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Abstract: We investigate the influence of the Abrikosov vortex lattice on the Casimir force in a
setup constituted by high-temperature superconductors subject to an external magnetic field. The
Abrikosov lattice is a property of type II superconductors in which normal and superconducting
carriers coexist and the latter define a periodic pattern with square symmetry. We find that the optical
properties determined by spatial redistribution of the superconducting order parameter induce
Casimir forces with a periodic structure whose minimal strengths coincide with the vortex cores.

Keywords: Casimir force; superconductor; quantum vortex; fluxon; Abrikosov lattice; vortex matter

1. Introduction

Seventy-five years have passed since, motivated by a suggestion by Niels Bohr during
a walk, Hendrik Casimir proposed that vacuum fluctuations could induce an attractive force
per unit area between two perfectly conducting parallel plates, a distance d apart, given by
F = −h̄cπ2/240d4 [1] with h̄ = h/2π the reduced Planck constant and c the speed of light.
A more realistic theory was proposed by Evgeny Lifshitz in 1956 by considering fluctuating
electrodynamics, based on the fluctuation–dissipation mechanism. Lifshitz theory allows
to determine the Casimir force in terms of the dispersive and dissipative properties of the
materials [2], as described by its optical properties. Grounded on Lifshitz formulation,
numerous experiments [3–13] have been performed on measuring the Casimir forces
involving a diversity of experimental arrangements and materials [14,15]. The influence
and taming of these forces in the design and construction of micro- and nanodevices is a
current field of research. Extensive treatments of the Casimir effect and its applications, are
presented in Refs. [16–20].

In spite of the fruitful advances in the investigations of the Casimir effect there exist
yet pending fundamental problems on the basic theory, concerning the role of dissipative
mechanisms on the strength of the force between metallic bodies. These may involve
electron scattering by impurities, other electrons, phonons, etc., yielding a total scattering
rate τ−1 = τ−1

el−imp + τ−1
el−el(T) + τ−1

el−ph(T) + · · · . Actually, the inclusion of this kind of
contributions in the theoretical characterization of the optical response of materials involved
in a given setup should be necessary to achieve congruence with the fluctuation–dissipation
theorem underlying the Lifshitz theory. However, earlier measurements of Casimir forces
in metals at room temperature at body separations d ≈ 50–600 nm showed consistence with
theoretical predictions if dissipative effects are neglected. This hypothesis is also consistent
with more recent experimental studies of the gradient of the Casimir force between metallic
surfaces performed at larger separations, d > 700 nm, such that kBT ∼ h̄c/d [21–23],
with kB the Boltzmann constant. On the contrary, experiments carried out at micrometer
distances to measure the total magnitude of the Casimir force display a better agreement
with predictions including electronic relaxation [19]. The main difference between the
results at small and large separations, is that in the latter thermal effects become important.

It has been proposed that the study of the Casimir effect in superconducting (SC) ma-
terials may constitute an excellent scenario to asses the influence of relaxation phenomena
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on the strength of the Casimir force between metallic bodies [24–28]. This is motivated
by the finding that charge carriers in these materials exhibit a transition from dissipative
transport to a dissipationless coherent behavior at a critical temperature T = Tc. However,
measurements of the influence of the SC transition on the Casimir force in setups involving
conventional BCS (Bardeen–Cooper–Schrieffer) superconductors turn out to be extremely
difficult, since for typical values Tc ∼ 1 K, and kBTc ≪ h̄c/d for sub-µm body separations.
Therefore, indirect approaches have been proposed based on observations of the Casimir-
induced shift of the critical magnetic field Hc of a thin superconducting film, or differential
measurements of the Casimir force [29,30].

This suggests that the use of high-temperature superconductors (HTSCs), with Tc ≈ 100 K,
could constitute a suitable alternative to perform a direct analysis of the effect of the SC
transition on the Casimir effect. In previous studies, we investigated the Casimir forces
between objects made of optimally doped YBa2Cu3O7−δ (YBCO), with Tc = 93 K , either in
thermal [31], or out of thermal equilibrium [32]. In the first case, we found that the Casimir
force displays an abrupt increment as as T approaches Tc from above, T → Tc. On the
other hand, for T < Tc, the (force × distance) approaches a constant in the limit T ≪ Tc. In
the second case, each slab was in local equilibrium with a thermal reservoir at respective
temperatures, T1 = 300 K and T2, where 300 ≥ T2 ≥ 0 K. In contrast with the thermal
equilibrium situation, the Casimir force displays an abrupt decrement in the transit from
normal metal to the SC state as T2 → Tc. The low-temperature asymptotic behavior of the
force is similar to that displayed in the equilibrium situation.

