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Abstract: Ensuring confidentiality and privacy is critical when it comes to sharing images over unsecured
networks such as the internet. Since widely used and secure encryption methods, such as AES, Twofish,
and RSA, are not suitable for real-time image encryption due to their slow encryption speeds and high
computational requirements, researchers have proposed specialized algorithms for image encryption.
This paper provides an introduction and overview of the image encryption algorithms and metrics used,
aiming to evaluate them and help researchers and practitioners starting in this field obtain adequate
information to understand the current state of image encryption algorithms. This paper classifies image
encryption into seven different approaches based on the techniques used and analyzes the strengths and
weaknesses of each approach. Furthermore, this paper provides a detailed review of a comprehensive
set of security, quality, and efficiency evaluation metrics for image encryption algorithms, and provides
upper and lower bounds for these evaluation metrics. Finally, this paper discusses the pros and cons of
different image encryption approaches as well as the suitability of different image encryption approaches
for different applications.

Keywords: image encryption; chaotic system; DNA encoding; compressive sensing; substitution; permutation

1. Introduction

With the increased use of social media and share of multimedia over communication
networks, image encryption has become a critical research topic in information security, where
researchers aim to protect the integrity and confidentiality of shared image data. Since multi-
media data tend to have high amounts of redundancy (due to the inherent correlation between
neighboring pixels), a specialized and robust image encryption algorithm is essential. As
secure, widely used, and recommended encryption methods, such as the advanced encryption
standard (AES), Twofish, RSA, etc., are not suitable for real-time multimedia data encryption
(due to high computational requirements and slow encryption speeds), researchers have
proposed various encryption techniques designed specifically for image encryption.

In this paper, several proposed state-of-the-art image encryption algorithm techniques
are reviewed with an emphasis on their strengths and weaknesses. This paper classifies
image encryption algorithms into seven different approaches based on the techniques used.
These approaches are traditional ciphers, chaotic systems, DNA encoding, neural networks,
compressive sensing, frequency domain, and meaningful sensing. Additionally, we discuss
security, quality, and efficiency evaluation metrics, such as the correlation coefficient,
histogram analysis, entropy, mean square error (MSE), the NIST SP 800-22 Test [1], etc. This
paper provides a brief introduction to image encryption algorithms for researchers and
practitioners starting in this field and aids them in understanding the current state of image
encryption algorithms. Our main contributions in this article are as follows:

• Classification of image encryption into seven approaches based on the techniques
used in the algorithms.

• A thorough review of a comprehensive set of security, quality, and efficiency evaluation
metrics for image encryption.
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• Calculation of the upper and lower bounds for each of the evaluation metrics for
image encryption.

The rest of this paper is organized as follows: Section 2 discusses the general concept
of image encryption algorithms and provides a detailed review of different approaches
to image encryption algorithms. Section 3 presents the metrics used by researchers to
evaluate image encryption algorithms. Section 4 discusses the advantages, disadvantages
and the applications of different image encryption algorithms. Finally, Section 5 concludes
this work.

2. Image Encryption Algorithms

Digital images are electronic files that consist of two-dimensional arrays of numbers
with variable sizes and channel numbers (i.e., one channel for gray-scale images, three
channels for color images, and four channels for color images with a transparency channel)
that store pixel values. Each pixel represents a specific color. A digital image, I, is defined
by size, H × W × nc, where H is the height, W is the width, and nc is the number of
channels. Images usually contain private and personal information, such as personal and
legal documents, medical images, military images, etc. When these types of images are
shared over the internet or on an unsecured network, these images could be compromised
by unauthorized access. Furthermore, most digital images tend to contain high redundancy
due to the correlation between neighboring pixels. Image encryption algorithms aim to
ensure the security of the image from unauthorized access by encrypting the plaintext
image and producing a cipher image that can only be decrypted by the intended users.
Image encryption algorithms use the confusion and diffusion [2] principle to produce cipher
images and reduce the correlation between neighboring pixels. Confusion is attained by
changing the values of each pixel in a digital image by a substitution map, where the
values of each pixel in a plaintext image are changed by a substitution map such as an
AES S-Box. Diffusion is achieved by changing the plaintext image pixels’ location within
an image itself using mathematical permutation operations. Diffusion helps in reducing
the correlation between adjacent pixels that are present in the plaintext image. In image
encryption, confusion and diffusion are controlled using a key or a set of keys to obscure
and permute the plaintext image to produce the cipher image. Researchers have proposed
a multitude of image encryption algorithms in the past decades. This section presents a
review of image encryption algorithms based on the techniques used. Figure 1 illustrates
the seven different approaches based on the techniques used.

Figure 1. Different approaches to image encryption based on the used techniques.
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2.1. Traditional Ciphers

At the moment, traditional ciphers are the most commonly used algorithms to encrypt
images over networks. The images are converted into bit streams and then encrypted using
one of the traditional encryption methods.

The advanced encryption standard (AES) [3] is a widely adopted and recommended
encryption algorithm. AES is a symmetric key encryption with variable key lengths and
round numbers. It uses 10 rounds of encryption for 128-bit keys, 12 rounds for 192-bit
keys, and 14 rounds for 256-bit keys. AES works on blocks with 128 bits, and each round
involves a series of SPN-based (substitution–permutation network-based) operations on
each block of data, that is, SubBytes, ShiftRows, MixColumns, and AddRoundKey. The
AES can be used in various modes, but the electronic codebook (ECB) mode is not suitable
for image encryption as it produces cipher images with noticeable patterns, where identical
blocks of the image will result in producing identical blocks in the cipher image. To avoid
this problem it is recommended to use AES in a cipher block chaining (CBC) mode.

Twofish [4] is another symmetric key block cipher that has 16 rounds and uses variable
key lengths of 128, 192, and 256 bits. Twofish uses a Feistel network structure and works
on 128-bit blocks. Each round involves a series of operations on each block of data, that is,
substitution boxes, linear transform based on a maximum distance separable (MDS) code,
pseudo-Hadamard transform (PHT), and a key addition function.

Stream ciphers have also been used in image encryption. They produce a pseudo-
random keystream from a key and an initialization vector (IV) or nonce; this keystream is
then combined with the plaintext image in a bitwise operation (usually XOR) to produce
the cipher image. Trivium [5] is a synchronous stream cipher that is based on a nonlinear-
feedback shift register (NLFSR), which generates a keystream of up to 264 bits using an
80-bit secret key and an 80-bit IV. Trivium cipher has three phases: an initialization phase, a
warm-up phase, and an encryption phase. In the initialization phase, the key and the IV are
loaded into the 288-bit state register and all remaining bits are set to 0 (except for 3 specific
bits, which are set to 1). In the warm-up phase, the cipher is clocked 1152 times without
generating an output. In the encryption phase, all bits produced after the 1152th cycle are
used to generate the keystream. To produce the cipher image, a keystream equal to the size
of the plaintext image is XORed with the plaintext image. ChaCha20 [6] is another stream
cipher that generates a keystream of up to 264 bits using a 256-bit secret key, 64-bit nonce,
and a 64-bit counter. In the ChaCha20 cipher, the 512-bit state is divided into a 4-by-4-word
matrix containing 8 keywords, 4 constant words, and 4 words for the nonce and counter.
ChaCha20 has 20 rounds; each round has 16 additions, 16 XORs, and 16 constant-distance
rotations of 32-bit words. After 20 rounds, a 512-bit keystream is produced. To produce
a cipher image, a keystream equal to the size of the plaintext image is XORed with the
plaintext image.

2.2. Chaotic Systems

Some of the most widely used image encryption algorithms are based on chaos
theory; this is due to several desirable properties, such as non-linearity, sensitivity to initial
parameters, speed, and robustness [7]. In chaos-based algorithms, the pseudorandom
chaotic sequences that are generated by the chaotic system are used to permute and diffuse
a plaintext image [8].

Some of the chaotic maps that are commonly utilized in image encryption methods
are as follows: logistic map [9,10], Baker map [11,12], Arnold map [13,14], tent map [15,16],
hyperchaotic maps [17,18], etc. Researchers have proposed a plethora of image encryption
algorithms based on chaotic systems; the following is a brief overview of some of the
proposed algorithms for each chaotic system.
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2.2.1. Logistic Map

A logistic map is one of the simplest non-linear and deterministic dynamical systems
that are used to generate chaotic sequences. The logistic map can be defined as follows:

Xn+1 = rXn(1 − Xn), (1)

where X0 represents the initial parameter or starting value of the logistic map, with
0 ≤ Xi ≤ 1. The parameter, r, is the control parameter or growth rate of the logistic
map, and it has a range of (0, 4). However, chaotic behavior is observed only when the
control parameter, r, is within the range of (3.56995, 4) [19]. The bifurcation diagram of the
logistic map is illustrated in Figure 2.

