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Abstract: The swift advancement of quantum computing devices holds the potential to create
robust machines that can tackle an extensive array of issues beyond the scope of conventional
computers. Consequently, quantum computing machines create new risks at a velocity and scale
never seen before, especially with regard to encryption. Lattice-based cryptography is regarded as
post-quantum cryptography’s future and a competitor to a quantum computer attack. Thus, there
are several advantages to lattice-based cryptographic protocols, including security, effectiveness,
reduced energy usage and speed. In this work, we study the learning with errors (LWE) problem and
the cryptosystems that are based on the LWE problem and, in addition, we present a new efficient
variant of LWE cryptographic scheme.
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1. Introduction

The evolution of quantum computing involves a convergence of advancements in
quantum theory, hardware engineering, algorithm development and interdisciplinary
research. The field continues to progress rapidly, and while large-scale, fault-tolerant quan-
tum devices suitable for broad applications may be some years away, the steady evolution
suggests promising future potential for quantum technologies in various domains, like
cryptography, economy, drug development, geology and others. The institutionalization
by law of the United States’ government in the 2018 National Quantum Initiative Act, “to
accelerate quantum research and development for the economic and national security of
the United States” [1], is indicative of this potential.

Quantum computing uses quantum physics properties to process information in
ways that classical computers cannot [2]. The foundations of quantum devices lie in the
principles of quantum mechanics, such as qubits—the equivalent of the bit in a classical
computer—superposition and entanglement. With the development of quantum algo-
rithms, quantum machines process vast amounts of information simultaneously, providing
potential speedups for highly interconnected and parallel computations [3]. Quantum
computers have immense potential to revolutionize various fields, like cryptography, and
optimize complex systems more efficiently than classical algorithms, offering speedups for
certain types of tasks.

Since antiquity, cryptography has played a crucial role in everyday life, ensuring
the confidentiality, integrity and authenticity of information exchanged over communica-
tion channels or devices [4]. Cryptographic schemes encompass various methodologies,
algorithms and protocols to protect information and secure data. A principal issue in
cryptography is the secure process of sharing cryptographic keys between communicat-
ing parties to enable encrypted data. Key exchange ensures that both parties establish a
shared secret key without exposing it to potential eavesdroppers or adversaries, and great
progress has been made in this field with the evolution of quantum cryptography. Since its
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initial presentation in 1982 [5], the term “quantum cryptography” has drawn the attention,
investigation and financial support of academics, governments and businesses. In 1984,
C. Bennett and G. Brassard introduced the first quantum key distribution protocol [6],
a groundbreaking concept that paved the way for the appearance and development of
other protocols [7,8]. Quantum cryptography, nevertheless, continues to be a pressing
matter under investigation, with promising solutions in the fields of quantum key distri-
bution, quantum encryption [9,10] and quantum digital signatures [11]. The above recent
advances in the quantum key distribution process and quantum encryption procedure
have improved the secret key rate and the signature rate and offer security advantages over
typical schemes.

However, with the introduction of a sufficiently large quantum computer, there is no
longer any security in present encryption systems. Shor’s algorithm discovery demon-
strated that a quantum computer, if realized at scale, could solve certain problems signifi-
cantly faster than classical computers, like the integer factorization problem and the discrete
logarithm problem [12]. The potential impact of Shor’s algorithm on cryptography is major,
as it poses a threat to the security of widely used cryptographic schemes, such as RSA and
elliptic curve cryptography (ECC). So, this impact has spurred interest in post-quantum
cryptography, which aims to develop encryption algorithms and cryptographic protocols
that are resistant to quantum attacks.

As the development of quantum computing progresses, post-quantum cryptography
aims to develop encryption algorithms and cryptographic protocols that remain secure
even in the presence of quantum computers. Some techniques and approaches that are
used involve code-based cryptography, multivariate polynomial cryptography, hash-based
cryptography and lattice-based cryptography [13].

Early discussions of lattices can be found in the 18th century in the works of mathe-
maticians such as C.F. Gauss and J.L. Lagrange, and in the late 19th and early 20th centuries,
H. Minkowski played a pivotal role in advancing the study of lattices and their geometrical
properties [14]. The field of lattice theory, as a branch of abstract algebra and order theory,
gained momentum in the mid-20th century with the contributions of G. Birkoff [15] and G.C.
Rota [16]. It was not until the early 21st century that lattice-based cryptography emerged as
a post-quantum cryptographic solution. The hardness of certain lattice problems, such as
the shortest vector problem (SVP), the closest vector problem (CVP) and the learning with
errors (LWE) problem, formed the basis for developing cryptographic schemes resistant to
quantum attacks.

The learning with errors (LWE) cryptosystem is critically important for post-quantum
cryptography and is regarded as one of the leading candidates for creating cryptographic
schemes resilient to attacks from both classical and quantum computers. It is based on the
namesake LWE problem, which is a fundamental problem in lattice-based cryptography.
The LWE cryptographic scheme is a cornerstone of many cryptographic protocols whose
security is founded on the belief that solving LWE on a classical or quantum computer
is computationally difficult, even for quantum computers, thus providing resistance to
attacks from powerful quantum algorithms, like Shor’s algorithm. Various cryptographic
primitives crucial for post-quantum security, both encryption and digital signature schemes,
exploit the complexity of solving LWE to offer security guarantees in a post-quantum setting.
These schemes are characterized by their efficiency and practicality and undergo rigorous
analysis and scrutiny to ensure their viability and security.

Ongoing research focuses on refining LWE-based cryptographic constructions, opti-
mizing their efficiency and exploring new variants to enhance security further. This active
research aims to strengthen and improve the practicality of LWE-based schemes. In this
sense, we introduce a variant of the learning with errors cryptographic protocol without
modification of its original structure by adding an extra step in the procedure of key gener-
ation in the algorithm. In this manuscript, we present a variation of the LWE cryptosystem
by introducing a transformation to the protocol’s key generation procedure. This extra
phase preserves the security and efficiency of the protocol without increasing its complexity
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because the operations added to it are simply matrix additions and multiplications and
thus do not interact with the remaining parts of the LWE algorithm’s structure. After
selecting a specific transformation mapping f , we provide discrete implementations in
small dimensions and propose specific cases of our variation.

The rest of the paper is organized as follows. In Section 2, we denote the main
definitions and the essential mathematical background, while in Section 3, the basic lattice
theory and the computational problems in lattices are presented. In Section 4, we introduce
the most widely known and analyzed lattice-based cryptosystems, and in Section 5, we
present the learning with errors problem and the original LWE cryptosystem, and we
propose a new efficient variant of it. Finally, Section 6 concludes this work, and some future
work directions are given.

2. Preliminaries

Firstly, some standard notations are included, and therefore some basic definitions
are adduced.

For a positive integer q, let Zq = Z/qZ denote the finite ring of integers modulo q and
Zn

q denote the vector space of dimension n over Zq.

