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Abstract: The vast majority of autonomous driving systems are limited to applications on roads
with clear lane markings and are implemented using commercial-grade sensing systems coupled
with specialized graphic accelerator hardware. This research reviews an alternative approach for
autonomously steering vehicles that eliminates the dependency on road markings and specialized
hardware. A combination of machine vision, machine learning, and artificial intelligence based
on popular pre-trained Convolutional Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs) was used to drive a vehicle along roads lacking lane markings (unmarked roads). The team
developed and tested this approach on the Autonomous Campus Transport (ACTor) vehicle—an
autonomous vehicle development and research platform coupled with a low-cost webcam-based
sensing system and minimal computational resources. The proposed solution was evaluated on
real-world roads and varying environmental conditions. It was found that this solution may be used
to successfully navigate unmarked roads autonomously with acceptable road-following behavior.

Keywords: autonomous vehicles; Self-Drive vehicles; deep learning; convolutional neural networks;
recurrent neural networks; image histogram matching

1. Introduction

Advancements in technology and artificial intelligence has led to a growth in autonomous
vehicle research and applications. These vehicles, also known as self-driving cars, have the
potential to revolutionize transportation and greatly improve safety on the roads. However,
achieving full autonomy is still a challenging task, and researchers and engineers continue to
work on improving the performance of autonomous vehicle systems.

One area of focus in the development of autonomous vehicles is the use of machine
learning algorithms, specifically Artificial Neural Networks (ANNs), to enable the vehicle to
perceive its surroundings and make decisions based on that information. ANNs have been
successful in a variety of applications, including image and video recognition, and have
shown promising results in autonomous vehicle systems as well. The Autonomous Land
Vehicle In a Neural Network (ALVINN) demonstrated in 1988 that it was possible to use
artificial neural networks to steer a vehicle automatically by using a video feed of the
road in front of it [1]. Since then, deep learning advances have allowed for the use of
Convolutional Neural Networks (CNNs) in experiments, which are specifically designed
for image-based tasks [2,3]. However, there is still much room for improvement in the
performance of these models, particularly in terms of their ability to generalize to new
situations and environments.

One approach for improving the performance of CNNs in autonomous vehicle systems
is to use models which have been pre-trained on large data sets, allowing the models to
learn general features and patterns that can be applied to a variety of tasks. This process,
known as transfer learning, has been successful in a number of applications and has the
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potential to greatly improve the performance of autonomous vehicles. In this research
paper, we explored the use of pre-trained CNNs in autonomous vehicle systems and
discuss strategies for improving their performance on unmarked roads. Additionally, we
will demonstrate that the introduction of Recurrent Neural Networks (RNNs) will further
improve the driving performance. The original work completed by Timmis, Paul, and
Chung (denoted Deep Steer) had several limitations that are improved on by this research
including undesired vehicle responses and high in-vehicle computational resources [4].

The goal of this work is to address some of the challenges and shortcomings of previous
work and to provide a more-robust and reduced-cost autonomous solution. The key
limitations of the previous research addressed in this research are: undesired vehicle
response at driveways and intersections, restrictive neural network training environment,
and high computational resources used during in-vehicle use. Please note that the research
presented here is also referred to as “Deep Steer”.

2. Materials and Methods
2.1. Solution Methodology

The solution methodology used in this research is shown in Figure 1. The first step,
Data Collection, consisted of driving the test vehicle along numerous training routes
and collecting forward-facing images along with the associated steering wheel angle to
successfully follow the road curvature. The details of the Data Collection are reviewed in
Section 3. Data Collection is followed by Model Training. In Model Training, the collected
data are used to train various neural networks to understand and evaluate their ability
to successfully predict the required steering wheel angle to navigate a given road. Model
Training is outlined in Section 4. The last step is Self-Drive and Inferencing. In this step,
the researchers tested the trained neural network on unseen road surfaces—inferring
the necessary steering wheel angle to successfully navigate the road curvature in an
autonomous manner. An overview of Self-Drive and Inferencing is provided in Section 5.2.

Figure 1. Vehicle integration—Deep Steer solution steps.
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2.2. Hardware

A key element to this research is the ability to develop and evaluate various vehicle
control strategies on an Autonomous Campus Transport (ACTor) vehicle shown in Figure 2.
ACTor is a Polaris GEM 2 battery electric vehicle modified with a DataSpeed drive-by-wire
system. A forward facing Genius webcam was mounted to the front of the vehicle, and a
Logitech game pad was used for triggering the data acquisition system. The Genius webcam
has a 120◦-wide angle lens that supports 1080p Full HD video recording up to 30 fps. All
necessary vehicle drivers, image processing code, and neural network evaluations were
executed on an Ubuntu laptop. This laptop may be considered relatively old in terms of
CPU technology having an Intel(R) Core(TM) i7-4500U CPU at 1.8 GHz, 4 cores, and a total
physical memory of 8.0 GB.