Figure 2. Logistic map bifurcation diagram.

Alghamdi et al. [8] proposed an image encryption algorithm based on the logistic map,
permutations, and an AES S-box. The proposed algorithm employs SHA-2 hash based on
the plaintext image, a pre-shared key, and an initialization vector (IV) to generate the initial
parameters for the logistic map. The pseudorandom sequences generated by the logistic
map are used to chaotically permute and substitute the image at the pixel level.

In [20], Rohith et al. proposed an image encryption algorithm for medical applications,
using the key sequences of triple logistic maps. In the proposed algorithm, the logistic map
is utilized to generate three different key sequences, X1i, X2i, and X3i, with different initial
values, where X10 ̸= X20 ̸= X30. These key sequences are converted into discrete key
sequences, K1i, K2i, and K3i, within the range of (0, 255). Then, a combined key sequence Ki
is obtained through a bit-by-bit logical XOR operation between K1i, K2i, and K3i, which is
then used to encrypt the image by performing a logical XOR operation between image pixels
and the key sequence, Ki. Logistic maps are popular in image encryption algorithms due to
their minimal complexity and fast computation speed. However, a potential disadvantage
is their limited range of chaotic behavior.

2.2.2. Baker Map

The Baker map is a chaotic transformation that maps a unit square into itself. It
involves a sequence of stretching and folding operations that result in a new transformed
unit square. The formula for the Baker map is as follows:

B(xn+1, yn+1) =

{
(2xn, yn/2) 0 ≤ x < 1

2

(2 − 2xn, 1 − yn/2) 1
2 ≤ x < 1

, (2)

where (xn, yn) and (xn+1, yn+1) are the coordinates of a point in the unit square before and
after the transformation, respectively.

Elashry et al. [11] proposed a design of a 2D chaotic Baker map that operates on three
different modes: cipher block chaining (CBC) mode, cipher feedback (CFB) mode, and
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output feedback (OFB) mode. In the proposed algorithm, the Baker map performs the
permutation procedure on the plaintext image by moving the positions of the pixels. The
encryption key uses a random IV, which, depending on the operation mode, is XORed
with the plaintext data blocks, where the IV has the same size as the plaintext block. The
proposed implementation combines the speed of chaotic maps with the randomness of the
mode of operation, resulting in a fast and secure cryptosystem.

In [12], Mondal et al. presented an image encryption algorithm that uses a 2D Baker
map, where the plaintext image is initially permuted using a pseudorandom sequence
generated by the Baker map, followed by a diffusion process based on an XOR operation
between the scrambled plaintext image and the generated sequence. The proposed en-
cryption algorithm employs dual secret keys generated by the Baker map; one is used for
permutation and the other for diffusion.

The Baker map is known to be vulnerable to chosen-plaintext attacks, where an
attacker with a pair of plaintexts and corresponding ciphertexts can reverse the permutation
and diffusion processes to deduce information about the secret key. This vulnerability
could be mitigated by combining other layers of security, such as using an IV or multiple
chaotic maps.

2.2.3. Arnold Maps

The Arnold map, which was introduced by Vladimir Arnold in 1968 [21], is a nonlinear
chaotic transformation that maps a unit square into itself, exhibiting chaotic behavior; this
is desirable in image encryption for producing pseudorandom sequences. The Arnold map
can be represented by the following formula:

Γ(xn+1, yn+1) = (2xn + yn, xn + yn) mod N, (3)

where (xn, yn) and (xn+1, yn+1) are the coordinates of a point in the unit square before and
after the transformation, respectively. N is the size of the unit square.

Rachmawanto et al. [13] proposed an encryption algorithm based on the Arnold map.
The proposed algorithm divides an image into small blocks with the same width and height,
and each of the small blocks is permuted using the Arnold map. It is worth noting that the
proposed algorithm does not diffuse the pixel’s values of the image, resulting in the cipher
image having the same histogram information as the original plaintext image.

In [14], Shalaby et al. proposed a medical image encryption algorithm based on
an enhanced Arnold map and AES. Their proposed algorithm consists of three steps. It
starts by sharpening the edges of the plaintext image to preserve the details. Then the
sharpened plaintext image pixels are chaotically shuffled for i number of iterations based
on a modified Arnold map. Finally, the permuted image is encrypted using AES-128
encryption in CBC mode.

It should be noted that the Arnold map is designed to work only on square images
where the height and width are equal, and it is not suitable for use on rectangular images
without first resizing the image to make it square before encryption. Furthermore, the
Arnold map is known to exhibit periodic behavior, meaning that after a certain number of
permutation iterations, the image pixels will return to their original position.

2.2.4. Tent Maps

The tent map is a chaotic system that maps real numbers in the range (0,1) to another
real number in the same range. The tent map can be represented by the following formula:

xn+1 = fµ(xn) =

{
µxn if xn < 1

2

µ(1 − xn) if 1
2 ≤ xn

, (4)

where x0 is the starting value and xn+1 is the mapped value. µ is the control parameter,
which has a range of (0, 2). However, chaotic behavior is observed only when the control
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parameter µ is within the range of (1, 2). The bifurcation diagram for the tent map is
depicted in Figure 3.

Figure 3. Tent map bifurcation diagram.

Chunhu et al. presented an algorithm in [15]; it utilizes a keystream generated by
a tent map. The keystream is subsequently XORed with the plaintext image to produce
the cipher image. Notably, the proposed algorithm does not perform any shuffling or
permutation on the image’s pixels.

In [16], Vishwas et al. proposed an image encryption algorithm based on the tent map.
The proposed algorithm has two cases. In the first case, a chaotic sequence is generated
based on the tent map; this sequence is then XORed with the plaintext image to produce the
cipher image. The second case is similar to the first case, with the addition of a permutation
step. The resulting cipher image is then permuted using the sequence generated from the
tent map in one of four variants (only rows are permuted, only columns, first rows then
columns, or first columns then rows).

Tent maps are easy to implement, feature simple control of initial parameters, and
require minimal computational power. However, they suffer from a small range of chaotic
behavior, similar to logistic maps.

2.2.5. Henon Maps

The Henon map is a two-dimensional map that maps a point (xn, yn) to a new point
(xn+1, yn+1). The Henon map can be defined as follows:

xn+1 = 1 − ax2
n

yn+1 = bxn,
(5)

where (xn, yn) and (xn+1, yn+1) are the coordinates of a point before and after the mapping,
respectively; a and b are the control parameters for the Henon map; however, the map
starts to behave chaotically when a = 1.4 and b = 0.3 [22]. The bifurcation diagram for the
Henon map is depicted in Figure 4.

Pradeep et al. [23] proposed an image encryption algorithm using the Henon map. The
proposed algorithm consists of three stages. In the first stage, the Henon map generates two
sequences of random values. In the second stage, the first randomly generated sequence is
XORed with the plaintext image to diffuse the pixel values. Finally, the diffused image is
permuted using the second sequence of values generated by the Henon map to produce
the cipher image.
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Figure 4. The Henon map bifurcation diagram.

In [24], Hussein et al. introduced a new permutation–substitution algorithm based
on the Henon map. The algorithm utilizes the Henon map to generate two sets of
keystreams, namely X and Y, each having a length of (height × width + 100), where
the first 100 generated values are removed from the keystream. The plaintext image is
then reshaped into a one-dimensional array, and the elements are permuted using the
random numbers from keystream X for two rounds. The Y keystream is converted into a
three-dimensional array to make it compatible with the three color channels (RGB) of the
permuted array. Then, each color channel of the permuted array elements is diffused using
an XOR operation with the corresponding three-dimensional Y keystream.

2.2.6. Hyperchaotic Systems

Hyperchaotic maps are high-dimensional nonlinear dynamical systems, defined as
any chaotic system with at least two positive Lyapunov exponents [25]. The Lyapunov
exponent of a dynamical system is a parameter that measures the rate of separation of two
infinitesimally close trajectories [26]. Hyperchaotic maps are considered to be better than
simple chaotic maps due to their higher degree of non-periodicity and unpredictability [27].

Gao proposed an image encryption algorithm based on a 2D hyperchaotic map in [17].
First, two hyperchaotic sequences, x and y, are generated by the 2D hyperchaotic map. Next,
the plaintext image rows and columns are permuted using chaotic sequence x. Finally, the
pixel values of the permuted image are obscured through forward and backward diffusion
using chaotic sequence y to produce the cipher image.