Definition 1. The n-dimensional cube of side length ρn is defined by

Bn = {xn ∈ Rn|∀i ∈ {1, . . . n} : −ρn

2
≤ xi ≤

ρn

2
}

Definition 2. The n-dimensional ball of radius n−c is defined by

Sn = {x ∈ Rn| ∥x∥ ≤ n−c}

for any positive integer c.

Definition 3. For any positive integer n and real positive number s, which is taken to be s = 1
when omitted, the Gaussian function ρs : Rn → R+ with width s is defined as

ρs(x) := exp(−π∥x∥2/s2) = ρ(x/s).

Definition 4. The Gaussian distribution Ds with parameter s over Rn is defined as

f (x) := ρs(x)/
∫
Rn

ρs(z) dz = ρs(x)/sn.

Definition 5. For any countable set A and positive parameter s, the discrete Gaussian probability
distribution DA,s is defined as

DA,s(x) :=
ρs(x)
ρs(A)

, ∀x ∈ A.

Definition 6. For a lattice coset c + L ⊂ Rn and positive parameter s, the discrete Gaussian
probability distribution Dc+L,s is defined as the Gaussian distribution restricted to the coset

Dc+L,s(x) ∝

{
ρs(x) i f x ∈ c + L
0 otherwise

Definition 7. For α ∈ R+, the distribution Ψα is the distribution on T obtained by sampling from
a normal variable with mean 0 and standard deriviation α√

2π
and reducing the result modulo 1,

∀r ∈ [0, 1), Ψα(r) :=
∞

∑
k=−∞

1
α
· exp

(
−π

(
r− k

α

)2
)

.
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3. Lattices
3.1. Basic Definitions

Although lattices have been studied for centuries, mostly because of their associations
with quadratic forms and algebraic number theory, interest in their algorithmic aspect
began in the 1980’s and since then has become a well-thought-out and crucial tool in the
science of cryptology.

An n-dimensional lattice L can be viewed as an additive, discrete subgroup of Rn

possessing a periodic structure. There are certain lattices with particular significance, like
the integer lattice, which is a subgroup of Zn, or the scaled lattice aL for a real number a
and a lattice L. Each lattice is generated and described by a set of linearly independent
vectors, its basis.

Definition 8. A set of vectors {b1, b2, . . . , bm} ∈ Rn is linearly independent if the equation

λ1b1 + λ2b2 + · · ·+ λbm = 0, where λi ∈ R

accepts only the trivial solution λ1 = λ2 = · · · = λm = 0.

Definition 9. Given n linearly independent vectors b1, b2, . . . , bm ∈ Rn, the lattice generated by
them is defined as the set

L(b1, b2, . . . , bm) = {∑
i

xibi : xi ∈ Z, 1 ≤ i ≤ n}

The set of the vectors {b1, b2, . . . , bm} is called a basis of the lattice L.
Let B denote the n×m matrix with columns b1, b2, . . . , bm, then a lattice can be writ-

ten as
L(B) = L(b1, b2, . . . , bm) = {Bx|x ∈ Zn}

where Bx is the usual matrix-vector multiplication.

Definition 10. The same number, dimL, of elements of all the bases of a lattice L is called the rank
of the lattice since it matches the dimension of the vector subspace spanned by L.

We call m the rank of the lattice and n the dimension. If n = m, the lattice L is called a
full-rank lattice.

A lattice L can be generated by different bases; for example, Z2 has as its basis the
vectors b1 = (1, 0)T , b2 = (0, 1)T but also the vectors b1 = (1, 1)T , b2 = (2, 1)T . A lattice
generated by two different bases is demonstrated in Figure 1.

Figure 1. Different bases of a lattice.

This is generalized with the help of the unimodular matrix.



Signals 2024, 5 220

Definition 11. A matrix U ∈ Zn×n is called unimodular if det U = ±1.

Theorem 1. For a basis B of a lattice L and any unimodular matrix U ∈ Zn×n, B ·U is also a
basis of L(B) due to the fact that U ·Zn = Zn.

Besides that fact, n independent linear vectors are not necessarily a basis of Rn or Zn;
for example, (2, 0)T and (1, 1)T are not a basis of Z2.

Definition 12. Let L be a lattice with dimension n and B = {b1, b2, . . . , bn} a basis of the lattice.
We define the fundamental parallelepiped of L to be the set

P(B) = {Bx|x ∈ Rn, ∀i : 0 ≤ xi < 1}.

Definition 13. Let L = L(B) be a lattice of rank n and B a basis of L. The determinant of L
denoted by det(L) is the n-dimensional volume of P(B).

The determinant can be written as

det(L(B)) = vol(P) and also det(L) =
√

det(BT B).

Definition 14. For any lattice L = L(B), we define the minimum distance of L as the smallest
distance between any two lattice points:

λ1(L) = inf{∥x− y∥ : x, y ∈ L, x ̸= y}.

Clearly, the minimum distance can equivalently be denoted as the length of the shortest
nonzero lattice vector:

λ1(L) = min{∥v∥ : v ∈ L \ {0}}.

where || · || denotes the Euclidean norm. Generalizing, the ith successive minimum λi(L)
can be defined as the smallest r such that the lattice L has i linear independent vectors
of norm at most r. The minimum length of a set of independent vectors of a lattice L is
denoted as λn(L), where the length of a set is defined as the length of the longest vector in
the set.

Definition 15. Let V be an arbitrary vector space over a lattice L. An inner product on V is a
function ⟨, ⟩ : V ×V → L, which satisfies

1. ⟨x, x⟩ ≥ 0 ∀x ∈ V and ⟨x, x⟩ = 0 iff x = 0
2. ⟨x + y, z⟩ = ⟨x, z⟩ ∨ ⟨y, z⟩ ∀x, y, z ∈ V
3. ⟨ax, y⟩ = a⟨x, y⟩ ∀x, y ∈ V and a ∈ L
4. ⟨x, y⟩ = ⟨y, x⟩, ∀x, y ∈ V.

Definition 16. Given a lattice L ⊂ Rn, we define the dual of L as the set

L∗ = {u : ⟨u,L⟩ ⊆ Z}.

It is obvious that the dual of a lattice is the set of points whose inner products with the
vectors in the lattice L are integer numbers. Furthermore, the dual of a lattice, L∗, is also
a lattice.

3.2. Computational Lattice Problems

The structure of lattices makes them preferable in cryptography, and some lattices’
problems are believed to be effortless while others are considered intractable. For example,
given a set of vector {u1, u2, . . . , un} ∈ Rn, which generates a lattice L, it is straightforward
with an algorithm to compute a basis {b1, b2, . . . , bn} ∈ Rn of L.
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Another undemanding problem is assessing if a given vector u belongs to the lattice L.
On the other hand, there are problems in lattice theory, that are believed to be hard.