To get further insight on the influence of superconductivity-related effects on the
Casimir effect, in this paper, we study the effect of the Abrikosov lattice (AL) [33] on the
local properties of Casimir forces associated to high-temperature superconductors (HTSCs).
The AL is a manifestation of the Meissner effect, in which the presence of an external
magnetic field induces surface screening supercurrents, which expel out the magnetic field
lines from the material’s interior within a London penetration length λL(T) ∼ ns(T)−1/2.
Here, ns(T) is the number density of Cooper pairs (CPs) at a temperature T. In the case
of type-II superconductors, such as YBCO, the Meissner effect involves the existence of a
mixed phase of coexistence of normal and SC charge carriers determined by two critical
magnetic fields, Hc1 < Hc2. For values of the applied field higher than Hc1, magnetic
flux lines penetrate the sample in the form of quantum vortexes, Φ0 = h/2e, with e the
elemantary charge, thus inducing local screening currents to overcome the applied field
[34]. Upon increasing magnitude of the field, the vortex density increases and saturates at
the upper critical field Hc2, where superconductivity disappears. Remarkably, as shown
by Alexei Abrikosov [33], for intensities of the applied field just below Hc2 the vortexes
align in a compact square lattice with period Lx = Ly =

√
2πξ(T), where ξ(T) is the CP

coherence length. In the case of YBCO, ξ(0) ≡ ξ0 ≈ 1.65 nm, and λL(0) ≡ λ0 ≈ 156 nm,
while the temperature-independent ratio κ = λL(T)/ξ(T) ≈ 95 [34].

It can be shown that the AL vortexes strongly repel each other, giving rise to highly
correlated configurations which are stable when thermal fluctuations and disorder are both
negligible. A measure of the magnitude of the energy associated to thermal fluctuations
with respect to the magnetic condensation energy is provided by the Ginzburg number [35],
Gi = 2γ2κ4(kBTc/Hc2(0)2ξ3

0
)2, where γ is a measure of the anisotropic conductivity (dis-

cussed below). In the case of conventional BCS superconductors, Gi = 10−7. In comparison,
in the case of HTSCs, Tc ∼ 102 K and κ ∼ 102, implying that Gi ∼ 10−2. This relatively
large value of Gi joined with the feature that these materials display a layered anisotropic
structure at the atomic level, leads to the manifestation of a manifold of phenomena gen-
erally termed as vortex matter, encompassing a complex phase diagram under different
environmental conditions and material compositions [36]. Thus, thermal fluctuations may
significantly alter the properties of the AL, generally leading to melting towards a liquid
phase displaying vortex deformation, entanglement or migration. Superposed with repul-
sive interactions and thermal fluctuations, disorder due to material imperfections induce
vortex pinning, which may conduce to the formation of glassy configurations [35–37].
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Vortex matter has been investigated by recurring to techniques such as scanning tunneling
microscopy [38] or muon spin rotation [39]. In addition, the possibility of using cold atoms
to asses vortex-noise has been considered in the literature [40].

In order to examine the influence of the AL on the Casimir force, in this study we
consider a setup, depicted in Figure 1, constituted by a spherical Au nanoparticle located at
a minimum distance d from a planar YBCO substrate, in presence of an applied magnetic
field directed along the z-axis. We show that the force acquires a spatial structure congruent
with the AL due to the modulation imprinted by the vortexes on the dielectric permittivity.

~

~

Figure 1. Setup consisting of a spherical Au nanoparticle of radius R located at a minimum dis-
tance d from a planar substrate made of optimally-doped YBCO (YBa2Cu3O7−δ), both at the same
temperature T—Tns and Tsub, respectively,—in presence of an applied magnetic field directed along
the z axis. We show the resulting lattice structure with elementary cells of nondimensional spatial
periods a = Lx = Ly. Induced supercurrents coincide with equiprobability contours defined by the
number density of Cooper pairs, ns = |Ψ(r̃)|2, where Ψ(r̃) is the superconducting order parameter.
The vortex cores of radius ξ correspond to the darkest inner zones. B⃗ denotes the magnetic field,
and the tilde stands for adimensional variables, x̃ = x/λab and ỹ = y/λab, where λab repersents the
ab-plane penetration length.