In [18], Li et al. proposed a hyperchaos-based image encryption algorithm using
pixel-level permutation, bit-level permutation, and diffusion. First, two chaotic sequences
are generated by a 5D multi-wing hyperchaotic system, where the control parameters are
related to the original image. Then, pixel-level permutation and bit-level permutation are
performed on the plaintext image using the first chaotic sequence. Finally, the permuted
image is diffused using the second chaotic sequence to produce the cipher image.

2.2.7. Multiple Chaotic Maps

The security and complexity of a chaos-based image encryption-based algorithm
can be improved by using multiple chaotic maps instead of just one. Additionally, the
limitations and vulnerabilities of one chaotic map can be mitigated by combining it with
another chaotic map.

Ramasamy et al. [28] used an enhanced logistic-tent map for key generation in an
image encryption algorithm based on block scrambling and a modified zigzag transforma-
tion. The algorithm starts by dividing the plaintext image into four quadrants, and each
quadrant is further divided into four sub-quadrants. Next, each sub-quadrant is rotated
anti-clockwise by 90°. Then, each color channel of the scrambled image is further permuted
using a modified zigzag transformation, where the upper left pixel and its next neighboring
horizontal pixels are exchanged with the base right pixel. Finally, an XOR operation is
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performed between the permuted image and the keystream generated by the enhanced
logistic tent map.

Jain and Aji [29] proposed an image encryption algorithm based on a 2-dimensional
logistic-sine coupling map (2D-LSCM) and Arnold’s cat map, where Arnold’s cat map is
used to shift the pixels of the plaintext image. Next, a chaotic matrix (matrix X) that has
the same size as the plaintext image is generated by the 2D-LSCM chaotic map, and is
used to perform another permutation on the pixel positions. The pixel values are then
diffused using chaotic matrix X. This process of permutation and diffusion is repeated for
two rounds to produce the cipher image.

2.3. DNA Encoding

DNA encoding can be used in image encryption by converting the image’s pixel binary
values into a DNA sequence. Since the DNA sequence is composed of four nucleotides,
adenine (A), guanine (G), cytosine (C), and thymine (T), researchers can use DNA coding
rules to convert the binary information into synthetic DNA sequences using specialized
laboratory equipment to handle DNA synthesis and sequencing. For example, a pixel
with an RGB value (01010001, 00101000, 10001011) can be encoded as the DNA sequence,
GGAG, ACCA, CACT, using rule 1 from the DNA coding rules in Table 1. Binary operation
(i.e., addition, subtraction, XOR, etc.) can also work on DNA sequences using DNA
operation rule tables. For example, the addition of nucleotides A + A results in A using
rule 1. Since A in rule 1 is 00, the addition of 00 + 00 is 00, which is A in rule 1. In the case
of adding G + G using rule 1, the result is C, i.e., 01 + 01 is 10, which is equivalent to C.
Table 2 illustrates the DNA addition operation for the DNA rule 1 in Table 1.

Table 1. Sample of different DNA coding rules.

Rule 1 2 3 4 5 6 7 8

A 00 00 01 01 10 10 11 11
T 11 11 10 10 01 01 00 00
G 01 10 00 11 00 11 01 10
C 10 01 11 00 11 00 10 01

Table 2. DNA addition for DNA rule 1.

+ A G C T

A A G C T
G G C T A
C C T A G
T T A G C

The image encryption algorithm presented by Wu et al. [30] utilizes DNA coding in
combination with a hyperchaotic map. In the proposed algorithm, a keystream generated
using Chen’s hyperchaotic map is used to scramble the plaintext image. Afterward, the
resulting scrambled image and the keystream are both DNA-encoded. The algorithm then
diffuses the DNA-encoded scrambled image with the DNA-encoded keystream. Lastly,
DNA decoding is performed on the resulting diffused image to produce the cipher image.

Li and Su [31] proposed an algorithm based on a logistic map, the Chen hyperchaotic
map, and DNA encoding. The algorithm starts by dividing an image into three matrices
based on the RGB color channels. Next, each of the three matrices is divided into blocks.
The Chen hyperchaotic map is used to randomly select the DNA coding, decoding, and
operation rules of each block. Each block of three color matrices is first DNA-encoded and
then goes through an addition, subtraction, XOR, or XNOR operation selected based on the
Chen hyperchaotic map. The algorithm then performs DNA decoding on the blocks of the
three color matrices, followed by a row and column permutation based on the logistic map.
Finally, the three color matrices are combined into one image to obtain the cipher image.
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In [32], Li and Li introduced a novel image encryption algorithm based on DNA
dynamic encoding, the logistic-tent map, and the Lorenz hyperchaotic map. The proposed
algorithm begins by dividing the plaintext image into rows, which are then DNA-encoded
using rules selected by the logistic-tent map random sequence. The resulting DNA-encoded
image is then scrambled using the sequence generated by the Lorenz hyperchaotic map at
the DNA level. Next, the resulting scrambled DNA-encoded image is diffused using DNA
operation rules selected based on the logistic-tent map. The resulting diffused image is then
DNA-decoded using the Lorenz hyperchaotic map. Finally, the resulting DNA-decoded
image is diffused again using DNA operation rules selected based on the logistic-tent map
to produce the cipher image.

The algorithm developed by Feng et al. [33] is based on DNA encoding, 2D-LSCM, the
SHA-256 hash of the plaintext image, and the discrete logarithm. The proposed algorithm
consists of three encryption steps: permutation and update, DNA sequence operation, and
diffusion. All three steps are plaintext image-related. The algorithm begins by generating
a SHA-256 hash of the plaintext image and then stretches the plaintext image into a 1D
sequence. The algorithm also generates three integer chaotic sequences (ICSs) from the
2D-LSCM based on a secret key to be used in each step. For the permutation and update
step, the algorithm permutes and updates the pixel values using the first generated ICS and
the hash value using an equation based on modular and discrete logarithmic operations
to calculate the permutation coordinates. Next, in the DNA sequence operation step, the
algorithm performs DNA encoding, DNA XOR, and then DNA decoding on the resulting
permuted image, utilizing DNA rules selected based on the second generated ICS and the
hash value. For the diffusion step, the algorithm changes the pixel values in forward or
backward diffusion based on the secret key, hash value, the three ICSs, and the discrete
logarithm operation. The three steps of the algorithm are performed twice, and the final 1D
cipher sequence is converted into a 2D image to produce the cipher image.

Image encryption algorithms based on DNA encoding can have high security and
require less storage requirements. Yet the decryption process requires additional DNA
rule tables to be transmitted along with the encrypted image [34]. Furthermore, DNA
encoding-based encryption is still experimental and only explored in academic research; it
requires specialized lab equipment to convert binary values into synthetic DNA sequences.

2.4. Neural Networks

Neural networks can be utilized in image encryption algorithms to enhance the
security and efficiency of the algorithm. Neural networks can be used to permute [35]
and/or compress the plaintext images [36]. Furthermore, neural networks with chaotic
behaviors [37] can be used to generate chaotic sequences, which can be used as keys, input
parameters, or to diffuse the image.

Man et al. [35] proposed a double image encryption algorithm based on the convo-
lution neural network (CNN) and chaos. The proposed algorithm uses a logistic map
to generate the initial parameters for a 5D conservative chaotic system and CNN. two
plaintext images are first permuted by a plaintext-related chaotic pointer generated by the
CNN. Next, each permuted image is split on the bit level into high and low 4-bit images.
Then two high 4-bit images are fused into one image, and low 4-bit images are fused into
one image. Finally, a dual channel encryption (optical encryption, and digital encryption)
is performed on the two permuted and fused images to produce two cipher images.

An image encryption algorithm based on the Hopfield chaotic neural network was
proposed by Wang and Li [38]. The proposed algorithm starts by generating the initial
parameters for the Arnold map and Hopfield neural network using a staged composite
chaotic map based on a logistic map and a tent map. Next, the plaintext image pixels
are permuted by a random sequence generated by the Arnold map. Then, the Hopfield
neural network is utilized to generate a self-diffusion chaotic keystream matrix. Each color
channel of the permuted image is then XORed with a keystream matrix to produce the
cipher image.
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Han et al. [37] proposed an image encryption algorithm based on the Hermite chaotic
neural network. First, a chaotic training sample for the Hermite chaotic neural network
is generated by a logistic map. Next, two sets of chaotic sequences are generated by the
trained Hermite chaotic neural network. Finally, the two sets are summed and multiplied
by 256 and then multiplied by the plaintext image to produce the cipher image.

