precision and recall scores of RetinaNet-50,
RetinaNet-101, Faster RCNN-50, and Faster RCNN-101. The metrics in Table 4 include
variations of average recall (AR). These variations of AR capture the models’ recall capa-
bilities at various IoU thresholds, reflecting their abilities to localize the target and bullet
holes accurately.
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Table 3. AP values of detectron2 models (at IoU0.50-0.95).

Category
(Classes) Faster RCNN-50 RetinaNet-50 Faster

RCNN-101 RetinaNet-101

2 23.666 24.454 18.122 18.720
5 50.966 31.049 53.827 30.420
8 40.085 41.225 41.675 35.022

Target 97.385 96.411 96.247 96.810
0 50.096 46.978 39.134 45.852
3 44.570 34.778 57.490 35.819
6 44.623 28.234 40.767 28.667
9 33.359 25.177 40.149 22.677

Black contour 95.930 97.095 97.740 97.630
1 51.011 52.828 50.459 39.879
4 48.688 40.167 60.042 38.381
7 37.617 34.934 38.748 26.850
10 24.600 20.027 16.765 22.617

Table 4. AP and AR scores of detectron2 models.

Model AP
IoU = 0.50–0.95 AP50 AP75 APs APm APl AR ARs ARm ARl

Faster RCNN-50 49.431 83.531 45.332 40.981 55.116 96.616 0.615 0.546 0.637 0.982
RetinaNet-50 44.104 71.332 40.071 34.697 43.582 97.184 0.610 0.540 0.542 0.986

Faster RCNN-101 50.090 83.554 47.379 41.546 51.866 97.074 0.596 0.520 0.612 0.981
RetinaNet-101 41.488 66.416 38.722 31.775 41.374 97.636 0.610 0.541 0.495 0.989

Table 5 shows the performance of three variant models of YOLOv8 across the detection
of all thirteen classes. The three variant models of YOLOv8 are nano (YOLOv8n), small
(YOLOv8s), and medium (YOLOv8m). The table includes the mAP scores of all three
models at two different threshold values, i.e., 50 and 50–90. The three variants indicate the
architectural size of the model, so their comparison facilitates finding a model that is good
in accuracy and speed.

Table 5. AP scores of YOLOv8 models.

Category
(Classes)

YOLOv8n
mAP50

YOLOv8n
mAP50-95

YOLOv8s
mAP50

YOLOv8s
mAP50-95

YOLOv8m
mAP50

YOLOv8m
mAP50-95

0 0.946 0.524 0.981 0.535 0.963 0.529
1 0.934 0.501 0.958 0.532 0.964 0.555

10 0.964 0.554 0.995 0.593 0.995 0.526
2 0.926 0.557 0.929 0.565 0.918 0.586
3 0.967 0.61 0.982 0.623 0.985 0.634
4 0.942 0.606 0.959 0.621 0.949 0.616
5 0.932 0.569 0.943 0.57 0.939 0.579
6 0.941 0.564 0.94 0.593 0.968 0.607
7 0.962 0.575 0.952 0.592 0.972 0.601
8 0.84 0.464 0.939 0.558 0.938 0.555
9 0.946 0.569 0.98 0.634 0.987 0.615

Target 0.995 0.99 0.995 0.993 0.995 0.993
Black contour 0.991 0.987 0.993 0.989 0.994 0.991

Table 6 shows the precision and recall metrics of YOLOv8 models. The speed metric is
included because it is significant for the real-time application of bullet hole detection.
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Table 6. Precision and recall metrics of YOLOv8 models.

Model Precision Recall mAP50 mAP50-95 Speed (ms)

YOLOv8n 0.921 0.912 0.945 0.621 2.69
YOLOv8s 0.947 0.936 0.965 0.646 2.312
YOLOv8m 0.937 0.94 0.967 0.645 5.718

5. Discussion

The results shared in the previous section show the significant difference between
the performance of detectron2 and YOLO models. The mAP50 scores of these models
range from 71.8% to 97%. RetinaNet-101 obtained the lowest precision value of 66.41%,
while YOLOv8m achieved the highest mAP value of 96.7%. All three YOLOv8 models
outperformed the detectron2 models. The best-performing detectron2 model is the Faster
RCNN-101, with an AP50 score of 89.8%. YOLO v8 models also generated the speed
metrics, which indicates that though YOLOv8 performs the best (with the highest mAP
value of 96.7%), the time taken by the model is 5.7 ms which is more than double the time
taken by the YOLOv8s model (which also performed well, with an mAP value of 96.5%). So,
if the inference time is the critical requirement in a real-time environment, then YOLOv8s
is a better choice. To gain more insight into the performance of these models on the test
dataset, two images from the test dataset are randomly chosen and are shown in Figure 8.
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image-2 with a yellow target.