In what follows, we present the formalism aimed to evaluate the Casimir force between
a planar substrate and a nanosphere, which relies upon the frequency-dependent optical
properties of the involved materials. To investigate the optical response of YBCO under
the action of an external magnetic field, we then discuss a generalization of the Ginzburg–
Landau (GL) theory of superconductivity, which allows the consideration of the anisotropic
properties HTSCs, allowing the characterization of the number density of SC pairs, ns(r),
with a spatial dependence induced by the action of the applied magnetic field, as provided
by the Abrikosov solution of the GL equation. We then discuss the thermal behavior of
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ns(r) by taking into account that SC charge carriers in HTSCs may be described as a 2D
(2-dimensional) gas of weakly-interacting CPs able to form a Bose–Einstein condensate
(BEC). In Section 2, we model the optical response of YBCO by combining the derived
expression for ns(r, T) with experimental data for the YBCO dielectric function obtained in
the normal (T = 100 K) and SC regime (T = 2 K). We then integrate the former antecedents
to evaluate the Casimir force associated to the AL, and discuss the derived results.

2. Theory and Definitions
2.1. Casimir Force between a Nanosphere and a Planar Substrate

The theory of the Casimir effect between a sphere and a planar surface beyond the
Proximity Force Approximation has been investigated within alternative perspectives,
including some developed by authors of the present study [18,41–47]. In this Section,
we extend the formalism previously presented in Refs. [41–43] to calculate the finite-
temperature Casimir force for the nanosphere-substrate setup displayed in Figure 1, with
the corresponding dielectric function of the nanosphere, εns(ω), and substrate, εsub(r, ω).
We first evaluate the zero-temperature interaction energy as a sum over proper frequencies,
ωk(r⊥; d), of the considered configuration:

E(r⊥; d) =
1
2 ∑

k
(h̄ωk(r⊥; d)− h̄ωk(r⊥; d → ∞)), (1)

where r⊥(x, y) . Straightforward use of the argument principle method lets us express the
sum over proper mode frequencies as a sum over the zeros of a spectral function G(ω; r⊥; d)
(discussed below). This is determined by the solutions of Maxwell equations with boundary
conditions satisfied by the plate-sphere setup:

E(r⊥; d) =
1

2πi

∮
C

h̄ω

2
∂

∂ω
[log G(ω; r⊥, d)− log G(ω; r⊥, d → ∞)]dω. (2)

Here, the (counter clock-wise) contour C is defined along the imaginary axis of the
complex ω-plane and a semicircle in the right hand of this plane with its radius tending
to infinity. The integral along the semicircle yields a null contribution, and the integral
in Equation (3) may be evaluated by considering a contour between −i∞ and i∞. An
integration by parts leads to

E(r⊥; d) = − h̄
4π

∫ ∞

−∞
[log G(ω; r⊥, d)− log G(iζ; r⊥, ∞)]dξ. (3)

The Casimir force is then obtained by calculating the derivative F(r⊥; d) = −∂E(r⊥; d)/∂d.
The eigenfrequency set of the sphere-substrate setup {ωk(r⊥; d)} is obtained by assuming
that the vacuum fluctuations induce a charge distribution on the sphere, described at lowest
level, as a point dipole moment located at its center:

p0
ns(ω) = α(ω)Evac(ω), (4)

where α(ω) = 4πR3(εns − 1)/(εns + 2) denotes the nanosphere polarizability with R the
nanosphere radius and Evac denoting the electric field in vacuum. This dipole moment
introduces in turn a charge distribution in the YBCO half-space. By using the images
method it follows that the total induced dipole moment on the sphere is

pns(ω; r⊥) = α(ω)[Evac(ω) +T · psub(r⊥)]. (5)