In [36], Yang et al. proposed an image encryption algorithm based on a backpropa-
gation neural network and a hyperchaotic system. First, the plaintext image is split into
three matrices (R,G,B), and each matrix is decomposed into sub-image blocks. Next, the
sub-image blocks are provided as input to the backpropagation neural network, which pro-
duces three compressed pixel matrices. The compressed pixel matrices are then permuted
using a zigzag confusion algorithm. After that, five chaotic sequences are generated by a
fractional-order memristive hyperchaotic system, and two of the sequences are selected
randomly to be XORed with the permuted matrices. Finally, the three diffused matrices are
combined to produce the cipher image.

Even though neural network-based image encryption algorithms offer secure en-
cryption, they do have some disadvantages. The time and computational complexity are
high for neural network-based image encryption as neural networks require significant
processing power and training time.

2.5. Frequency Domain

Using an image frequency domain in an image encryption algorithm can improve
an algorithm’s security. In frequency domain image encryption, instead of performing
the encryption on the plaintext image directly in the spatial domain, the image is first
transformed into the frequency domain, using Fourier transform (FT), wavelet transform
(WT), discrete cosine transform (DCT), etc., and the confusion and diffusion are performed
in the frequency domain. The cipher image is then produced by inverse-transforming the
encrypted frequency domain into the spatial domain.

Ding et al. [39] proposed an image encryption algorithm based on a fractional-order
Henon map, a 2D discrete wavelet transform (DWT), and a 4D hyperchaotic system. In the
proposed algorithm, the plaintext image is transformed using DWT and then permuted us-
ing a chaotic sequence generated by the fractional-order Henon map. The 4D hyperchaotic
system generates a chaotic sequence that is XORed with the permuted image to produce
the cipher image.

In [40], Chen et al. introduced a hybrid domain image encryption algorithm for
gray-scale images based on a 2-dimensional improved Henon map (2D-ICHM), integer
wavelet transform (IWT), bit plane decomposition, and DNA operations. The algorithm
starts by generating a SHA-512 hash from the plaintext image, which is used to derive
the control parameters for the improved Henon map (2D-ICHM), which generates two
chaotic sequences, namely X,Y. Then, the plaintext image is decomposed into eight binary
bit planes, and the high bit planes are XORed with chaotic sequence X. Next, the IWT is
applied to the XORed bit plane and then scrambled using chaotic sequence X. After that,
inverse IWT is performed followed by DNA encoding, the DNA XOR operation, and DNA
decoding. Finally, bidirectional diffusion is performed using chaotic sequences X and Y to
produce the cipher image.

Guan et al [41] presented a chaotic image encryption algorithm using frequency
domain DNA encoding. The proposed algorithm starts by transforming the plaintext
image using a fast Fourier transform (FFT) and obtaining the amplitude and phase, which
are then reconstructed as 1D sequences. Next, four chaotic sequences are generated by a
4D hyperchaotic map and the DNA encoding, decoding, and operation rules are generated
using these chaotic sequences. After that, the amplitude and the phase sequences are
DNA-encoded, DNA operations are performed, and then DNA is decoded to diffuse and
confuse the amplitude and phase. Finally, the cipher image is produced by performing an
inverse fast Fourier transform (IFFT).
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In [42], Faragallah et al. introduced an efficient and secure color image cryptosystem
based on chaotic logistics in fractional Fourier transform (FrFT). The proposed algorithm
starts by splitting the plaintext image into red, green, and blue channels. Next, fractional
Fourier transform (FrFT) is applied on the red, green, and blue color plaintext image
channels. Afterward, a 2D logistic map is employed to scramble each of the color image
pixel positions in the FrFT. Subsequently, the inverse fractional Fourier transform (iFrFT) is
applied to the resulting encrypted channels. Finally, the red, green, and blue channels are
combined to produce the cipher image.

2.6. Compressive Sensing

In recent years, there has been a growing interest in compressive sensing-based im-
age encryption algorithms. Compressive sensing-based algorithms have the advantage
of simultaneously sampling, compressing, and encrypting images, resulting in a faster
encryption time and a reduced image size. In a compressive sensing-based image encryp-
tion algorithm, a plaintext image is first transformed into a sparse domain using discrete
transform. Then, the transformed image is compressed using a random measurement
matrix. The measurement matrix is a matrix used to capture a reduced set of the essential
measurements/information of the image’s structure, which allows accurate compression
and reconstruction from a reduced set of measurements. Finally, the compressed image is
encrypted using permutation and diffusion techniques.

Dou and Li [43] proposed a novel image encryption algorithm based on compressive
sensing, the M sequence, and an improved 1D chaotic map that incorporates elements from
logistic, sine, and Chebyshev maps. The proposed algorithm generates a SHA-512 hash
from the plaintext image, which is used to derive the control parameters for the improved
1D chaotic map and the M sequence linear-feedback shift registers (LFSRs). The plaintext
image is then transformed to a DWT and is scrambled using the M sequence. Next, the
improved 1D chaotic system is used to generate a measurement matrix that is used to
compress and diffuse the scrambled image to produce the cipher image.

In [44], Zhang et al. proposed an image compression and encryption algorithm based
on compressive sensing, Fourier transform, and chaotic maps. The proposed algorithm
utilizes a tent-sine chaotic map to generate a measurement matrix, using a SHA-256 hash
of the plaintext image as initial parameters. Next, the Arnold transform is used to permute
the compressed image, and then a 2D Fourier transform generated by Chen’s hyperchaotic
map is used as a mask to produce the cipher image.

Wang et al. [45] proposed an image encryption based on compressive sensing and DNA
encoding. The algorithm utilizes a four-wing hyperchaotic system and Kronecker product
(KP). First, a chaotic sequence generated by the chaotic system is used to dynamically
control the DNA coding. Afterward, the measurement matrix is obtained by a four-wing
chaotic system. Next, the plaintext image is sparsified and permuted by Fisher–Yates
random scrambling. Finally, DNA coding and DNA XOR operations are performed to
produce the cipher image.

2.7. Meaningful Encryption

Meaningful image encryption is a technique that utilizes image encryption and
steganography to produce cipher images that have a visually meaningful image instead
of a noise-like image. Steganography is the practice of concealing data within another
non-secret carrier file or message to avoid detection. There are two steps in a meaningful
encryption algorithm. First, the image is encrypted using an image encryption algorithm.
Next, the resulting encrypted image is embedded in a non-secret carrier image using a
steganography algorithm. The carrier image, which looks like a normal image, can then be
transmitted to the receiver.

Ping et al. [46] proposed an image encryption algorithm, utilizing compressive sensing,
chaotic maps, and steganography to produce meaningful cipher images. The proposed
algorithm consists of two stages: a compressive sensing encryption step and a steganog-
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raphy step. For the compressive sensing encryption step, a 2D logistic-adjusted sine map
(2D-LASM) and a 3D cat map are generated from a secret key. Then, the plaintext im-
age is transformed into a sparse domain using DWT and permuted using the chaotic
sequence generated by the 2D-LASM. The measurement matrix for compressive sensing is
constructed using the chaotic sequences generated by the 3D cat map and the 2D-LASM.
Finally, the measurement matrix is used to compress and encrypt the permuted image. In
the steganography step, the resulting cipher image is embedded into a carrier image, and
the order of the embedding position is encrypted using the chaotic sequence generated by
the 2D-LASM.

In [47], Wang et al. proposed a meaningful image encryption based on a chaotic map
and random scrambling diffusion. The plaintext is first sparsified by wavelet packet trans-
form (WPT). Next, a one-dimensional chaotic map is used to construct the measurement
and permutation matrices. Then, a bidirectional random scrambling algorithm based on
chaotic magic transformation (CMT) is used to permute the sparsified plaintext image. The
permuted resulting image is compressed using the chaotic measurement matrix and then
diffused using chaotic pixel diffusion. Finally, the encrypted and compressed image is
embedded in a carrier image using the WPT embedding algorithm.

Jiang et al. [48] proposed a novel meaningful image encryption algorithm based on
parallel compressive sensing and slant transform. First, the plaintext image is sparsified
by DWT and the sparse coefficient matrix of the plaintext image is used as the control
parameters for the 4D memristive hyperchaotic map, which generates the scrambling
matrix. Then, the sparsified plaintext image is permuted and compressed using Arnold
scrambling and parallel compressive sensing to produce the cipher image. Finally, the
cipher image is randomly embedded in a carrier image by slant transform-based embedding
in a block-wise manner to produce a visually meaningful cipher image.