3.2.1. Shortest Vector Problem (SVP)

A computationally challenging lattice problem that has been widely researched over
the years is the shortest vector problem (SVP). Renowned mathematicians, like C. F. Gauss,
studied lattices and developed algorithms for locating the shortest nonzero vector in two-
dimensional lattices. Given a lattice L, the problem of finding the shortest vector in the
lattice is a crucial question in lattice theory and is called the shortest vector problem.

Therefore, the requested issue can be considered a search problem. The SVP is defined
as follows.

Definition 17. (Shortest Vector Problem). Given a basis B = {b1, b2, . . . , bn} of a lattice L(B),
find the nonzero shortest vector v, i.e., find v ∈ L for which ∥v∥ = λ1(L).

Therefore, we search for the nonzero vector v with the minimum norm, i.e., the vector
with the minimum distance from the origin, as is shown in Figure 2. Calculating the length
of the shortest nonzero vector in the lattice L without necessarily locating the vector, is a
variation of the shortest vector problem. The following theorem is considered one of the
most important in lattice theory.

Figure 2. The shortest vector problem.

Theorem 2. Minkowski’s first theorem. The shortest nonzero vector in any n-dimensional lattice
L has a length, at most, of γndet(L)1/n, where γn is an absolute constant (approximately equals to√

n) that only depends only on the dimension n and det(L) is the determinant of the lattice.

Moreover, the same problem can be examined from another perspective, as a decision
problem: given a fixed norm, determine if there is a vector with a length less than or equal
to this norm. The decision version of the shortest vector problem is denoted as GAPSVP.

For this instance of SVP, we denote γ = γ(n) ≥ 1 as an approximate factor, and we
want to determine if there is a vector whose norm is less than a certain norm multiplied by
γ(n). This version of the problem can be visualized in Figure 3.

Definition 18. (GAPSVPγ). Let L be an n-dimensional lattice and d a positive number; an instance
of GAPSVPγ is given. In YES instances, λ1(L) ≤ d, whereas in NO instances, λ1(L) > γ(n) · d.

The shortest vector problem is regarded as a challenging mathematical issue, and its
hardness is a continuous subject of study. In 1996, M. Ajtai proved that the SVP is NP-hard
for a random class of lattices [17], and two years later, D. Micciancio proved that GAPSVPγ

is NP-hard for an approximation factor inferior to
√

2, using the Euclidean norm [18]. The
relation between the approximation factor and the hardness of the decisional problem has
been studied and improved upon in recent years [19].
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Due to that fact, the SVP serves as a building block for cryptographic techniques that
can be proven to be safe, such as lattice-based encryption.

Figure 3. The GAPSVPγ.

3.2.2. Closest Vector Problem (CVP)

Another computational lattice problem that is important for cryptography and is
closely related to the shortest vector problem is the closest vector problem (CVP). The CVP
asks to find the lattice point of a lattice closest to a given target point.

Let L be a lattice and a fixed point t ∈ Rn, the distance is defined as follows:

d(t,L) : minx∈L∥x− t∥.

Definition 19. (Closest Vector Problem). Given a basis B = {b1, b2, . . . , bn} of a lattice L(B) and
a target vector t, not necessarily in the lattice, find the lattice point v ∈ L(B) closest to t.

Therefore, the requested nonzero vector v ∈ L is the one for which ∥t− v∥ is minimal,
i.e., ∥v∥ = d(t,L), as presented in Figure 4.

Figure 4. The closest vector problem.

Another useful variation of the CVP calculates the target’s distance from the lattice
without determining the lattice’s closest vector, as many applications just require the
determination of a lattice vector that is reasonably close to the target, not necessarily the
closest one.

For the approximate factor γ = γ(n) ≥ 1, the γ-approximate closest vector problem
(CVPγ) is defined as follows.
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Definition 20. (CVPγ). Given a basis B = {b1, b2, . . . , bn} of a lattice L(B) ⊂ Rn and a point
t ∈ Rn, find a v ∈ L such that ∥t− v∥ ≤ γ(n) · dist(t,L).

Likewise, the CVPγ asks to find a vector of the lattice coset t + L having norm at most
γ(n) · λ(t + L), where

λ(t + L) := min
x∈t+L

∥x∥ = dist(t,L).

In 1986, L. Babai presented the first approximate polynomial time algorithm to solve
the closest vector problem [20] and, in addition, other algorithms have been proposed. One
of them is the embedding technique, thanks to Kannan [21] and the Micciancio–Voulgaris
algorithm, that solves the closest vector problem in 2O(n) space and time [22].

The closest vector problem is assumed to be roughly NP-hard to solve within any
constant factor [23]. In addition to being an open topic in lattice theory, the task of devel-
oping a suitable CVP approximation method with approximation factors that grow as a
polynomial in the lattice’s dimension finds many applications in computer science. For
all these facts, numerous lattice cryptography systems, in which the decryption process
equates to a CVP computation, are based on the CVP.

A similar problem to the approximate closest vector problem CVPγ is the bounded-
distance decoding problem BDDγ.

Definition 21. (BDDγ). Given a basis B = {b1, b2, . . . , bn} of an n-dimensional lattice L(B) and
a target point t ∈ Rn, for which stands dist(t,L) < d = λ1(L)/(2γ(n)), find the unique vector
v of the lattice L such that ∥t− v∥ < d.

This problem is a principal basis in modern cryptosystems, and an average-case of
BBD has been employed in innumerable cryptographic schemes, including those that share
a lattice among multiple users. The bounded distance decoding problem is proven to be
NP-hard, and in 2020, H. Bennett and C. Peikert proved its hardness on lattices in lp norms
under randomized reductions [24].

3.2.3. Shortest Independent Vector Problem (SIVP)

An additional significant computational problem in lattices that has great significance
in cryptography is the shortest independent vector problem (SIVP). The main question in
this problem is how to minimize the length of the longest vector of the basis. Viewing it
from a different angle, the basic task is to find a new basis that generates the same lattice
and has the ability to minimize the length of the longest vector. This problem can be
visualized in Figure 5.

Figure 5. Shortest independent vector problem (SIVP).
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Definition 22. Shortest independent vector problem (SIVP). Given a basis B = {b1, b2, . . . , bn}
of a lattice L, find n linearly independent vectors {v1, v2, . . . , vn} that belong to the lattice such
that ∥vi∥ ≤ λn for 1 ≤ i ≤ n.

The approximate shortest independent vector problem (SIVPγ) is presented below.

Definition 23. (SIVPγ). Given a basis B = {b1, b2, . . . , bn} of a full-rank lattice L, output a set
V = {vi} ⊂ L of n linearly independent lattice vectors, such that ∥vi∥ ≤ γ(n) · λ(n)(L) for all i.

This problem has been studied and proven to be NP-hard by a reduction from the
closest vector problem to the shortest independent vector problem [25].