Figure 2. The ACTor 2 research vehicle.

2.3. Software

In-vehicle and offline (out-of-vehicle) software environments were required to develop
Deep Steer solutions. A Robotic Operating System (ROS)-based [5] software platform
was used in-vehicle to acquire neural network training data and execute the Deep Steer
algorithms to steer the vehicle on private and public roads. The ROS platform supports
the integration of the DataSpeed drive-by-system, webcam, image processing, and neural
network evaluations [6]. The offline software platform was used to develop and train
the neural networks. JupyterLab using Python was the primary operating environment
and included the following packages: Keras and TensorFlow libraries for neural network
construction and training, Pandas DataFrames for data manipulation, SciKit-Learn for
dataset splitting, and OpenCV for general image processing and histogram matching.

3. Data Collection

As indicated on Figure 1, the first step in developing a Deep Steer solution is to collect
vehicle test data on representative road surfaces. An ROS network with the following
elements was developed to collect the data necessary to train the Deep Steer neural network:

• Camera Publishing Node: Receives forward-facing images sent by the Genius webcam
and publishes the images to the ROS network.

• Steering Wheel Report Node: Interfaces with the DataSpeed drive-by-wire system
and publishes the current steering wheel angle.
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• Steering Data Collection Node: Receives webcam images and steering wheel angle
data, down-samples the webcam image, and saves the image and steering wheel angle
to a file.

The data flow of this ROS network is shown pictorially in Figure 3. Data recording
was controlled by a Logitech-game-pad-based trigger. Once triggered, the ROS network
would record consequent webcam images and associated steering wheel angle at a specified
frequency. Although the system was capable of recording at frequencies approaching 30 Hz,
the researchers found a sample rate of 5 Hz provided a dataset that was well suited for
the vehicle speeds used in this application (a target vehicle speed of 5 mph). In addition,
the vehicle was driven down the center of the road so that the solution could be easily
extended to one-way and single-vehicle asphalt paths.

Figure 3. The neural network data acquisition model.

Please note that a vehicle path has an inherit dependency on the input steering wheel
angle and vehicle speed. For vehicles that possess understeer-handling characteristics,
the steering wheel angle required increases with increasing vehicle speed for a constant
radius path [7]. Many traditional lane-keeping systems overcome this dependency by
using the sensed line lanes to estimate road curvature and steer the vehicle based on a
target vehicle yaw rate at a given speed; these systems require the vehicle speed to be
input into the lane-keeping control system. The Deep Steer approach does not account for
vehicle speed dependencies. It is assumed that all vehicle Data Collection and usage is
performed at a constant vehicle speed. This is one of the primary limitations of the Deep
Steer approach.

For this research, the data were collected on private and public roads (on and off the
Lawrence Technological University campus). The routes shown in Figures 4 and 5 were
specifically chosen for (1) the range of corner curvature and (2) the lack of lane markings
with the goal of representing possible real-world scenarios, where a vehicle may need to
navigate without the lane markings, providing assistance.

Figure 4. Example paths used for Data Collection and testing. To increase the dataset size, the vehicle
was driven in both directions for each path.
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Figure 5. Additional paths used for Data Collection and application routes. Routes in green comprised
the training, validation, and testing dataset, while the route in red made up the application dataset.
The application dataset was not used during the neural network training and validation process.

The data acquisition campaign concluded with over 35,000 images to be used for neural
network training and testing. Figure 6 displays a sample distribution of the steering wheel
angle for the training routes. Although this distribution is not the uniform shape often
desirable for neural network training, they do capture an important element of the driving
scenarios used in this research. A majority of the paths tested require very little steering
wheel input angle to maintain course. This is inherently true for most driving situations
and can be a major obstacle in the development of self-steer systems. Namely, training
neural networks with non-uniform training sets can lead to prediction bias. Please note
that similar distributions were observed in the testing and validation datasets.

Figure 6. Training data steering wheel angle distribution.