In [49], Yang et al. proposed a visually meaningful image encryption algorithm based
on a new universal embedding model (UEM). The new UEM is used to embed secret
information into the host and to adapt to different types of wavelet transforms. First, the
plaintext image is encrypted using an image encryption algorithm (the authors did not
specify an exact algorithm) to produce a permuted and diffused image. Next, integer
wavelet transform is performed on the carrier image to obtain the wavelet transform
domain. Then, a four-dimensional discrete chaotic system is used to embed the permuted
and diffused image in the integer wavelet sub-bands of the carrier image. Finally, inverse
integer wavelet transform (iIWT) is performed on the resulting wavelet transform domain
to produce a visually meaningful cipher image.

Meaningful image encryption algorithms have the advantage of keeping the embedded
data secure even if the embedded image data are extracted via steganalysis tools. Since
the original secret image is already encrypted and resembles a noise-like image, it adds
another layer of security to steganography by preventing attackers from directly obtaining
the secret image through steganalysis alone. However, these algorithms have the drawback
of high computational requirements due to the implementation of two layers of security:
image encryption and steganography.

3. Evaluation Metrics

Researchers depend on a comprehensive set of metrics (e.g., correlation coefficient,
histogram analysis tests (chi-square, maximum deviation, irregular deviation, and deviation
from uniform histogram), information entropy (global and local), gray-level co-occurrence
matrix (GLCM) analysis (contrast, energy, and homogeneity), encryption quality analysis
(mean square error (MSE), mean absolute error (MAE), and peak signal-to-noise ratio
(PSNR)), resistance to differential attacks, number of pixels change rate (NPCR), unified
average changing intensity (UACI), resistance to noise and data loss attacks, and the
algorithm’s key sensitivity) to evaluate and analyze image encryption algorithms. Each
of these tests is discussed in detail below. Figure 5 illustrates the most commonly used
evaluation metrics for image encryption in literature.
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Figure 5. Most commonly used evaluation metrics.

3.1. Correlation Coefficient Analysis

Digital images typically exhibit strong correlations among adjacent pixels. To ensure
a secure and robust image encryption algorithm, and to avoid vulnerability to statistical
attacks, it is essential to eliminate this correlation. The correlation coefficient is a statistical
test that is commonly used in image encryption to quantify the strength of correlation
between two pixels. It has a range of (1, −1), where a value of 1 or −1 indicates the
maximum positive or negative correlation, respectively, while a value of 0 indicates no
correlation between the compared pixels. Image encryption algorithms usually utilize
the correlation coefficient metric to evaluate horizontal, vertical, and diagonal correlation
coefficients between adjacent pixels within a cipher image (Section 3.1.1) as well as between
a plaintext image and its cipher (Section 3.1.2).

3.1.1. Correlation Coefficient of Adjacent Pixels

The vertical correlation coefficient of adjacent pixels can be calculated as follows:

CCv =
∑H−1

i=1 ∑W
j=1(C(i,j) − C)(C(i+1,j) − C)√

∑H−1
i=1 ∑W

j=1(C(i,j) − C)2 ∑H−1
i=1 ∑W

j=1(C(i+1,j) − C)2
, (6)

where H and W are an image’s height and width, respectively. C(i,j) and C(i+1,j) refer to
the pixel values of two adjacent pixels in the cipher image at positions (i, j) and (i + 1, j),
respectively. The mean pixel value of the cipher image is denoted by C. Furthermore, to
calculate the horizontal correlation coefficient, Equation (6) is adjusted such that the value
of the pixel at C(i,j+1) is used instead of C(i+1,j), and the value of the pixel at C(i+1,j+1) is
used to calculate the diagonal correlation coefficient.

3.1.2. Correlation Coefficient between Plaintext and Cipher Images

The correlation coefficient between a plaintext image and its cipher image can be
calculated as follows:

CCP,C =
∑H

i=1 ∑W
j=1(P(i,j) − P)(C(i,j) − C)√

∑H
i=1 ∑W

j=1(P(i,j) − P)2 ∑H
i=1 ∑W

j=1(C(i,j) − C)2
, (7)

where P(i,j) and C(i,j) are the values of the pixel at index i, j of the plaintext image and
the cipher image, respectively, and P and C represent the mean of the pixel values of the
plaintext image and the cipher image, respectively.
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3.2. Histogram Analysis

Histogram analysis is used to ensure the security and robustness of image encryption
algorithms by evaluating the uniformity of a cipher image’s histogram. The histogram
of an image is an important indicator that reflects the distribution of its pixel values. A
cipher image with a close-to-uniformly distributed histogram prevents attackers’ attempts
to extract any useful information. Researchers in image encryption use a set of metrics
to quantify histogram analysis, such as chi-square (χ2), maximum deviation, irregular
deviation, and deviation from uniform histogram. Each of the aforementioned metrics is
further discussed in the following subsections.

3.2.1. Chi-Square (χ2)

Chi-square χ2 is a statistical test that is used in image encryption to test the randomness
and uniformity of cipher images produced by an algorithm, by comparing the cipher
image’s histogram values with the expected distribution of a uniform histogram [50]. Chi-
square tests each pixel of the cipher image to determine whether the distribution of pixel
values is uniform or not. Chi-square (χ2) is mathematically represented as follows:

χ2 =
255

∑
i=0

( fi − E)2

E

E =
H × W

256
,

(8)

where f represents the histogram of the cipher image, fi is the cipher image’s histogram
value at index i, E represents the expected distribution value of a uniform histogram, and H
and W are the height and width of the cipher image, respectively. A uniformly distributed
histogram has a χ2 value of 0. When the χ2 value is low, it indicates that the histogram
distribution of the cipher image is close to a uniform distribution. Furthermore, when the
χ2 value is higher, then the histogram is non-uniform. Since the histogram of an image is
calculated for pixel values ranging from 0 to 255, we have 255 degrees of freedom, and if we
assume a significance level of 0.05, then the critical chi-square value is 293.24. If the cipher
image, χ2, is lower or equal to the critical chi-square value, we accept the result as close
to being uniform. From Equation (8), we can calculate the lower and upper limits of χ2.
To find the lower limit, we assume that the image has a uniform histogram, and then each
element of the histogram, f , will have a value of H×W

256 . By substituting f in Equation (8),
the lower limit can be calculated as follows:

χ2 = 256 ×
(H×W

256 − E)2

E

= 256 ×
(H×W

256 − H×W
256 )2

H×W
256

= 256 × (0)2

H×W
256

χ2 = 0,

(9)

From Equation (9), the lower limit for χ2 is 0. For the upper limit, we assume that the image
has one color, then the histogram, f , will have one element with value H × W and the rest
will be zeros. By substituting f in Equation (8), the upper limit can be calculated as follows:

χ2 = (255 × (0 − E)2

E ) +
(H × W − E)2

E

= 255 × E +
(H × W − E)2

E ,
(10)

Table 3 utilizes Equation (10) to compute the upper limit of χ2 for different-sized images.
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Table 3. Upper limit of Chi-square χ2 for different-sized images.

Size 128×128 256×256 512×512 1024×1024

Upper limit 4,177,920 16,711,680 66,846,720 267,386,880

3.2.2. Maximum Deviation

The maximum deviation (Dmax) is a metric used to evaluate the uniformity of the
cipher image’s histogram by measuring the deviation between the histograms of a plaintext
image and its cipher. The maximum deviation metric helps to determine the quality of
the image encryption algorithm by testing whether the produced cipher image differs
significantly from the original image. A higher value of the maximum deviation indicates a
better encryption quality since the algorithm produces a cipher image that is more deviated
from the plaintext image. The mathematical expression of maximum deviation can be given
as follows:

Dmax =
d0 + d255

2
+

254

∑
i=1

di

d = histogram(|P − C|),
(11)

where d is the histogram of the absolute values of the difference between the plaintext
image and its cipher, di represents the histogram d value at index i, and d0 and d255 are the
histogram values at index 0 and 255, respectively.

From Equation (11), we can calculate the upper limit of Dmax. If we assume that
both images are completely different from each other, d will have one element with value
H × W, and the rest will be zeros. By substituting d in Equation (11), the upper limit can be
calculated as follows:

Dmax =
(0 + H × W)

2
+ (254 × 0)

= (
H × W

2
),

(12)

The lower limit of Dmax is 0 for any size image. Table 4 utilizes Equation (12) to
compute the upper limit for different-sized images.

Table 4. Upper limit of maximum deviation for different-sized images.