The bullet hole detection results from the two chosen test images by the detectron2
models are shown in Figure 9. The colored highlighted boxes show the detection outcome
of the model. Two number values are located atop; the first integer indicates the shooter’s
score, and the second decimal value is the confidence score. It can be seen that the localiza-
tion of bullet holes is sound, with clear bounding boxes around the holes. RetinaNet models
have lower confidence values of bullet hole scores than their Faster R-CNN counterparts.
Another thing that should not be overlooked is that these models exhibit some errors in
their classification capabilities regarding classes ranging from 2 to 10. The models classify
one point/class higher than the actual value. This is something that all models trained via
detectron2 share, and it is worth noting that this could be because the detectron2 models
share the FPN architecture.
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Figure 10 shows the bullet hole detection results of the YOLOv8n, YOLOv8s, and
YOLOv8m models, respectively. Notably, all three models exhibit good results, accurately
identifying and localizing objects within the images.

However, it is interesting to discuss one particular observation in the testing results
(in test image-2), where the bullet is mainly in the ring 1 region, while a slight corner is
touching the ring 2 region’s boundary. The YOLOv8 nano and small models classified
it as a 2 with confidence scores of 0.79 and 0.81, respectively. This particular bullet hole
could be more accurately classified as a 1, highlighting the potential limitation of YOLOv8n
and YOLOv8s. YOLOv8m rightly detected and labeled it 1 with a 0.69 confidence score.
Nevertheless, it is worth noting that, in most cases, the advantage is given to the competitor,
meaning that a human eye might also make this error.

Table 7 shows the summarized performance of all seven models on the test dataset.
As shown, there are two best candidates for better detection of bullet holes and score
points. One is YOLOv8m, with the highest mAP50 value of 96.7%, recall value of 94%, and
inference speed of 5.7 ms, while the other option is YOLOv8s, with the mAP50 value of
96.5%, the recall value of 93.6%, and the best inference speed of 2.3 ms. The study’s results
are very similar to those achieved by Kubera et al. [33]. Though they used the older version
of YOLO (YOLOv5) to detect three classes of pollen grains, YOLOv5l (large) performed the
best, with an mAP50-95 value of 91.5%. Similarly, in another research on detecting three
different types of tomatoes, i.e., ripe, unripe, and diseased tomatoes, the performance of
different models was compared by Yang et al. [34]. The comparison showed that YOLOv8
performed significantly better than Faster RCNN with high precision, recall, and inference
speed values.
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Figure 10. Results of bullet hole detection by YOLOv8 models: (a) performance of YOLOv8n on
test image-1; (b) performance of YOLOv8n on test image-2; (c) performance of YOLOv8s on test
image-1; (d) performance of YOLOv8s on test image-2; (e) performance of YOLOv8m on test image-1;
(f) performance of YOLOv8m on test image-2.
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Table 7. Performance comparison of the models.

Model AP50-95/mAP50-95 (%) AP50/mAP50(%) AR/Recall (%) Speed (ms)

Faster RCNN-50 49.431 83.531 61.5 --
Retinanet-50 44.104 71.332 61.0 --
Faster RCNN-101 50.090 83.554 59.6 --
Retinanet-101 41.488 66.416 61.0 --
YOLOv8n 62.1 94.5 91.2 2.69
YOLOv8s 64.6 96.5 93.6 2.312
YOLOv8m 64.5 96.7 94.0 5.718

The better performance of the most advanced YOLOv8 models over other models
could be associated with its ability to use bigger feature maps and a newer backbone
network (Darnet-53), which is more efficient. Big feature maps filter complex relationships
among features and recognize patterns and objects. Due to better feature aggregation and
improvised activation function, YOLOv8 variants achieved better accuracy and speed.

6. Conclusions

The study investigated whether automating the detection of bullet holes on a target
from shooting cards can be made possible by using object detection models. The results
demonstrated that it is possible to detect these scores correctly if the training and validation
dataset annotations are performed carefully. In total, thirteen classes/objects were anno-
tated from the shooting cards to train the model, and YOLOv8m, which is a single-shot
detector, performed the best, with the highest mAP value of 96.7%. The poorest perfor-
mance was given by RetinaNet-101, which is also a single-shot detector, with an mAP value
of 66.4%. From the same single-shot category, three lightweight models from the YOLO
family were also used, and it is seen that besides having fast inference speed, they can
detect multiple objects. If the setup is implemented in a real-time environment, YOLOv8s
can generate competitive accuracy (mAP value 96.5%) at a higher speed (more than double)
than YOLOv8m. To further improve the accuracy of YOLOv8s and YOLOv8m models, it is
suggested to involve images from all classes, including overlapped bullet holes, to have
equally annotated instances for training. Moreover, during the annotations of complex
cases (e.g., when the bullet holes reside on boundaries between two numbers or when
multiple bullet holes overlap), help from some game experts to identify which class the
spot belongs to may improve the performance. The dataset is intended to be expanded for
future research, incorporating more complex cases of overlapped and boundary-shot holes
for the model to detect holes and scores in real-time.
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