4. Model Structure and Training Methodology
4.1. Model Structure

Several pre-trained neural networks were studied in this paper such as InceptionV3 [8],
VGG16 [9], and VGG19 [9]. In order to compare and contrast the work completed here
with the Deep Steer work of the previous authors, the same top structure was used with
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all three pre-trained neural networks. The top layer consisted of a global averaging pool,
a fully connected 1024 Rectified Linear Unit (ReLU) activation node layer, and a single fully
connected output node to support regression analysis. An example of this neural network
structure and model summary can be seen in Figure 7. The details of the network size and
number of parameters are shown in Figure 8. Please note that the InceptionV3, VGG16,
and VGG19 networks accept images of size (320 × 240), and the output of the full neural
network is the steering wheel angle prediction in radians.

Figure 7. Model architecture.

Figure 8. Example neural network structure.

4.2. Model Training Methodology

To complete the second step for developing a Deep Steer solution, we must train the
neural network with a representative dataset (webcam images and associated steering
wheel data). In this research, a two-stage training approach including Feature Extraction
and Fine-Tuning was used on all network structures evaluated [10,11]. The first stage
of training, Feature Extraction, used the default weights in the pre-trained models and
focused on training the top 1024-neuron fully connected layer and the output regression
layer. The goal of this step is to use the pre-trained models to identify features of the input
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images, for example road and driveway edges. The identified features were used as the
inputs to train the added layers (fully connected layer and output regression layer). Please
note that Feature Extraction does not modify the weights of the pre-trained models. Once
the feature-extraction stage of training was complete, Fine-Tuning was implemented to
further improve the network performance. During Fine-Tuning, the weights of the pre-
trained network were optimized to further improve the full neural network’s prediction
performance.

A Mean-Squared Error (MSE) loss function comparing the recorded steering wheel
angle and the predicted steering wheel angle (see Figure 7) was used in the neural network
training exercises. The Keras RMSprop solver, used to train the network, utilizes a plain
momentum optimization technique that reduces high variance in Stochastic Gradient
Descent (SGD) and softens the convergence to help prevent overfitting [12]. Several
different techniques were used during model training to facilitate accurate prediction while
reducing the risk of over-training. For example, training optimization callbacks with Early
Stopping [10] and Model Checkpointing [13] were used. Early Stopping was paired with
validation loss callbacks to allow the model to stop training before the set number of
epochs based on the validation data loss performance. Model Checkpointing was utilized
to save the models with the lowest validation loss to minimize overfitting. Please note
that the RMSprop solver used MSE loss functions; however, the Mean Absolute Error
(MAE) loss and validation metrics were utilized for optimization of the Checkpointing and
Early Stopping criteria measures. Figures 9–12 demonstrate the example Feature Extraction
loss function, Fine-Tuning loss function, Feature Extraction validation, and Fine-Tuning
validation metrics during RMS optimization, respectively. In all cases, the introduction of
Fine-Tuning yielded minimal improvements to the training loss; however, more importantly,
the validation loss function showed greater improvements. For this example, the validation
loss function at the conclusion of Feature Extraction was approximately 0.4 radians (MAE);
however, the validation loss function at the conclusion of Fine-Tuning reduced to approximately
0.01 radians (MAE)—a significant prediction improvement. In addition, the validation MAE
demonstrated little evidence of overfitting. The overall validation performance and lack of
overfitting instilled confidence in the trained neural network’s ability to accurately predict
the steering wheel angle on similar, but unseen roadways.

Figure 9. Example InceptionV3 Feature Extraction loss function history.
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Figure 10. Example InceptionV3 Fine-Tuning loss function history.

Figure 11. Example InceptionV3 Feature Extraction validation history.

Figure 12. Example InceptionV3 Fine-Tuning loss validation history.

Despite the successful neural network training behavior exhibited above, the researchers
encountered several issues in acquiring consistent datasets to generate neural networks that
provide Deep Steer road-following behavior with the ACTor vehicle. One challenge was the
dependency on the weather and lighting conditions. An attempt was made to ensure that
all Data Collection was performed in ideal weather conditions to reduce glare and direct
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sunlight towards the webcam. The researchers found that slightly overcast conditions were
optimal, yielding minimum glare, reduced shadows, and the most-consistent image brightness.
Although efforts were made to collect consistent images for model training, the researchers
noticed reduced that steering wheel prediction accuracy occurred due to varying image
brightness. To overcome this issue, image histogram matching was added to the neural
network pre-processing to minimize the variation of image brightness. The image histogram
matching was accomplished through the following steps outlined below [14,15]. An example
of this process can be found in Figures 13–16.