Here, T is the dipole-dipole interaction tensor T = (3r0r0 − r2
0I)/r5

0, with r0 a vector
joining the center of the sphere and its image dipole below the substrate surface. In turn,
the relation between the dipole moment on the sphere and the dipole moment induced on
the YBCO substrate is psub(ω; r⊥) = fc(ω; r⊥) M · pns(r⊥), where M = diag(−1,−1, 1) is
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a diagonal matrix in the chosen coordinate frame, and the contrast factor fc(ω; r⊥) ≡ (1 −
ϵsub(ω; r⊥))/(1 + ϵsub(ω; r⊥)). By substituting psub(ω; r⊥)) into Equation (5), one obtains:[

α−1(ω)I+ fc(ω; r⊥)M ·T
]
· pns(ω; r⊥)) = Evac(ω), (6)

which, by introducing the function u(ω) = [1 − ϵns(ω))]−1 and explicitly substituting
α(ω), may be re-expressed as the secular equation:

[−u(ω)I+H(r⊥)] · pns(ω; r⊥) = Ẽvac(ω), (7)

where H(r⊥) = (1/3)[I+ R3 fc(ω; r⊥)M ·T], and Ẽvac = (1/3)R3Evac. By performing the
change of variable ω → iζ, it follows that the matrix H in Equation (7) is real. This allows
us to introduce the spectral function such that

G(iζ; r⊥, d) ≡ ∏
l
[−u(iζ) + ηl(iζ; r⊥, d)] = 0, (8)

which in the present case implies three eigenvalues,

η1,2(iζ; r⊥, d) =
1
3

[
1 +

fc(iζ; r⊥)
[2(1 + d/R)]3

]
; η3(iζ; r⊥, d) =

1
3

[
1 +

2 fc(iζ; r⊥)
[2(1 + d/R)]3

]
, (9)

whose structure reflects the dipole–dipole interaction described by the tensor T, and η1,2
correspond to dipoles parallel to the surface, while η3 is perpendicular. Substitution of
G(iζ; r⊥, d) into Equation (2) leads to a final expression for Casimir force at null temperature:

F(r⊥, d) =
h̄

4π

∂

∂d ∑
l

∫ ∞

−∞
log[−u(iζ) + ηl(iζ; r⊥, d)] dζ (10)

=
h̄

16πR
1

(1 + d/R)4

∫ ∞

−∞

[
fc(iζ; r⊥)

−u(iζ) + η1(iζ; r⊥, d)
+

fc(iζ; r⊥)
−u(iζ) + η3(iζ; r⊥, d)

]
dζ,

where the feature that η1(iζ; r⊥, d) = η2(iζ; r⊥, d) has been considered.
This result may be generalized to the finite-temperature regime by use of the Mat-

subara formalism. In this approach, the frequency integration is replaced by a summation
over discrete frequencies ζn = 2πkBTn/h̄, with n an integer number. In that case, the final
expression for temperature-dependent Casimir force is:

F(r⊥, d; T) =
kBT
4R

1
(1 + d/R)4

∞ ′
∑
n=0

[
fc(iζn; r⊥)

−u(iζn) + η1(iζn; r⊥)
+

fc(iζn; r⊥)
−u(iζn) + η3(iζn; r⊥)

]
, (11)

where the prime implies that the n = 0 term should be multiplied by a factor 1/2.
The influence of higher-order multipoles on the Casimir force for the present configura-

tion has been studied in Refs. [42,43]. It follows that for sphere–substrate multipolar interac-
tion of order l and l′, respectively, the interaction energy E(r⊥; d) ∼ f (r⊥)/(2[R + d])l+l′+1,
and therefore, F(r⊥; d) ∼ f (r⊥)/(2[R + d])l+l′+2. However, specific calculations [42] in-
dicate that the contributions for l, l′ > 1, only become relevant for distances d/R < 2,
consistently with the dipolar approximation considered in this study.

2.2. Ginzburg–Landau Theory and the Optical Response of the YBCO Substrate

In the expressions derived in Section 2.1, the functions u(ω) and fc(ω) are respectively
determined by the dielectric response of the nanosphere, εns, and the planar substrate,
εsub. The dielectric properties of the gold nanosphere may be straightforwardly repre-
sented by a Drude function εns(ω) = 1 − ω2

Au/(ω2 + iγAuω), where the gold plasma
frequency, ωAu = 9.1 eV, and the inverse scattering rate, γAu = 0.02 eV. Therefore,
u(iζ) = −(ξ2 + γAuζ)/ω2