Size 128×128 256×256 512×512 1024×1024

Upper limit 8192 32,768 262,144 524,288

3.2.3. Irregular Deviation

The irregular deviation (Dirregular) is another metric used in image encryption to
evaluate the quality of an algorithm by measuring the difference between the histograms
of a plaintext image and its cipher [51]. Unlike the maximum deviation metric, irregular
deviation also considers the difference between neighboring pixels. A cipher image with
a lower value of Dirregular indicates better encryption algorithm quality. The irregular
deviation can be mathematically expressed as follows:

Dirregular =
255

∑
i=0

[∣∣di − Davg
∣∣], (13)

where

Davg =
1

256

255

∑
i=0

di, (14)

where di represents the histogram value at index i (from Equation (11)), and Davg denotes
the average value of the pixels that are deviated at every deviation value.
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From Equation (13), the upper limits of Dirregular can be calculated. If we assume that
both images are completely different from each other, d will have one element with value
H × W, and the rest will be zeros. By substitution d in Equation (13), the upper limit can be
calculated as follows:

Dirregular =

∣∣∣∣H × W − (
H × W

256
)

∣∣∣∣+ (255 ×
∣∣∣∣0 − H × W

256

∣∣∣∣)
=

∣∣∣∣H × W − (
H × W

256
)

∣∣∣∣+ (
255 × H × W

256
),

(15)

The lower limit of Dirregular is 0 for any size image. Table 5 utilizes Equation (15) to
compute the upper limit for different-sized images.

Table 5. Upper limit of irregular deviation for different-sized images.

Size 128×128 256×256 512×512 1024×1024

Upper limit 32,640 130,560 522,240 2,088,960

3.2.4. Deviation from Uniform Histogram

The deviation from the uniform histogram (Duni f orm) is a metric used to measure
the deviation of a cipher image’s histogram from a uniform distribution. A cipher image
with a histogram distribution close to a uniform distribution indicates good quality of
the employed encryption algorithm [51]. When a cipher image produced by an image
encryption algorithm has a histogram distribution that is close to a uniform distribution, it
implies that each pixel value occurs with equal frequency. The deviation from the uniform
histogram metric can be mathematically expressed as follows:

Duni f orm =
∑255

i=0 |HCi − HUi |
H × W

, (16)

HUi =

{
H×W

256 if 0 ≤ i ≤ 255
0 if 0 > i > 255

where HCi refers to the histogram value of the cipher image at intensity i, and HUi repre-
sents the histogram value of the uniform distribution at intensity i. HUi values are only
considered when the pixel value is between 0 and 255, otherwise, HUi is set to 0. From
Equation (16), we can calculate the upper limit of Duni f orm. If we assume that an image
has extremely deviated from a uniform histogram, HC will have one element with value
H × W, and the rest will be zeros. By substitution HC in Equation (16), the upper limit can
be calculated as follows:

Duni f orm =

∣∣∣H × W − (H×W
256 )

∣∣∣+ (255 ×
∣∣∣0 − H×W

256

∣∣∣)
H × W

=

∣∣∣∣∣H × W
H × W

−
1

256 × H × W
H × W

∣∣∣∣∣+ 255×H×W
256

H × W

=

∣∣∣∣1 − 1
256

∣∣∣∣+ 255
256

Duni f orm = 1.9921875

(17)
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The lower limit of Duni f orm is 0 for any size image, and from Equation (17). It is clear that
the maximum possible Duni f orm value for any image, regardless of its size, is 1.9921875.

3.3. Entropy Analysis

Information entropy is a statistical test that estimates the uncertainty and randomness
in communication systems. It was first introduced by Claude Shannon in 1948 [52]. In
image encryption, entropy is used to measure the randomness of the distribution of pixels
in the cipher image. A high entropy value indicates a better obfuscation of the plaintext and
the absence of any discernible pattern. To evaluate the unpredictability and randomness
of an encryption algorithm, researchers rely on two types of entropy tests, namely, global
entropy and local entropy. Shannon entropy, also known as global entropy, calculates the
pixel information for the full image, while local entropy measures the mean entropy of
randomly selected non-overlapping blocks. Shannon entropy can be calculated as follows:

H(m) = −
2n−1

∑
i=0

p(mi) log2[p(mi)], (18)

where n represents the number of bits used to represent the symbol p(mi), and p(mi)
represents the probability of symbol mi. Entropy for an image can be calculated using
Equation (18), where p(mi) represents normalized histogram counts for each intensity
value in the image. Given that a pixel’s maximum possible intensity value in an 8-bit
representation is 256, and that the probability of a pixel value occurrence is 1

256 , the ideal
value of entropy for an image can be calculated using Equation (18), as follows:

Hideal = −
255

∑
i=0

1
256

× log2
1

256
= 8

The entropy of a cipher image generated by an encryption algorithm should be as close as
possible to the optimal entropy value of 8 to withstand brute force attacks.

The local entropy is measured by computing the mean Shannon entropy of randomly
selected non-overlapping blocks. Local entropy is considered more accurate, consistent,
and efficient than global Shannon entropy [53]. Local entropy can be calculated as follows:

HK,TB(S) =
K

∑
i=1

H(Si)

K
, (19)

where S is a set of non-overlapping blocks selected randomly, containing TB pixels, and K
represents the number of random blocks. H(Si) is the Shannon entropy (from Equation (18))
of the ith block.

3.4. Gray-Level Co-Occurrence Matrix (GLCM) Analysis

The GLCM is a statistical test used in image encryption to analyze the texture of an
image by considering the spatial relationship of pixels. It consists of a two-dimensional
matrix of joint probabilities between pairs of pixels with specific values. By calculating the
frequency of a pixel with gray-level value i occurring horizontally adjacent to a pixel with
gray-level value j, the GLCM is useful for feature extraction and texture analysis. From the
GLCM, statistical measures (namely homogeneity, contrast, and energy) can be extracted
to provide information about the image’s texture features. In the following, we further
discuss each of these measurements.

3.4.1. Homogeneity

In image encryption, homogeneity analysis is used to assess the uniformity of texture
in a cipher image. It measures the closeness of the elements in the GLCM distribution to
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the GLCM diagonal [54]. Homogeneity values are in the range of (0, 1), where a cipher
image with high homogeneity indicates that similar pixels are close to each other, which
may reveal information about the plaintext image. On the other hand, lower homogeneity
values indicate better encryption quality; a cipher image produced by an image encryp-
tion algorithm with low homogeneity has a more randomized pixel distribution. The
homogeneity formula is as follows:

Homogeneity = ∑
i,j

p(i, j)
1 + |i − j| , (20)

where i and j represent two gray-level values in the GLCM, and p(i, j) denotes the prob-
ability of i and j occurring horizontally adjacent to each other in the image, given by the
value of the element at position (i, j) in the normalized GLCM.

3.4.2. Contrast

Contrast analysis assesses the differences in pixel intensities between a pixel and its
neighboring pixels in a cipher image [54]. A high contrast value between neighboring pixels
indicates a strong encryption algorithm that is effective at hiding the plaintext image’s
features. Furthermore, a high degree of contrast between neighboring pixels indicates
greater randomness in the cipher image. The contrast can be calculated as follows:

Contrast = ∑
i,j

|i − j|2 p(i, j), (21)

3.4.3. Energy

Energy analysis is used as a metric to describe the texture of a cipher image. It is
calculated by summing the squared elements in the GLCM, and the resulting energy values
are in the range of (0, 1) [54]. Low-energy values in the produced cipher images indicate
that the algorithm has successfully randomized the pixels of the plaintext image. The
energy can be calculated from the following expression:

Energy = ∑
i,j

p(i, j)2, (22)

3.5. Encryption Quality

The quality of an image encryption algorithm is analyzed using various metrics, by
comparing the pixel values of plaintext images and their respective ciphers. The encryption
algorithm is considered to have good quality when there is a high change in pixel values
between plaintext images and their respective ciphers. To quantify the encryption quality,
image encryption researchers use a set of metrics, namely, MSE, MAE, and PSNR. Each of
these metrics is discussed further in the following.