Figure 13. Example of the histogram pre-processing technique used to balance images obtained from
the front vehicle camera.

Figure 14. Histogram of the reference image used to balance images.

Figure 15. Histogram of an example original image.
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Figure 16. Histogram of the image after applying the balancing technique.

1. Obtain the histogram for both the input image and a reference image:

h(i)= pi
= (# of pixels of intensity i/total # of pixels)
= Probability Density Function (PDF)

(1)

2. Calculate the Cumulative Distribution Function (CDF) for both the input image and
the reference image.

CDF = H(j) = ∑
j
i=0 h(i)

where j = 0, 1, ..., 245, 255
(2)

3. Calculate the transformation T to map the old intensity values to the new intensity
values for both the input image and reference image:

T(j) = f loor((K− 1) ∗ CDFj) (3)

4. Use the transformed intensity values for both the input image and reference image to
map the intensity values of the input image to the new values.

The authors observed several benefits with the histogram-matching implementation.
Histogram matching successfully reduced the variation in neural network steering wheel
angle prediction in non-ideal environmental conditions. This reduction in steering prediction
variations led to a smoother vehicle response and improved road-following behavior.

5. Results
5.1. Model Training Results

A model training investigation was performed for the InceptionV3-, VGG16-, and
VGG19-based networks using the model structure and training methodology reviewed in
the previous section. Data from all the training routes were used to train, validate, and test
the neural networks. The final proportion of the datasets was 80% training and validation
and 20% testing. Additional data were collected on the application routes. These data were
not used as part of the training and validation process; however, they were used as truly
“unseen” data to evaluate the effectiveness of steering prediction. A summary of the size of
the training, validation, testing, and application datasets is shown in Table 1.
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Table 1. Number of training, validation, testing, and application images used for neural network
development and testing.

Training Validation Testing Application

23,623 5906 7383 7692

The training, validation, and testing performances of the InceptionV3-based network
are displayed in Figures 17–19. Similar diagrams are provided for the VGG16- and VGG19-
based models in Appendices A and B.

The training results showed that the InceptionV3 model performed well in predicting
the vehicle steering angle for the training, validation, and testing datasets. The VGG16
and VGG19 models provided similar performance as the InceptionV3 model, but some
important trends were noticed. For all models, the training data steering predictions
possessed less error on average than the test data steering predictions. This was anticipated
prior to the model training activity; however, one may notice a telling difference in
the magnitude of the larger steering angle responses. Namely, the InceptionV3-based
model demonstrated slightly lower error for mid-range Steering Wheel Angle (SWA)
responses |SWA| ≤ 40◦, but much lower error in predicting the steering responses at the
larger steering inputs |SWA| > 40◦ when compared to the VGG16 and VGG19 models.
The behavior resulted in a lower overall test MAE of 3.10◦ for the InceptionV3-based model.
A summary of the model training, validation, and testing MAE results for all three networks
is displayed in Table 2.

Figure 17. InceptionV3-based neural network training performance.

Figure 18. InceptionV3-based neural network validation performance.
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Figure 19. InceptionV3-based neural network testing performance.

Table 2. Training, validation, and testing MAE (deg).

InceptionV3 VGG16 VGG19

Training 2.96 3.82 4.33
Validation 3.08 3.81 4.29

Testing 3.10 3.88 4.41

An additional neural network performance analysis was performed using traditional
R2 metrics. The results for this analysis are shown in Table 3. This data also demonstrates
the performance of the InceptionV3 based model versus the VGG16 and VGG19 models.
Lastly, a graphical representation of the R2 behavior may be viewed in Appendix C.

Table 3. Training, validation, and testing R2 performance.

InceptionV3 VGG16 VGG19

Train 0.97 0.95 0.91
Validation 0.97 0.94 0.90

Testing 0.97 0.94 0.90

5.2. Model Application Results—Self-Drive with Inference

The final step in developing and testing a Deep Steer solution is to test the self-driving
behavior with Inferencing. To accomplish this, an ROS network with the following elements
was developed to steer the vehicle using neural network outputs based on processed
webcam images (down-sampled and histogram balanced):

• Camera Publishing Node: Receives forward-facing images sent by the Genius webcam
and publishes the images to the ROS network (the same node used the Data Collection
implementation).

• Steering Node: Receives images from the webcam, down-samples the images, applies
histogram matching, evaluates the neural network, and publishes the desired steering
wheel angle.