3.3. Computational Lattice Problems and Complexity

These lattice problems have all been extensively researched and they are of great
importance as they are believed to be difficult aside from having very large approximate
factors. A critical issue is finding an interesting, practical and useful basis of a lattice that,
from a mathematical perspective, satisfies sufficiently strong features. In 1982, L. Lovasz, A.
Lenstra and H. Lenstra proposed a polynomial time algorithm for basis reduction, LLL [26],
which approximates, in small dimensions, the solution of the SVP. The LLL algorithm
resolves lattice problems within exponential approximation factors γ(n).

Various efforts have tried to improve the LLL algorithm; therefore, there are some
variants of it in the literature [27]. Another famous lattice reduction algorithm is the
blockwise Korkin–Zolotarev (BKZ) algorithm proposed by C.P. Schnorr and M. Euchner in
1991 [28]. The BKZ algorithm is widely used, frequently found in software libraries and
utilized in the majority of lattice record computations as well as cryptanalysis.

The famous lattice problems, SVP, CVP and SIVP, cannot be solved in polynomial
time, and the well-known algorithms that use polynomial factors poly(n), or even better,
approximate factors, need superexponential 2Θ(n log n) time or exponential 2Θ(n) space and
time. An important fact is the existence of time–approximation tradeoffs that interpolate
between these classes of outcomes to obtain γ = 2k approximation factors in 2Θ̃(n/k) time,
which symbolizes the most advanced quantum algorithms.

Moreover, a cryptosystem whose security depends on the fact that no polynomial
time algorithm can solve a given problem may become insecure if, for instance, a quasi-
polynomial time solution for that problem is able to run quickly enough. So, in terms of
complexity, various computational lattice problems are considered to be NP-hard and the
cryptographic protocols that are based in lattice theory use polynomial approximation
factors γ(n) ≥ n.

3.4. Quantum Computers and Lattices

Lattice problems are thought to be difficult, and there are outstanding questions in
this branch of study. Indicative of this fact is the existence and operation of the web page
https://www.latticechallenge.org/ (accessed on 13 March 2008) , which presents sample
instances for evaluating algorithms that resolve the shortest vector problem. So, lattices
provide one of the most well-known methods for performing post-quantum cryptography,
as there are no known algorithms for certain computational lattice problems, and many
attempts to devise them have failed.

Conversely, lattices have provided us with means of resolving basic issues in quantum
computing and cryptography, such as producing a verifiable stream of truly random coins,
creating classical protocols that verify that a quantum computer is operating as intended,
and creating a quantum money system. In 1994, P. Shor proposed a polynomial time
quantum algorithm for solving the integer factorization and discrete logarithm problems.
Current quantum computer technology does not yet allow these problems to be solved
with large integers [29]. The quantum routine adopted in Shor’s algorithm, which uses
periodicity, does not seem to be suitable for lattice problems. Thus, it leads to the below

https://www.latticechallenge.org/
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conjecture that justifies the significance of lattice-based cryptographic schemes for post-
quantum cryptography [30].

Conjecture 1. There is no polynomial time quantum algorithm that approximates lattice problems
within polynomial factors.

The development of quantum algorithms has no impact on our comprehension of
lattice difficulties, but there are a few highly interesting connections between quantum
algorithms and lattice problems, even though genuine quantum algorithms for lattice
problems are unknown. The first instance of this purpose was made by O. Regev in
2004 [31], when Regev showed the connection between lattice problems and quantum
computing. In this work, a solution to the unique shortest vector problem was proposed
based on the assumption of the existence of an algorithm that solves the hidden subgroup
problem in the set-sampling bipartite group. Moreover, the following theorem of Regev
was proven, and therefore, a quantum reduction algorithm from Θ(n2.5)-unique-SVP to
the average case subset sum problem was obtained.

Theorem 3. If there is a solution to the dihedral coset problem with failure parameter f , then there
exists a quantum algorithm that solves the Θ(n

1
2+2 f )-unique-SVP.

However, quantum algorithms can be helpful to solve certain problems in lattice
theory. Suppose there exists an oracle that, given an input of a lattice L and a target point
t, which is close to the lattice, outputs the closest lattice point to t, and if the point t is far
from the lattice, the output oracle is unspecified. While in a typical model, this appears to
be useless, in a quantum environment, it is different.

Moreover, in recent years, there have been developments in the theory of lattice field
applications of quantum computing. Quantum computing presents the possibility of
simulating lattice field theories in parameter regimes, such as the sign-problem-plagued
regimes of finite baryon density, topological terms and out-of-equilibrium dynamics, which
are essentially inaccessible using the traditional Monte Carlo approach [32]. However,
quantum computing can be advantageous even in situations where classical and quantum
computations are competitive, such as specific parameter regimes of lattice field theory or,
more broadly, reduced energy consumption. More importantly, a modest quantum step
translates into a huge classical leap whenever one tackles an exponentially challenging
classical problem. For example, computations of (3+1)-dimensional lattice gauge theories,
including Lattice QCD, require many incremental steps to improve both quantum hardware
and quantum algorithms in order to simulate out-of-equilibrium dynamics, where the errors
of the best-known classical algorithms grow exponentially in time [32].

In 2023, thirty years after P. Shor, O. Regev proposed a faster algorithm for factorization
in a completely new way [33]. Regev’s algorithm decreases the quantity of gates, or logical
processes, required to factor extremely large numbers. In theory, this may allow a larger
machine to decode the encryption keys more quickly or a smaller quantum computer to
discover the hidden keys. This is the first algorithm to enhance the correlation between
the number of quantum operations needed to factor a given number and its magnitude.
Internet encryption may have progressed to a point where quantum computing is ready to
use Regev’s or Shor’s approach to find prime factors. Security chiefs and federal agencies
are already switching to substitutes, such as lattice cryptography, which is impervious to
quantum hacking.

4. Lattice-Based Cryptography

Although lattices have been studied for centuries, lattice-based cryptographic pro-
tocols are considered to be one of the most modern and futuristic tools in the science of
cryptology. One of the main arguments for this fact is that lattice-based protocols are con-
sidered to be resistant algorithms under quantum attacks and have immediately become a
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choice for post-quantum cryptography, as we discussed above. However, there are several
reasons why lattice-based cryptography is widely studied and preferred over other forms
of cryptography.

An additional factor supporting the preference for lattice-based cryptography is the
main structure of a lattice-based protocol. The majority of these algorithms are efficient
and parallelizable. Moreover, they are characterized by simplicity, and their operations are
uncomplicated as they are based on linear and simple operations on matrices and vectors
modulo nearly small integers.

Another important feature of lattice-based cryptographic algorithms is the variety of
applications in the field of encryption. Lattice-based protocols can successfully perform
fully homomorphic encryption, i.e., the computation of encrypted data or ciphertext with-
out revealing any information about the data. Consequently, lattice-based cryptographic
schemes are flexible, versatile and powerful for encryption, digital signatures, key transport
and authenticated key exchange. In recent years, significant steps have been taken in the
construction of this type of cryptosystem based on lattice theory, though it remains an open
field of research [34].