3.5.1. Mean Square Error

The MSE is a metric used to calculate the average square difference between the pixel
values of a plaintext image and its cipher. In image encryption, it is used to evaluate the
quality of an image encryption algorithm [55]. A lower MSE value indicates a greater
similarity between the plaintext image and its cipher, whereas a higher MSE value means a
lower similarity between the plaintext image and its cipher; therefore, a higher MSE value
signifies higher-quality encryption. The MSE between a plaintext image and its cipher
image can be calculated as follows:

MSE =
1

H × W

H

∑
i=1

W

∑
j=1

[P(i, j)− C(i, j)]2, (23)
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where H and W represent the height and width of the images, respectively. P(i, j) and
C(i, j) denote the pixel values of the plaintext image and the cipher image at position (i, j),
respectively. From Equation (23), the minimum and maximum possible MSE values for an
image, regardless of its size, can be calculated. For the minimum value of MSE, if we assume
the two images to be identical, then P(i, j)−C(i, j) will be 0. Thus, the MSE minimum value
is 0. For the maximum value, we assume that the two images are completely different from
each other (one with 255-pixel values, and the other with 0-pixel values); the maximum
possible MSE can be calculated as follows:

MSE =
1

H × W

H

∑
i=1

W

∑
j=1

[255 − 0]2

=
1

H × W
× H × W × [255]2

=
H × W × [255]2

H × W

MSE = 65, 025

(24)

3.5.2. Mean Absolute Error

The MAE is another statistical metric used to evaluate the quality of an image encryp-
tion algorithm. It measures the average absolute difference between the pixel values of a
plaintext image and its cipher image [56]. A lower MAE value indicates a greater similarity
between the plaintext image and its cipher, whereas a higher MAE value indicates a lower
similarity between the plaintext image and its cipher; therefore, a higher MAE value means
higher-quality encryption. The MAE can be calculated as follows:

MAE =
1

H × W

H

∑
i=1

W

∑
j=1

|P(i, j)− C(i, j)|, (25)

From Equation (25), the minimum and maximum possible MAE values for an image,
regardless of its size, can be calculated. For the minimum value of MAE, if we assume the
two images to be identical, then P(i, j)− C(i, j) will be 0. Thus, the MAE minimum value
is 0. For the maximum value, we assume that the two images are completely different from
each other (one with 255-pixel values, and the other with 0-pixel values), the maximum
possible MAE can be calculated as follows:

MAE =
1

H × W

H

∑
i=1

W

∑
j=1

[255 − 0]

=
1

H × W
× H × W × [255]

=
H × W × [255]

H × W

MAE = 255

(26)



J. Cybersecur. Priv. 2024, 4 145

3.5.3. Peak Signal-to-Noise Ratio

In image encryption, the PSNR metric is used to measure the noise ratio between the
plaintext image and its cipher image [55]. A PSNR value of 0 indicates that the tested image
is equivalent to random noise, and a higher value means a higher quality image, which is
closer to the plaintext image. The lower the PSNR value in the cipher images produced by
an encryption algorithm, the better the quality of the encryption. PSNR can be calculated
as follows:

PSNR = 10 log10
MAXp

MSE
, (27)

where MSE is the mean square error value, which is calculated using Equation (23), and
MAXp is the maximum value that a pixel can have (which is typically 255 in 8-bit pixels).

3.6. Resistance Against Differential Attacks

Cryptanalysts use differential attacks to find the relationship between a plaintext image
and its cipher by making small alterations to the plaintext image and encrypting it with the
same key. An encryption algorithm should have excellent diffusion characteristics, where
modifying a single pixel in the plaintext image should generate a completely different cipher
image. An encryption algorithm’s ability to resist differential attacks can be evaluated by
analyzing the algorithm’s performance using the avalanche effect, NPCR, and UACI tests.
The details of each of these tests are further discussed in the following.

3.6.1. Avalanche Effect

In image encryption, the avalanche effect refers to the phenomenon that occurs where
a slight change to the key or the plaintext image results in an image encryption algorithm
producing a significantly different cipher image. An encryption algorithm is considered
safe against differential attacks when one pixel change in the plaintext image or key results
in a change of more than 50% of the pixels in the cipher image [57]. The avalanche effect
can be analyzed using the MSE metric by modifying Equation (23) to calculate the mean-
squared difference between the two cipher images, which are produced by encrypting a
plaintext image and the same plaintext image with only one pixel modified. The avalanche
effect MSE (MSEav) can be calculated as follows:

MSEav =
1

H × W

H

∑
i=1

W

∑
j=1

[C1(i, j)− C2(i, j)]2, (28)

where C1 and C2 are the two cipher images produced by encrypting two plaintext images,
where the two plaintext images differ in only one pixel, with the remaining pixels being
the same. C1(i, j) and C2(i, j) represent the pixel values at position (i, j) of C1 and C2,
respectively. The minimum value of MSEav is 0, and the maximum value is 65,025, the
same as the MSE minimum and maximum values, which are calculated in Section 3.5.1.

3.6.2. Number of Pixels Change Rate (NPCR)

The NPCR metric measures the percentage of the differences between two cipher
images that are produced by encrypting two plaintext images that differ in only one pixel,
with all other pixels being the same in the two plaintext images [58]. A higher NPCR value
indicates greater responsiveness from the algorithm to changes in the plaintext image or
key and, thus, better resistance to differential attacks. In other words, a good encryption
algorithm should be extremely sensitive to minor changes in the key or the plaintext image
to resist such attacks. Wu et al. [59] calculated that the ideal NPCR value is ≥99.6094%.
The NPCR value can be calculated as follows:

NPCR =
H

∑
i=1

W

∑
j=1

D(i, j)
H × W

× 100%, (29)
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where

D(i, j) =

{
0 if C1(i, j) = C2(i, j)
1 if C1(i, j) ̸= C2(i, j)

where D(i, j) is the sum of the number of different pixels between C1 and C2 at position
(i, j). D(i, j) has a value of 1 when the pixel values of C1 and C2 at position (i, j) are different;
otherwise, it has a value of zero.

3.6.3. Unified Average Changing Intensity (UACI)

The UACI is another metric that is used to assess an encryption algorithm’s ability to
resist differential attacks by measuring the average change intensity between two cipher
images that are produced by encrypting two plaintext images that are the same but differ in
only one pixel [58]. Similar to the NPCR, a higher UACI value indicates a better resistance to
differential attacks. The ideal value for UACI is ≥ 33.4635%, as calculated by Wu et al. [59].
The UACI value can be calculated as follows:

UACI =
1

H × W

[
∑H

i=1 ∑W
j=1 |C1(i, j)− C2(i, j)|

255

]
× 100%, (30)

3.7. Resistance to Noise and Data Loss

Digital images transmitted over communication networks are often affected by noise
and data loss, which can render cipher images undecryptable. Such distortions could also
be introduced by attackers aiming to corrupt cipher images. These attacks are known as
noise and occlusion attacks. To ensure the reliability of an image encryption algorithm, its
ability to withstand such attacks and decrypt the plaintext image from the altered cipher
image needs to be tested [60]. To evaluate an encryption algorithm’s resilience against
noise attacks, researchers introduce salt and pepper and Gaussian noise to the cipher image
with variable densities and try to decrypt the affected cipher images. For resistance, against
occlusion attacks, researchers evaluate the encryption algorithm’s ability to decrypt a cipher
image that had segments cropped out at varying degrees of severity. Furthermore, the
PSNR metric (Section 3.5.3) could be utilized to quantify the quality of the encryption
algorithms at decrypting a corrupted image by comparing the PSNR of the decrypted
corrupted image to the plaintext image [61]. A higher PSNR of the decrypted image when
compared to the original plaintext image indicates that the decrypted corrupted image is
closer to the original plaintext image.

3.8. Computation Complexity

Computation complexity is an important metric in evaluating encryption algorithms
as it determines the computational requirements to perform the encryption and decryption
operations. To evaluate an encryption algorithm’s computation complexity, researchers
assess the key generation complexity and the encryption-decryption process complexity.
Furthermore, in the evaluation of image encryption algorithms, runtime is an important con-
sideration (other than security) in adopting an image encryption algorithm for a particular
domain. For example, many edge devices have limited computing power [62]; thus, image
encryption algorithms with lower computational complexity are suitable for such edge
devices. Similarly, many applications are time-sensitive (e.g., surveillance applications [63])
and, thus, image encryption algorithms that can be executed in real time are more befitting
for such applications compared to highly compute-intensive encryption algorithms.

3.8.1. Key Generation Complexity

The complexity of an algorithm’s key generation plays a big role in the overall compu-
tation complexity of the algorithm. Some algorithms have simple key-generation processes,
such as algorithms using chaotic maps for key generation, while others may involve
complex mathematical computations, such as the RSA key generation, which involves com-
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putationally intensive operations involving finding two large prime numbers, computing
Euler’s totient function, and performing mathematical operations.

3.8.2. Encryption-Decryption Complexity

Image encryption algorithms should be fast and efficient enough to encrypt decryption
images quickly, especially in real-time applications. Nevertheless, the algorithms should
have enough complexity to resist all possible attacks. An image encryption algorithm’s
encrypt decryption complexity involves operations such as substitution–permutation net-
works, XOR operations, and modular operations.

3.9. Key Space and Key Sensitivity

The key space represents the set of all possible keys that an encryption algorithm can
use. To ensure a stronger level of security against brute force attacks, the key space of an
image encryption algorithm should be larger than 2100 [64].