• Steering Wheel Driver Node: Publishes desired steering wheel angle to the DataSpeed
drive-by-wire system to actuate the ACTor steering system.

Figure 20 displays the data flow for the Deep Steer testing on the ACTor vehicle.
The webcam was integrated with an ROS camera publishing node, which generated
forward road images at approximately 30 Hz. To prepare road images for evaluation
by the neural network, all images were reduced to 320 × 240 px. This image size was
used to maintain consistency with the previous Deep Steer research [4] and reduce the
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computational resources required in the vehicle. Please note that a further reduction
in image size may be investigated in future research. In an effort to further reduce the
computational needs of the ROS network, camera images were skipped to provide actual
processing of the camera images in a range of 5–10 Hz. Each camera image was then
processed with a histogram-matching algorithm with the reference image in Figures 13–16.
Next, the processed image was evaluated by the trained neural network to produce a
desired steering wheel angle. Lastly, the desired steering wheel angle was processed by the
drive-by-wire system to steer the vehicle.

Figure 20. Neural network steering angle prediction.

The trained neural networks were next exercised on the application route dataset to
ensure that Deep Steer could predict the steering request with reasonable error characteristics
to support fully autonomous physical testing. For this analysis, the vehicle was driven
manually along the application route while recording the front webcam image data and
the associated driver steering input. These data were then used to evaluate the accuracy
of the trained neural networks, and the results of the steering angle prediction model are
displayed in Figure 21. The InceptionV3 model demonstrated a 4.25◦ MAE, while the
VGG16 and VGG19 models provided MAEs of 5.17◦ and 5.05◦, respectively. It can be noted
that this is a great improvement from the original work completed by Timmis, Paul, and
Chung, where the predicted steering angle yielded a 15.2◦ error on average for similar
testing [4]. Again, it is important to note that images collected from this route were not used
in the model training and validation and were completely “unseen” by the neural network.

Figure 21. InceptionV3-based neural network performance on unseen, application route data.
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Given the overall steering prediction demonstrated in Figure 21, the ACTor vehicle
was tested in a fully autonomous mode, using the Deep Steer algorithm to steer the
vehicle. The DataSpeed longitudinal controller was leveraged to ensure a constant vehicle
speed of approximately 5 mph. When using the InceptionV3-based model, the vehicle
followed the application route roadway. In addition, the vehicle successfully traveled
through an intersection and was not steered off path due to the existence of driveways.
The authors provided video evidence of the vehicle’s performance on the application
route [16]. The observed behavior demonstrated a clear improvement in undesired
vehicle responses due to intersections and driveways when compared to the original
work completed by Timmis, Paul, and Chung [4]. Unfortunately, the performance of
the VGG16- and VGG19-based models did exhibit the same road-following performance.
These models exhibited good road-following behavior, but were definitely influenced
by the presence of intersections and some driveways. Overall, the InceptionV3-based
model provided the most-robust road-following behavior with minimal influence from
intersections and driveways.

Additional subjective tests were performed on the application route at vehicle speeds
approaching 20 mph [16]. The resulting tests showed successful road-following behavior
with lower stability. Driver interventions were necessary to maintain the vehicle on the
roadway, especially in high road curvature areas. This performance demonstrated one of
the shortcomings of Deep Steer—an inherit dependence on vehicle speed.

One of the goals of this research was to deliver a robust, fully autonomous steering
behavior using minimal sensing and computational resources. The use of a simple wide-
angle webcam definitely meets the low-cost sensing requirements. Similar webcams can be
purchased for under USD 50. In order to minimize the overall in-vehicle computational
resources, the authors investigated varying the sampling rate from the webcam and the
associated rate of steering commands. Tests below 5 Hz led to a jerking response of the
vehicle, while tests above 10 Hz led to lagging in the steering predictions due to image
queue buffering in the ROS network. From this investigation, it can be concluded that
driving the vehicle at 5 Hz provided a smooth vehicle response and minimal computational
resources.

5.3. Leveraging Recurrent Neural Networks

Along with the other pre-trained neural networks studied in this paper, an application
of recurrent neural networks was studied. To promote consistent comparisons, the same top
structure was used; however, additional layers were added to support the RNNs. For this
work, the top layer consisted of a global averaging pool, a fully connected 1024 Rectified
Linear Unit (ReLU) activation node layer, a reshape layer, a SimpleRNN layer, and a single
fully connected output node. An example of this neural network structure and model
summary is displayed in Figure 22. For consistency with previous work, the recurrent
neural network accepts images of size (320× 240), and the output of the full neural network
is the steering wheel angle prediction in radians.