The cryptographic schemes that are based on lattices’ structure offer strong security
guarantees. They are based on the hypothesis that some mathematical problems in lattice
structures are difficult. The security of lattice-based cryptography depends on the worst-
case hardness assumptions of the lattice problems. Lattice-based cryptographic schemes
will continue to provide a solid basis for safe communication and data protection in a
post-quantum world if these certain computational problems are still difficult to resolve,
even for quantum computing devices.

Lattice cryptography is gaining the interest of scientists and cryptographers because of
the interesting and practical properties of lattices. The development of lattice cryptography
has been significant and fundamental to the art of encryption. As a result of this evolution,
various cryptosystems have been introduced that are now considered cornerstones for
post-quantum cryptography. Subsequently, we present some primitive, well-known and
performed constructions of lattice-based cryptography.

In 1996, M. Ajtai proposed the first cryptographic primitive based on lattices and gave
the worst-case reduction [17], and in 1997, Ajtai and Dwork introduced a lattice-based
asymmetric key cryptosystem that is performed in Rn [35]. This work attracted a lot of
interest because of its unexpected security proof that was predicated on the worst-case
assumptions [35].

Ajtai’s brilliant idea inspired numerous researchers to turn their academic interest
to lattice-based cryptosystems. Although the presented work is indeed amazing, it is
regarded as impractical and inefficient due to its long-lasting key generation process,
sluggish encryption and large key sizes in larger dimensions. The cryptosystem is not at all
functional in dimensions where the lattice problems given in the security proof are hard
to solve.

Around the same time, in 1996, J.H. Silverman, J. Pipher and J. Hoffstein proposed
another public key cryptographic scheme that can be explained via specially constructed lat-
tices, the NTRU cryptosystem [36]. The NTRU is one of the fastest public key cryptography
systems and is based on the shortest vector problem in lattices. It uses polynomial rings to
encrypt and decrypt data, as the operations of the cryptographic protocol take place in the
ring of polynomials. The NTRU is more efficient than other existing cryptosystems such as
RSA and is thought to be immune to threats of a quantum computer, making it a prominent
post-quantum cryptosystem. Although the NTRU is a 28-year-old cryptographic scheme, it
remains a fundamental lattice-based cryptosystem and a current subject of research. NTRU
has been updated several times since its conception to adapt to cryptanalytic developments.
During the standardization process of the National Institute of Standards and Technology
(NIST) for post-quantum cryptography, several concrete encryption-key encapsulation
mechanism (KEM) and NTRU-based signature techniques were presented [37]. Concerning
the KEM, two candidates, NTRUEncrypt and NTRU-HRSS-KEM, were fused to form a
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scheme known as “NTRU”. The system is relatively simple to be performed in constant time
and has a high performance rate, allowing it to be used in production. Moreover, Falcon,
an NTRU-based signature scheme, also reached the final round of standardization, as it is
distinguished by extremely quick execution and small key sizes [37]. Other characteristics
that made it stand out are its compactness, scalability, flexibility, memory economy and, of
course, security.

The McEliece cryptographic scheme [38] was the ancestor of the cryptographic scheme
introduced by O. Goldreich, S. Goldwasser and S. Halevi in 1997, the GGH cryptosys-
tem [39]. Inspired by the McEliece cryptosystem, in which the private and public keys
are representations of a linear code, GGH enables us to understand well the use of lattices
in cryptography.

The basic idea of constructing the cryptosystem is to have a “good basis” of a lattice,
representing the private key, and a “bad basis” of the same lattice, representing the public
key. In both cryptographic schemes, the plaintext is added with a noise vector, and the
result of their addition is the ciphertext. The fundamental difference between these two
cryptographic systems is that the domains in which the operations take place are distinct.
A discrete implementation of GGH, NTRU and the cryptosystem presented below in this
work, LWE, was introduced in [40].

According to its three creators, the increase in the key size of the GGH cryptosystem
compensates for the decrease in computational time. A few years later, D. Micciancio
proposed a simple way to minimize both the key size and the ciphertext without reducing
the level of security [41,42].

Several attacks have been performed [43–45] that demonstrated the fragility and
vulnerability of the GGH cryptosystem, so many researchers then considered GGH useless.
Despite being regarded as one of the most prominent lattice-based cryptosystems and
maintaining theoretical relevance, it is not recommended for practical application due
to security flaws. GGH is inefficient in comparison to other stronger and more efficient
lattice-based cryptosystems like NTRU and learning with errors (LWE) due to its weakness
to these preformed attacks [40].

Besides encryption and decryption cryptographic schemes, one important crypto-
graphic primitive used in electronic data transfer is digital signatures, which ensure the
authenticity of the messages transmitted. The high-level concepts for lattice-based signa-
tures are similar to the previous digital signature schemes, but the technical details are far
more complicated. The main source of difficulty is the distinct algebraic structure of the
hard one-way function that underpins lattice cryptography.

Typically, mathematical operations are performed inside a lattice structure in a lattice-
based digital signature protocol. Certain lattice problems, such as the learning with errors
(LWE) problem, which will be analyzed below, and the short integer solution (SIS) problem,
that are assumed to be hard, form the basis for the security of these schemes. The digital
signature algorithms based on lattices offer certain benefits, including their ability to
withstand quantum attacks and their potential for effective implementation. All operations
performed are on a lattice, and the security of the cryptographic scheme is based on the
hardness of the computational lattice problems.

The first digital signature protocol based on lattices was introduced in 1997, with
ideas comparable to those of the GGH cryptographic scheme [39]. In 2003, another digital
signature using the NTRU lattice, NTRUSIGN [46], was proposed, and other proposals
were additionally introduced, such as the Ring-LWE signature scheme [47] and the BLISS
signature scheme [48].

During the NIST Post-Quantum Cryptography Standardization Process [37], various
cryptographic protocols were submitted for evaluation, and three of the four potential
candidates for post-quantum cryptography were lattice-based digital signature schemes.
CRYSTALS-Dilithium, SPHINCS+ and Falcon are cryptographic schemes that stood out for
their efficiency, compactness, speed, flexibility and strong security guarantees against both
classical and quantum attacks.
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5. Learning with Errors (LWE)

An astonishing flexible foundation for lattice-based cryptographic protocols was intro-
duced in 2005 by computer scientist O. Regev, the learning with errors (LWE) cryptosys-
tem [49]. Regev was awarded the Godel Prize in 2018 for his work, which was considered
suitable for building secure cryptosystems, even for post-quantum cryptography.