Au.
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On the other hand, to characterize the dielectric response of the YBCO subject to
the action of an applied magnetic field, H, we put forth a straightforward variation of
the GL theory of superconductivity that takes into account specific SC features of HTSCs,
such as YBCO. In the GL theory, the transit to the SC state is described as a second-order
phase transition determined by a complex order parameter, Ψ(r), null in the normal phase,
but finite in the SC phase, characterizing a long-range order specified by the number
density of SC pairs, ns(r) = |Ψ(r)|2. We incorporate in the GL formalism the following
findings [48]: (i) cuprate superconductors exhibit a layered crystallographic structure
in which superfluid transport of CPs occurs mainly along CuO2 planes (the ab-planes),
whereas CP transport along the perpendicular c-axis occurs due to Josephson tunneling,
with respective effective masses, m∗

ab and m∗
c , reflecting an anisotropic charge transport

measured by the ratio γ2 = m∗
c /m∗

ab ≈ 50, (ii) an extremely short CP coherence length,
such that the GL parameter κ ≫ 1. The finding that γ2 ≫ 1 implies that YBCO is
an uniaxial material with a concomitant anisotropic dielectric response characterized by
the diagonal tensor ε = diag(εab, εab, εc) in the coordinate system depicted in Figure 1.
However, a related study on the radiative heat transfer between nearby YBCO surfaces [49]
revealed that electromagnetic mode contributions involving εc are relevant only for thin
film configurations. Therefore, in the following, we assume that εsub = εab. On the other
hand, the joint conditions (i) and (ii) are indicative of a strongly binding pair interaction,
leading the formation of a 2D gas of weakly-interacting particles, able to form a BEC [50].

In this framework, the anisotropic free energy density in the SC state in presence of a
magnetic field B(r) = ∇× A(r), with A the electromagnetic potential, can be expressed as

fs(T) = fn(T) +
1
2
(π̂Ψ)† ·

(
1

m∗

)
· (π̂Ψ) + aT |Ψ|2 + b

2
|Ψ|4 + 1

2µ0
B2(r), (12)

where fn(T) is the normal state contribution, Ψ is the superconducting order parameter, the
symbol † denotes hermitian conjugate, µ0 is magnetic permeability of free space, the canoni-
cal momentum π̂ = −ih̄∇+ e∗A, with e∗ = 2e the CP charge, and the reciprocal mass tensor
is also diagonal in the chosen coordinate system: (1/m∗) = diag(1/m∗

ab, 1/m∗
ab, 1/m∗

c ). In
the original GL approach, aT = a0(T − Tc) and b > 0; however, as shown in Section 2.3, a
more accurate description of the physical properties of SC materials can be achieved by
considering alternative temperature parameterizations.

In the SC state, the total energy is obtained by spatial integration of Equation (12),
Fs =

∫
fs(T)d3r. It follows that the functional differentiation, δFs(T)/δΨ∗(r), then leads to

the anisotropic GL equation

− h̄2

2

[
∇− ie∗

h̄
A
]
·
(

1
m∗

)
·
[
∇− ie∗

h̄
A
]

Ψ +
(

aT + b|Ψ|2
)

Ψ = 0, (13)

while the differentiation δFs(T)/δA(r) yields the current density

Js = − ih̄e∗

2

(
1

m∗

)
· [Ψ∗∇Ψ − Ψ∇Ψ∗]−

(
1

m∗

)
· e∗2A|Ψ|2. (14)

It can be shown that the mass anisotropy induces in turn anisotropic coherence lengths,
ξ j(T), satisfying the relations ξ2

ab(T) = h̄2/2m∗
ab|aT |, and ξ2

c (T) = h̄2/2m∗
c |aT | [48]. In

absence of external fields or material boundaries, the former equations predict a second-
order phase transition, with an order parameter magnitude, |Ψ∞|2 = 0, for aT > 0, and
ns = |Ψ∞|2 = −aT/b, for aT < 0, and a null current density. In this case, the condensation
energy of the superconductor (per unit volume) is given by [48]

fs(T)− fn(T) = −a2
T/2b = −µ0H2

c2(T)/4κ2, (15)

with Hc2(T) = Φ0/2πξ2
ab(T). In the general case, Equations (13) and (14) represent a

coupled equation system; however, for type II materials this system uncouples by taking
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into account that a thermodynamic phase transition also occurs for magnetic fields H = Hc2.
Since the phase transition is of second order, Ψ is small and so is the magnetization M.
Therefore, B = µ0(H + M) ≈ µ0H, where H is the applied field. This implies that, near Hc2,
the spatial variation in B(r) can be neglected and consider that it has the form B = B ez,
where ez is directed along the crystallographic c-axis. Then, in the Landau gauge, the vector
potential A = Bx ey. A further consequence of the smallness of Ψ is that the GL equation
may be linearized by dropping cubic term in Equation (13). Then, the GL equation becomes