For this analysis, the same application route dataset was used as the other models
studied in this paper to evaluate the accuracy of the trained neural networks, and the
results of the steering angle prediction model are displayed in Figure 23. The RNN model
demonstrated a 3.82◦ MAE. It can be noted that was an improvement from the other neural
networks studies in this paper. A summary of the model training, validation, and testing
MAE results for the network is displayed in Table 4. Controlling the data feed of the new
RNN-based model was slightly altered by adding a skip and append function, which takes
a data frame and start index as the input. It returns a data frame starting at the specified
index, including only every n images. The batch size is the number of images fed into
the neural network at a time, during training, which was optimized. This is significant
when working with an RNN layer as the model optimizes with the memory of the previous
image. It is important to mention that the RNN model provides a robust alternative
to the InceptionV3-based model with respect to road-following behavior with minimal
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influence from intersections and driveways. An important aspect of the RNN-based model
is that it allowed for smoother re-centering of the steering wheel when exiting sharper
turns. The authors provided video evidence of the vehicle performance on the application
route [17].

Figure 22. RNN model architecture.

Figure 23. RNN performance on unseen, application route data.

Table 4. Training, validation, testing, and test route MAE (◦).

Recurrent Neural Network

Training 2.51
Validation 2.64

Testing 2.67
Test Route 3.82

6. Future Work

Over the course of this research, the authors noted several items that may be investigated
in further detail. One such area is the inherit dependency on the input steering wheel
angle and vehicle speed. The authors would like to examine methods for applying Deep
Steer to a varying vehicle speed, perhaps leveraging an approximate vehicle understeer
gradient to predict steering angles at higher vehicle speeds. In addition, the authors suggest
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continuing research on optimizing the proposed solution. This work shows that steering a
vehicle autonomously using only forward-facing road images and minimal computational
resources is achievable; however, there are several areas where additional savings may be
found, for example reducing the amount of training data needed to train the neural network
to minimize the Data Collection step. To support this effort, a reduction in the processed
image size (currently 320 × 240) may also in investigated. Reducing the processed image size
may allow for fewer training images and faster neural network training. Lastly, if smaller
processed image sizes yield acceptable results, a further reduction of in-vehicle computational
resources may be achieved. The authors look forward to further investigating these topics.

7. Conclusions

The vehicle was tested in real-time on the application route shown in red in Figure 5
and evaluated subjectively. The InceptionV3-based model performed better than the VGG16
and VGG19 models. The InceptionV3 tests demonstrated that the vehicle was able to follow
the route very well with limited steering errors; the vehicle followed the curved route as
intended through intersections and past driveways. The VGG16- and VGG19-based models
did not behave as well. For both models, the neural network occasionally under-predicted
the steering required for sharper corners. The steering wheel angle under prediction led to
a vehicle trajectory heading off the road, leading to test termination. Based on the observed
vehicle behavior, the InceptionV3-based model is the recommended model. To further
improve the vehicle road-following behavior, a recurrent neural network was added to
the model architecture. The addition of the RNN showed improved prediction error in all
phases of testing and training, as well as demonstrated improved road-following behavior
during subjective testing.
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ROS Robotic Operating System
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Appendix A

This Appendix provides the training, validation, testing, and application route error
for the VGG16-based Deep Steer model.

Figure A1. VGG16-based neural network training performance.

Figure A2. VGG16-based neural network validation performance.
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Figure A3. VGG16-based neural network testing performance.

Figure A4. VGG16-based neural network performance on unseen, application route data.

Appendix B

This Appendix provides the training, validation, testing, and application route error
for the VGG19-based Deep Steer model.

Figure A5. VGG19-based neural network training performance.
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Figure A6. VGG19-based neural network validation performance.

Figure A7. VGG19-based neural network testing performance.

Figure A8. VGG19-based neural network performance on unseen, application route data.

Appendix C

This appendix provides training, validation and test R2 performance of the three
models investigated.
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Figure A9. InceptionV3-based neural network training performance.

Figure A10. InceptionV3-based neural network validation performance.

Figure A11. InceptionV3-based neural network testing performance.
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Figure A12. VGG16-based neural network training performance.

Figure A13. VGG16-based neural network validation performance.

Figure A14. VGG16-based neural network testing performance.
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Figure A15. VGG19-based neural network training performance.

Figure A16. VGG19-based neural network validation performance.

Figure A17. VGG19-based neural network testing performance.
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