The difficulty of solving hard lattice problems is as hard as solving the LWE prob-
lem [49] and that fact makes the LWE cryptosystem and its variants a candidate for the
quantum era. Learning with errors is characterized by security and efficiency; it is a high
probabilistic algorithm and has emerged as one of the most cutting-edge and innovative
research subjects in both cryptography and computer science. After the development of
the LWE cryptosystem, many variations and optimizations were created, as it constitutes a
cornerstone of modern cryptography.

5.1. The Learning with Errors Problem

The Gauss elimination algorithm is efficient in solving a system of m equations, finding
s = (s1, s2, . . . , sn) in the following form:

a11s1 + a12s2 + . . . + a1nsn = b1
a21s1 + a22s2 + . . . + a2nsn = b2

...
am1s1 + am2s2 + . . . + amnsn = bm

An example of the above system of equations in matrix form, given a m× n matrix A,
a n× 1 matrix s and a n× 1 matrix b, would be like A · s = b, where

A =


11 2 . . . 3
1 4 . . . 1
...

. . .
...

5 3 . . . 9

, s =


s1
s2
...

sn

, b =


8
13
...
2


It is obvious that by adding a matrix n× 1 matrix e to the product A · s, even with

small values, the equation system becomes

A · s + e = b (1)

The LWE problem states that, given a secret vector s = (s1, s2, ..., sn) ∈ Zn with
coefficient integer numbers and m linear equations, such that

a11s1 + a12s2 + . . . + a1nsn ≈ b1
a21s1 + a22s2 + . . . + a2nsn ≈ b2

...
am1s1 + am2s2 + . . . + amnsn ≈ bm

adding a small error to each equation recovers s. The symbol “≈” is used to claim that,
within a certain error, the value approaches the actual response.

This problem becomes hard for the Gauss elimination algorithm, and it gives no
information from the resulting equations. This problem is considered to be a hard problem
as the addition and multiplication of the rows increases the number of errors in each
equation, thus the response will be far from the true value and the final row reduced state
will be meaningless.

Occasionally, short solutions to Equation (1) are required. Therefore, the solution is
asked to lie in a subset S ⊂ Zm

q , where S can be a subset such that S = {0, 1} or, in general,
the set of all solutions S = [−C, . . . , C]m, and each coordinate takes an absolute value
bounded by some number C ≪ q/2. Another option of the set is the Euclidean ball of a
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small radius r, S = Ball2
r . The above problem is defined as the short integer solution (SIS)

problem, which was first presented in 1996 by M. Ajtai [17].

Definition 24. (Short integer solution problem). The short integer solution problem states that,
given m uniformly random vectors ai ∈ Zn

q forming the columns of a matrix A ∈ Zn×m
q , find a

nonzero integer vector z ∈ Zm of norm ∥z∥ ≤ β, such that

fA(z) := Az = ∑
i

aizi = 0 ∈ Zn
q .

In terms of a lattice problem, the SIS problem states that, given a lattice L generated
by A, find a vector v on the scaled (by q) dual lattice of L, i.e., it expresses an average-case
SVP on the lattice

L = {u ∈ Zm
q |uA ≡ 0 mod q}.

The LWE problem is regarded as an analog of the SIS problem, and for its comprehen-
sion and the construction of the LWE cryptosystem, some basic definitions are given below.

Definition 25. Let s ∈ Zn
q be a secret vector and χ a given distribution on Zq. The LWE

distribution As,n,q,χ generates a sample (a, b) ∈ Zn
q ×Zq or (A, b) ∈ Zm×n

q ×Zm
q , where a ∈ Zn

q
is uniformly distributed, and b = ⟨a, s⟩+ e, where e← χ and ⟨a, s⟩ is the inner product of a and s
in Zq. If b ∈ Zq is uniformly distributed, then it is called the uniform LWE distribution.

Definition 26. Fix a size parameter n ≥ 1, q ≥ 2 and an error probability distribution χ on Zq.
Let As,χ on Zn

q ×Zq be the probability distribution choosing a vector a ∈ Zq uniformly at random,
choosing e ∈ Zq according to χ, and outputting (a, ⟨a, s⟩+ e) where additions are performed in Zq.
An algorithm solves the LWE problem with modulus q and error distribution χ if for any s ∈ Zn

q ,
vector with n coefficients, and given enough samples from As,χ, it outputs s with high probability.

Definition 27. (search-LWE problem). The search-LWE problem, with parameters n, q, χ, m, states
that, given m independent samples (ai, bi) ∈ Zn

q × Zq derived from a uniformly random s ∈ Zn
q

and fixed for all samples, find s.

The above problem can become a decision problem where the question is which
distribution to use.

Definition 28. (decision-LWE problem). The decision-LWE problem with parameters n, q, χ, m
states that, given m independent samples (ai, bi) ∈ Zn

q × Zq, where there is a way to generate
samples from As,χ as above and also generate uniformly random distributed samples of (ai, bi) from
Zn

q ×Zq (uniform distribution U), determine whether the samples are generated from As,χ or U .

Definition 29. A function f (n) is defined as a negligible function in n, if limn→∞ nc f (n) = 0
for any positive constant c.

Definition 30. If ϕ denotes an arbitrary real-valued function on lattices, an instance of the discrete
Gaussian sampling (DGS) problem, DGSϕ, is given by an n-dimensional lattice L and a number
r > ϕ(L). The task is to extract a sample from DL, r.

Definition 31. For positive real ϵ > 0 and an n-dimensional lattice L, the smoothing parameter
ηϵ(L) is defined to be the smallest s such that ρ1/s(L∗ \ {0}) ≤ ϵ.

Theorem 4 (Regev). Let ϵ = ϵ(n) be some negligible function of n. Also, let p = p(n) be some
integer and a = a(n) ∈ (0, 1) such that ap > 2

√
n. Assume that we have access to an oracle W

that solves LWEp,Ψa given a polynomial number of samples. Then, there exists an efficient quantum
algorithm for DGS√2n·ηϵ(L)/a.
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The following theorem was proven by O. Regev [49] and connects the worst-case
lattice problems to the LWE problem, providing a robust indication that the LWE problem
is hard. For a real positive a, Ψ̄a denotes the distribution on Zq by sampling a normal
variable with mean 0 and standard deviation aq/

√
2π, where the result is rounded to the

nearest integer and reduced modulo q.

Theorem 5 (Regev). Assume that we have access to an oracle that solves the LWE problem with
parameters n, m, q, Ψ̄a, where ap > 2

√
n, q ≤ poly(n) is prime and m ≤ poly(n). Then, there

exists a quantum algorithm running in time poly(n) for solving the (worst-case) lattice problems
SIVPÕ(n/a) and (the decision variant of) SVPÕ(n/a) in any lattice of dimension n.

5.2. The LWE Cryptosystem

The LWE cryptosystem is initially parameterized by the integer n, which denotes the
security parameter and expresses the lattice dimension, the integers m and q, which express
the number of equations and the modulus, respectively, and a real positive a, denoting
the noise parameter. Assume that χ is a given probability distribution on Zq and the LWE
distribution As,χ is as described above.