−h̄2

2m∗
ab

(
∇⊥ − ie∗

h̄
B xey

)2
Ψ − h̄2

2m∗
c

∂2

∂2
z

Ψ = |aT |Ψ. (16)

As shown by Abrikosov [33], Equation (16) admits Landau-level solutions of the form
Ψ(r) = Φ(r⊥)eikzz, where the ground state is given by kz = 0, and

Φ(r⊥) =
∞

∑
n=−∞

Cnei(2πny)/Ly exp[−(x + nΦ0/BLy)
2/ξ2

ab(T)], (17)

which is a periodic function provided Cn = Cn+ν, for some integer ν. The case ν = 1
corresponds to a square lattice as displayed by HTSCs, while the case ν = 2 yields a
triangular lattice, characteristic of conventional superconductors [34]. The stability of these
solutions can be analyzed by incorporating the effects of nonlinear terms in the description.
This is determined by the Abrikosov parameter, βA = ⟨|Ψ|4⟩/⟨|Ψ|⟩2. In the homogeneous
case, βA = 1, whereas βA > 1 implies less favorable energies. In particular, the energy of
the triangular configuration is smaller than that of the square one by less than 1% [34]. In
the square lattice configuration, the summation may be re-expressed in terms of a Jacobi
theta function, θ3(z; q) = ∑∞

n=−∞ qn2
e2inz, so that

Φ(x̃, ỹ) = Ce−
1
2 κ2 x̃2

θ3

[
1;
√

2π κi(x̃ + iỹ)
]
. (18)

In this case, κ = λab/ξab where λab is the ab-plane penetration length, while x̃ = x/λab,
ỹ = y/λab. Notice that λab describes the magnetic field screening by supercurrents flowing
along the ab-plane. Figure 1 depicts the resulting contours of constant probability defined
by |Φ(r̃⊥)|2. We observe a lattice structure with square elementary cells with dimensionless
periods Lx = Ly =

√
2π/κ. By writing Φ(r̃⊥) = |Φ(r̃⊥)|eiχ(r̃⊥) it follows that the GL

current density is given by Js = (h̄e∗/2m∗
ab)|Φ|2(∇χ − (e∗/h̄)A), indicating that super-

current lines coincide with the equi-probability contours, being the vortex cores located at
the darkest zones of the figure. Notice that the vortex size can be tuned by the substrate
temperature T, which modulates the lattice parameter. In normal units, it follows that
Lx(T) = Ly(T) =

√
2πξab(T), so that Lx(2 K) ≈ 4 nm, whereas Lx(90 K) ≈ 16 nm.

2.3. Thermal Properties of the Order Parameter

We describe the thermal properties of the order parameter by recurring to the Lon-
don two-fluid model of superconductivity, inspired in turn by the two-fluid model of
the superfluid He4. This model assumes that the charge density, n, at a fixed position,
is split as a sum of normal and SC contributions, n = nn(T) + ns(T). The tempera-
ture behavior of ns(T) is frequently described according to the Casimir–Gorter model,
ns(T)/n = 1 − (T/Tc)4 [51]. However, this empirical relation is in clear disagreement with
experimental observations [48].

We consider instead, as mentioned above, that CPs define a 2D gas of weakly-
interacting particles with BE statistical properties. As a consequence, the energy excitation

spectrum is given by Bogoliubov expression Ek =
[
(h̄csk)2 + (h̄2k2/2m∗)2

]1/2
which, in

the low-momentum limit, leads to a phonon dispersion relation, Ek ≈ h̄csk, with cs the
sound’s speed, consistent with Landau’s criterion for superfluid particle transport [52]. In
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that case, we assume the pair occupancy density at any given position can be expressed,
for T < TBEC, in the form [53]

n2D = n2D
0 (T) + ∑

k ̸=0

1
exp(h̄csk/kBT)− 1

. (19)