Key sensitivity analysis assesses the image encryption algorithm’s sensitivity to small
changes to the key. A robust and secure algorithm should produce two completely different
cipher images when encrypted by two keys that are different by only one bit. Furthermore,
it should not be able to decrypt a cipher image and retrieve the plaintext image with a key
that has one bit altered [65].

To evaluate an encryption algorithm’s key sensitivity for encryption, researchers
encrypt a plaintext image with two keys (k1 and k2) that differ in only one bit and compare
the resulting cipher images. For the case of evaluating key sensitivity for decryption,
researchers attempt to decrypt a cipher image that is encrypted with key k1 using key k2,
which differs in only one bit. If the algorithm is sensitive to changes in the key, it should
not be able to decrypt the cipher image with the altered key.

3.10. NIST SP 800-22 Test Suite

The NIST SP 800-22 test suite consists of a set of statistical tests developed by the
National Institute of Standards and Technology (NIST) [1]. It is used by researchers to
evaluate the randomness characteristics and strength properties of a sequence to determine
if they are sufficiently random. The test suite consists of 15 statistical tests, each of which
generates a p-value in the range of (0, 1), where a p-value of 0 indicates that the sequence is
not random at all, and a p-value of 1 indicates that the sequence is completely random. In
image encryption, the test suite is used to evaluate the randomness of the produced cipher
image. For conducting these NIST tests, the image must be first transformed into a bit
stream, after which the test suite can process the data and produce results for each test. If
the p-value of a test is greater than a significance level of α = 0.01, then the null hypothesis
is accepted; that is, the sequence is considered random and passes the test. If the computed
p-value is less than 0.01, then the null hypothesis is rejected; that is, the sequence appears
to be non-random.

4. Discussion

In this section, the advantages, disadvantages, and applications of each of the afore-
mentioned image encryption techniques are explored. Each image encryption technique
provides a level of security and privacy, yet each of the techniques has some pros and cons.
Table 6 summarizes the strengths and weaknesses of different image encryption algorithms.
In the following, we elaborate the strengths and weaknesses of different image encryption
algorithms.

Traditional encryption algorithms are still the most commonly recommended and
used algorithms to encrypt images over networks. Their security was assessed and proven
through standardized testing and cryptanalysis. Their downside is that they typically
require extensive computation time and significant processing power. Furthermore, tradi-
tional encryption algorithms fail when attempting to decrypt cipher images that have some
corrupted pixels since the decrypted data must be the exact plaintext data. Traditional
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encryption produces faulty decrypted images when decrypting a cipher image that has
been affected by noise or has lost pixels, whether due to attacks or transmission errors. In
multimedia applications, the content of an image is important, and minor distortions in the
original image are acceptable [66].

Chaotic systems-based image encryption algorithms provide excellent security due to
their high sensitivity to the initial parameters, fast computation speed, and minimal com-
plexity. A potential disadvantage of chaotic systems-based image encryption algorithms
is the limited range of chaotic behavior for some chaotic maps such as logistic and tent
maps. Moreover, certain chaotic maps, such as the Baker map, have been known to be
vulnerable to chosen-plaintext attacks. This vulnerability could be mitigated by adding
other layers of security, such as utilizing an IV or nonce or incorporating multiple chaotic
maps. Furthermore, some chaotic maps are known to exhibit periodic behavior, meaning
that after a certain number of permutation iterations, the image’s pixels will return to their
original position.

DNA-based image encryption is an innovative concept with high-security levels;
however, it is still largely experimental and primarily explored in academic research. It has
not yet found widespread practical application in data encryption scenarios. Furthermore,
it requires specialized laboratory equipment to handle DNA synthesis and sequencing.
This level of complexity hinders the practical application of DNA-based image encryption.

Neural network-based image encryption algorithms have primarily emerged due to
advancements in artificial neural networks and deep learning. Once effectively trained,
they can provide a quick means of image encryption. However, the level of security they
offer remains a relatively unexplored domain. Further research and analysis on the security
of neural network-based image encryption algorithms are imperative to comprehensively
understand and quantify the robustness of these algorithms against potential threats
and attacks.

Frequency domain-based image encryption techniques utilize confusion and diffusion
operations within the frequency domain of an image. These techniques are computationally
more expensive compared to chaotic system-based image encryption algorithms, and
conceptually seem to provide a high-security level. Nevertheless, the security analysis of
frequency domain-based image encryption methods remains unexplored in the literature.

Compressive sensing-based image encryption algorithms can reduce the size of image
data and add an improved level of security to image transmission. These algorithms have
the disadvantage of high computational overhead resulting from combining compressive
sensing and encryption operations. Furthermore, the effectiveness of compressive sensing
depends on choosing the measurement matrix, which can affect the overall performance
and efficiency of the algorithm.

Meaningful image encryption algorithms have the advantage of keeping the embedded
cipher image secure, even if it was extracted via steganalysis tools. Since the extracted
data are already encrypted and are noise-like images, this adds another layer of security by
preventing attackers from directly obtaining the secret image through steganalysis alone.
However, these algorithms come with the drawback of high computational requirements
due to the implementation of two layers of security.

The applications of image encryption are versatile, making it challenging to assign a
specific technique to a particular use case. Image encryption techniques are relevant wher-
ever image data protection and security are required. They are instrumental in personal
communication, healthcare, finance, surveillance, law enforcement, and military applica-
tions. Nevertheless, certain image encryption techniques may excel for specific domains.
Chaotic-based encryption algorithms are suitable for resource-constrained platforms, like
the Internet of Things (IoT) and edge devices [62,67], due to their fast computational speed
and minimal complexity. DNA-based algorithms can be utilized in encrypting and securely
archiving data for extended periods, due to their minimal storage requirements. They also
hold potential in espionage applications, as DNA sequences can be discreetly embedded
in various forms, that is, physical objects, and require specialized equipment for retrieval.
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Compressive sensing-based algorithms can be particularly useful in scenarios where there
are constraints on data transmission bandwidth. For example, compressive sensing is
well-suited for applications involving embedded cameras and drones, or any devices with
limited data transfer capacity. Meaningful image encryption adds an additional layer of
security through steganography, making it particularly suitable for covert communication.

Even though image encryption researchers utilize a comprehensive set of security,
quality, and efficiency metrics to evaluate image encryption algorithms, there is a pressing
need to establish rigorous security analysis and standardized evaluation metrics. Standard-
izing the evaluation metrics will not only better assess the resilience of image encryption
methods, but will also guide researchers in testing their proposed algorithms. Researchers
also need to consider the robustness of the image encryption algorithms against novel
attacks, such as adversarial machine learning and quantum computing.

Table 6. Strengths and weaknesses of different image encryption approaches.

Approach Strengths Weaknesses

Traditional
Well-established; High computational requirement;
Secure; Slow encryption speed;
Standardized and tested Faulty decryption of cipher images with corrupted pixels

Chaotic systems Fast computation; Small range of chaotic behaviorMinimal complexity

DNA High security; Experimental and only explored in academic research
Fewer storage requirements Require specialized lab equipment

Neural networks Fast encryption Security level not explored

Frequency domain Intuitively secure Computationally intensive;
Security analysis has not been explored

Compressive sensing High security; High computational overheadSmall size of cipher image

Meaningful encryption High security due to combining High computational overheadencryption and steganography

5. Conclusions

The aim of this paper is to provide researchers and practitioners who are new to the
field of image encryption with an introduction to image encryption and help enable them to
grasp the current state of image encryption techniques and evaluation metrics. In this paper,
a comprehensive review of several cutting-edge image encryption algorithms is conducted,
focusing on their respective strengths and weaknesses. We categorized image encryption
algorithms into seven distinct classifications based on the techniques they employ, that
is, chaotic systems, DNA encoding, neural networks, compressive sensing, frequency
domain, and meaningful sensing. Furthermore, this paper explores the security, quality,
and efficiency metrics used in the literature to evaluate image encryption algorithms, such
as correlation coefficient, histogram analysis, entropy, gray-level co-occurrence matrix
(GLCM) analysis, mean square error (MSE), peak signal-to-noise ratio (PSNR), unified
average change intensity (UACI), number of pixels change rate (NPCR), NIST SP 800-22 test
suite, and more.

Although this paper elaborates on many of the prominent image encryption algorithms
and provides a good review of the current state-of-the-art image encryption techniques
and evaluation metrics, this paper is not an exhaustive list of all the image encryption
algorithms. One of the future research directions will be to explore other image encryption
algorithms not discussed in this paper, such as optical image encryption and quantum
image encryption. Another future research direction will be to conduct security and com-
plexity analyses of the prominent image encryption algorithms. Another future research
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direction will be to develop newer evaluation metrics for evaluating the security of different
image encryption algorithms.
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