The accuracy and security of the cryptographic scheme are determined by the parame-
ters, so they must be chosen carefully. Choose q to be a prime number such that n2 ≤ q ≤
2n2, m = (1 + ϵ)(n + 1) log q for some arbitrary constant ϵ > 0 and a = 1/(

√
n log2 n).

The LWE cryptosystem has a conventional cryptographic scheme structure, and its
steps are as follows.

• Private key. A uniformly random vector s ∈ Zn
q is chosen.

s is the private key.
• Public key. m vectors a1, a2, . . . , am ∈ Zn

q are selected independently from the uniform
distribution.
There are elements (error offsets) chosen independently, e1, e2, . . . , em ∈ Zn

q , according
to χ.
The public key of the cryptosystem is (ai, bi)

m
i=1, where bi = ⟨ai, s⟩+ ei.

• Encryption. To be able to encrypt a bit, a random set S is chosen uniformly among all
2m subsets of [m].
The encryption holds (∑i∈S ai, ∑i∈S bi) if the bit is 0 and (∑i∈S ai, ⌊

q
2⌋+ ∑i∈S bi) if the

bit is 1.
• Decryption. The decryption of a pair (a, b) is 0 if b− ⟨a, s⟩ is closer to 0 than to ⌊ q

2⌋
modulo q. Otherwise, the decryption is 1.

The LWE cryptographic scheme serves as the foundation of various protocols, particu-
larly the cryptographic schemes used in post-quantum cryptography. Due to the fact that
the LWE problem is considered a challenging mathematical problem, cryptosystems built
around it also enjoy extreme security.

The following algorithm, Algorithm 1, presents the latest version of the LWE cryp-
tosystem [30] and can be visualized in Figure 6.

Figure 6. The LWE cryptosystem.
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Both the private and public keys are denoted in matrix form. The size of the private
key changes, and so do the parameters t, l. A function f maps the message space Zl

q to
the message space Zl

q by multiplying each coordinate by q/t and rounding to the nearest
integer. It is crucial to define an inverse mapping, f−1, that maps an element of Zl

q to an
element of Zl

q, dividing each coordinate by q/t [30].

Algorithm 1: LWE

Private key. A matrix S ∈ Zn×l
q is chosen uniformly at random.

S is the private key.
Public key. A matrix A ∈ Zm×n

q is chosen uniformly at random and a matrix
E ∈ Zm×l

q is chosen, whose each element entries are according to Ψ̄a.
The public key is (A, P = AS + E) ∈ Zm×n

q ×Zm×l
q .

Encryption. Given a message v ∈ Zl
t and the public key (A, P), a vector

a ∈ {−r,−r + 1, . . . , r}m is chosen uniformly at random.
The output is the ciphertext (u = ATa, c = PTa + f (v)) ∈ Zn

q ×Zl
q.

Decryption. Given the private key S ∈ Zn×l
q and the ciphertext (u, c) ∈ Zn

q ×Zl
q,

recover the plaintext f−1(c− STu).

LWE is believed to be an exceedingly secure cryptosystem. This cryptographic scheme
is based on lattices and depends on the assumed difficulty of specific lattice problems,
namely the problem of locating the closest lattice point in the presence of random noise.
Since LWE-based cryptography is immune to quantum attacks, it has attracted interest as a
potential solution for post-quantum cryptography. Its security, as with any cryptographic
system, depends on the specific parameters chosen and the method used.

LWE is a legitimate and well-studied cryptographic concept within the field of lattice-
based cryptography. As an ongoing and dynamic field of study, the security of LWE
cryptographic algorithms is continuously and consistently investigated and evaluated.
Many cryptographic primitives and schemes, including encryption and digital signatures,
have been constructed using the assumptions provided by LWE, so it remains a prominent
area of study and is considered a promising candidate for the future of computing science.

There are several variants and extensions of the LWE problem, each offering different
performance properties and security implications that find applications in the field of
lattice-based cryptography. Among these variants are Ring-LWE, Binary-LWE, Dual-LWE
and Multilineal-LWE [50–52]. Module-LWE [53] has recently received particular attention
as a candidate of NIST [37] chosen in the third round of the competition; it is a key-
encapsulation mechanism with a security that relies on the hardness assumptions over
module lattices [54].

5.3. An Efficient Variant of LWE

Since the introduction of the LWE cryptographic scheme, numerous diverse cryptosys-
tems have been proposed and studied because it is one of the most commonly used and
researched lattice-based protocols.

The cryptographic scheme we introduce bears a strong resemblance to the original
proposed cryptosystem of Oded Regev [49]. The main new idea is the existence of a map
f : K → L, K, L ⊆ Rk, where 1 ≤ k ≤ n (e.g., a multilinear map) is the construction of the
cryptosystem in the key generation step of the cryptographic algorithm. It is important
that the mapping f satisfy certain conditions, such as the dimension of the spaces K, L.

This step does not affect the security of the cryptographic scheme, as its safety is based
on the LWE assumption but maintains the efficiency of the protocol. Since the procedure of
key generation becomes increasingly intricate, the cryptographic scheme remains secure
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and the risks of an algebraic-analytical attack under the hardness LWE assumption do
not increase.

Our variation cryptographic scheme supports addition and multiplication, and the
key idea is that, by using a transform f and its matrix, the elements of the product of the
secret key S and the random matrix A in the second step of the LWE algorithm are mapped
to new elements. This procedure is ineffective for the complexity of the algorithm since the
operations of addition and multiplication correspond to matrices’ and vectors’ addition
and multiplication, which inherently offer opportunities for parallelism. Additionally,
key generation involves matrix operations and sampling from distributions, which can
be parallelized to some extent; therefore, parallelism is achieved. The error vector is
added after matrix operations, so our scheme is also secure due to the underlying LWE
hardness assumption.

The LWE cryptographic scheme can be visualized, as in Figure 7, where a lattice is
generated by the public matrix A and the lattice point (S, AS). As shown, the public point
t = (0, B) is distinct from the lattice point (S, AS)) and the vector (S, ”-E”) separates it
from the point. With our transformation, we are changing this public point to improve both
efficiency and security.

Figure 7. Learning with errors (LWE).

Our variant of the LWE cryptosystem is described below. The parametrization is the
same as that of LWE, and all operations are performed over Zq. T is the function that maps
the message space Zl

p to the space Zl
p. Let v ∈ Zp be a message vector, and we define

t(v) = ⌊v · q
p ⌉ ∈ Zq.

• Private key. Choose a matrix S← Zn×l
q uniformly at random.