Here, TBEC =
(

2πh̄2c2
s n2D/k2

Bζ(2)
)1/2

, and ζ(2) is a Riemann’s zeta function. The
summation in Equation (19) can be straightforwardly evaluated by integrating over a 2D
density of states. It follows that n2D

0 (T)/n2D = 1 − (T/Tc)2 [53,54]. Taking into account
that in the dilute regime the condensate and the density of superfluid charge carriers
coincide, we identify TBEC = Tc. This latter result implies, in particular, that the penetration
length satisfies the universal relation λ2

ab(0)/λ2
ab(T) = 1 − (T/Tc)2, which has shown

to represent an accurate description of experimental data for YBCO systems under an
ample range of doping levels in the whole temperature interval 0 < T < Tc [54–56].
By assuming now that the former results hold at every position over the SC substrate,
n2D

0 (r, T) ≈ n2D
s (r, T), and then

n2D
s (r⊥, T) = |Φ(r⊥)|2

[
1 − (T/Tc)

2
]
. (20)

2.4. YBCO Dielectric Response

The optical properties of HTSCs have been experimentally investigated for different
compounds at several temperatures and frequencies using reflectivity and impedance-type
measurements [57–59]. In particular, the dielectric function, ε(ω), of YBCO samples has
been measured in the normal and SC states at T = 100 K and T = 2 K, respectively.
Notably, the estimated values of the optical parameters remain practically unaltered in
these temperature extremes. In particular, the plasma frequency, ω2

p = e∗2n/ε0m∗, satisfies
ωp(2K) = ωp(100 K) = 0.75 eV, suggesting that London’s two-fluid model of superconduc-
tivity can be employed to derive an interpolation, ε(ω; T), valid in the entire temperature
range 2 < T < 100 K. For T > Tc, an accurate representation of the dielectric response
includes a constant term, ε∞, in the optical spectrum, as well as Drude, mid-infrared (MIR),
and Nph phonon contributions:

ε
(n)
ab (ω) = ε∞ −

ω2
p

ω2 + iγ(T)ω
−

Ω2
MIR

ω2 − ω2
MIR + iΓMIR ω

−
Nph

∑
r=1

Ω2
ph

ω2 − ω2
r + iγr ω

. (21)

Here, ε∞ = 3.8, the inverse scattering rate γ(T) = 0.037 + γ1T eV, with
γ1 = 8× 10−15 eV/K, and the MIR parameters ΩMIR = 2.6 eV,
ωMIR = 0.26 eV, ΓMIR = 1 eV, whereas the phonon parameters are given in Refs. [57,58].
In the SC regime, dissipative scattering does not occur, so that γ → 0. In that limit,
(ω ± iγ)−1 → P(1/ω)∓ iπδ(ω), with δ(ω) the Dirac delta function, and the dielectric
function becomes:

ε
(s)
ab (ω; r⊥) = ε∞ −

[
iπω2

p

2ω
δ(ω) +

ω2
p

ω2

](
1 − (T/Tc)

2
)
|Ψ(r)|2 −

ω2
p (T/Tc)2

ω2 + i γ(T)ω
(22)

−
Ω2

MIR
ω2 − ω2

MIR + iΓMIR ω
−

Nph

∑
r=1

Ω2
ph

ω2 − ω2
r + iγr ω

.

As explained in Section 2.1, the dielectric function has to be calculated in the ro-
tated frequency space iζ where the details can be found in Ref. [60]. In this scheme,
the nanosphere and substrate permittivities are respectively given by εns(iζ) = εAu(iζ),
εsub(iζ, r⊥, T) = ε

(n)
ab (iζ, r⊥, T > Tc) and εsub(iζ, r⊥, T) = ε

(s)
ab (iζ, r⊥, T < Tc).
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3. Results

We show in Figure 2 the structure of Casimir force at T = 2 K, as a function of the
position of the Au nanosphere over the AL. Here, the nanosphere radius R = 4 nm, and
d = 2R. Although the dipole approximation requires, actually, d ≫ R, as mentioned above,
in a previous study, it was found that higher multipolar contributions to the force become
negligible at this separation [42]. This figure reveals that the Casimir force displays a
periodic structure congruent with the spatial charge distribution induced by the AL. It can
be observed that the modulation amplitude ∆F = |Fmax − Fmin| is maximized at regions
corresponding to the vortex cores, consistently with the finding that the material reflectivity
is strongly reduced at these zones. In order to compare how these results are altered with
increasing temperature, we present in Figure 3 a cross-section of the Casimir force surface
at a fixed value of Lx = 0.5, for three different temperatures: T = 2 K, T = 40 K, and
T = 90 K, with corresponding lattice size: Lx(2 K) = 4.1 nm, Lx(40 K) = 4.6 nm, and
Lx(90 K) = 16.4 nm. We observe that in the low-temperature regime, 2 ≤ T ≤ 40 K, quite
similar periodic patterns arise, essentially independent of the temperature, with a relatively
small modulation amplitude ∆F ≈ 0.04 pN. On the other hand, for T ≈ Tc the vortex cell
size increases, but the force modulation is drastically reduced.

Figure 2. Periodic structure of the Casimir force as a function of the location of the Au nanosphere
over the Abrikosov lattice at T = 2 K, for a fixed distance d = 2R. Here, R = Lx(2 K) ≈ 4 nm. It can
be observed that the minimal strength of the Casimir force corresponds to the vortex cores.
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Figure 3. Comparison of the Casimir force profiles as a function of the normalized coordinate ỹ/Ly

along a line passing right above the vortex core (x̃/Lx = 0.5), and d = 2R = 8 nm, at three different
temperatures: T = 2 K, T = 40 K and T = 90 K as indicated. Depending on the temperature,
each unit period Ly corresponds to spatial periods: Ly(2 K) = 4.1 nm, Ly(40 K) = 4.6 nm, and
Ly(90 K) = 16.4 nm. We observe that in the low-temperature regime the force magnitude shows
almost coincident values up to T = 40 K, consistent with expectations that vacuum fluctuations
(∼ h̄c/d) overwhelm thermal fluctuations (∼ kBT) at nanometer separations. Here, h̄, c, and kB

denote the reduced Planck constant, the speed of light, and the Boltzmann constant, respectively.

4. Discussion and Conclusions

The former results have been derived within a mean-field approach that neglects
thermal fluctuations of the order parameter and pinning disorder. However, in the weak-
interacting limit of Cooper pairs, thermal effects can be taken into account [36]. The effect
of disorder in the vortex array can be introduced by adding white noise to the coefficients
of the GL free energy and performing the Z functional integration, or by performing
vortex matter simulations based on the numerical analysis of the time-dependent GL
formulation [35,36].

Although the present study was focused on the action of magnetic fields just below
the upper critical field, H ≤ Hc2, the effect of fields near the lower critical value, H ≥ Hc1
can be straightforwardly discussed within the clean-limit of the London theory [34]. In
that case, the order parameter is given by |ϕ(r)|2 ≈ (1 + 2ξ2

ab/r2)−1, while the local

magnetic induction B(r) = Φ0 K0

(√
r2 + 2ξ2

ab/λab

)
/2πλ2

ab, where K0(x) is a modified
Bessel function. Then, the total order parameter can be built as the product ∏i ϕ(|r − ri|),
where ri denotes the localization of the different vortexes, whereas the total magnetic
induction B(r) = ∑i B(|r − ri|) [61].

The periodic structure of the system could, actually, induce diffractive effects in the
predicted spatial-pattern observed in the Casimir force. Indeed it has been shown how
diffraction gratings modify the force [62]. We did not consider this kind of effects because
they would occur for wavelengths of the order of the period of the Abrikosov lattice, about
4–16 nm in our case. This corresponds to frequencies higher than 300 eV. For these high
values of energy, the dielectric function is constant (tends to the high-frequency value, ε∞),
and no position dependence will be observed.

In conclusion, we presented a general methodology aimed to evaluate the Casimir
force in setups constituted by SC materials under the action of an external magnetic field.
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We have shown that the Abrikosov vortex lattice displayed by a type II superconductor
induces Casimir forces with a periodic structure that mirrors the local charge redistribution
due to superconducting currents conducing to magnetic fluxon confinement within the
vortex cores. This approach may be applied to SC systems under different conditions of
temperature, oxygen doping, and magnetic field configurations, allowing the analysis of
alternative orderings competing with vortex matter, such as charge density waves [63],
or the investigation of normal matter inside the vortexes subject to multiple Andreev
reflections [64].
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