S is the private key.
• Public key. Choose a matrix A← Zm×n

q uniformly at random and compute the matrix
product AS.
Choose a suitable mapping f : K → L, K, L ⊆ Rk, where 1 ≤ k ≤ n transforms
the elements of the matrix AS = C and maps them to elements of a matrix D, i.e.,
f is a suitable correspondence. D is the matrix product CF, where F is the matrix
transformation of f .
Choose an error matrix E ∈ Zm×l

q , where each entry xi,j ← χ is chosen independently
from an error distribution χ.
The public key is (A ← Zm×n

q , P = D + E ∈ Zm×l
q ). The (i, j)th entry of P is pij =

dij + xij, where dij is the element of the matrix D yielding the linear transformation
and the matrix C.

• Encryption. To encrypt a message v ∈ Zl
p, define the vector t = t(v) ∈ Zl

p by applying
t(·) coordinate-wise to v.
Choose a vector a← {0, 1}m ⊂ Zm

q uniformly at random.
The pair (u, c) = (ATa, PTa + t) ∈ Zn

q ×Zl
q is the resulting ciphertext.

• Decryption. Given a ciphertext (u, c) ∈ Zn
q × Zl

q and the private key S ← Zn×l
q ,

compute m = c− STu ∈ Zl
q. Output the plaintext v ∈ Zl

p, where each vi is such that
mi − t(vi) ∈ Zq is closest to 0 mod q.
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Efficiency. Our construction is relatively simple to implement, as it only requires
addition and multiplication operations modulo q, and parallelization can be achieved. The
parameters are chosen as in [30]. For the message space, the integer p is chosen to be
p = poly(n) ≥ 2 and l = poly(n) ≥ 1. If p is chosen to be a power of two, converting an
input message to an element of the message space is simpler.

It is assumed that the security parameter of the system is λ and the parameters of the
Gaussian parameters are s, σ for the distribution χ = DZ,s, as defined above. Assuming
that the output is less than b = s

√
λ, the distribution is negligibly affected.

Correctness. The decryption algorithm of our construction computes the vector

m = c− STu = (ST A + E)a + t− ST Aa = Ea + t ∈ Zl
q

where S is the secret key chosen uniformly at random, (A, P = D + E) is the public key,
with A being arbitrary and E being chosen according to the distribution we described
above. Remember that (u, c) = (ATa, PTa + t) is the ciphertext, where a ∈ {0, 1}m and
t = t(v) for the message vector v.

For each coordinate j ∈ [l], the value (Ea)j determines the distance from dj to tj
(modulo q) and is at most q/4p away from 0 (modulo q), so dj is nearest to t(vj).

Security. Oded Regev proved that the search-LWE problem is at least as hard as
worst-case lattice problems [49] for the appropriate parameters, i.e., aq ≥

√
n. The above

variant of LWE is also considered secure against possible attack under the assumption that
the decision-LWE problem with variants n, q, χ, m is hard for the same parameters’ choice.

The proof of security is similar to the proof presented by Regev [49].
First, the public key (A, P) is chosen uniformly at random from Zm×n

q ×Zm×l
q . There-

fore, if the parametrization of the system is such that the LWE problem is hard, the public
keys generated by the cryptosystem are indistinguishable from pairs chosen uniformly at
random. Second, for an arbitrary public key (A, P) chosen at random with c an encryption
of a fixed bit µ, it is indistinguishable for µ = 0, 1, i.e., the result gives us no information
about the encrypted message.

So, the task is to prove that the LWE problem remains hard by using aj public vectors
multiplied with secret vectors si corresponding to di vectors and xi independent error
vectors for each sample, which works following a similar argument to [49,55].

Assume that we have hybrid distributions H0, H1, . . . Hl for the public key (A, P),
which operate as follows: in the distribution Hk, the matrix A and the k rows of the matrix
P are uniform, and the remaining rows of P are generated according to the key generation
of our variant, using si secret vectors and error terms xij for all i > k and j ∈ [m]. Therefore,
H0 is the distribution yielded by the key generation algorithm, Hl is completely uniform
and we prove that the random Hk−1 and Hk are computationally indistinguishable.

Suppose for any k ∈ [l] that there is a simulator algorithm XO that, having an oracle
O, returns samples from either the distribution As, χ, where s ∈ Zn

q or from the uniform
distribution Zn

q ×Zq.
In the first step, the simulator X makes m queries to O with outcome (aj, bj), where

j ∈ [m], and furthermore, for each i ∈ [m], X chooses sij ← Zn
q and errors xij ← χ.

The simulator X outputs (A, P) as follows: the jth column of matrix A is vector aj,
and the entries of matrix P are pij = dij + xij, where dij is the entries of the D matrix. The
entries of D result from the multiplication of AS and the transformation matrix defined
in each case. Hence, for all columns j < k and for all i ∈ [m], X selects independent error
terms xij from the distribution χ and for all columns j > k and for all i ∈ [m], X chooses
uniform independent error terms from Zn

q ×Zq.
It is obvious that if the oracle O generates samples from As,χ, the output of the

simulator is distributed according to the hybrid distribution Hk−1, while if the oracle
generates samples from the uniform distribution, the output is distributed according to Hk.
Thus, under the assumption that LWE with parameters q, χ is hard, the above distributions
are indistinguishable, and consequently, the distributions Hk−1, Hk are indistinguishable.
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5.4. Certain Instances of the Variant

The choice of the correspondence f is critical to the structure of our cryptographic
scheme. The key idea is to replace the matrix product AS = C with the matrix of a
transformation, so with the help of the additional step, the cryptographic scheme can be
used in applications that utilize hard encryption. Matrix addition and multiplication are
equivalent when encodings are added and multiplied, so our construction is as hard as the
LWE cryptographic scheme and remains flexible and secure. Below certain instances of our
scheme are introduced in the key generation process, and the key generation algorithm for
each instance is presented. The selection of each function was made in such a way as not to
increase the complexity of the algorithm too much, i.e., not to increase the operations and
the time of its implementation too much.

5.4.1. The Sum of Two Entries

In the first version of the LWE cryptographic protocol, the secret vector s is an element
of Zn

q . So, the main idea was to choose a secret vector s ∈ Zn×2
q , i.e., to add an additional

column in the matrix S and choose a linear transformation f that maps the elements of
f : Z2

p to Zp without interfering with the remaining structure of the system.
For l = 2, we choose the map f : Z2

p → Zp defined by d(ci1, ci2) = ci1 + ci2 for each
pair (ci1, ci2), i = 1, . . . , m of each row of C, and the result is vector d = (d1, . . . dm), where
di = ci1 + ci2, i = 1, . . . m. Graphically, the sum of two vectors is the vector representing the
diagonal of the parallelogram starting from the intersection of the tails.

In Z2
q , Algorithm 2 is executed.

Algorithm 2: KeyGen(1): Key Generation 1
1: q, n, m, l, χ← params(λ)
2: S← Zn×2

q
3: for i ∈ 1→ m do
4: xi ← χ
5: ai ← Zn

q

6: ci ← Zmx2
q

7: di ← ci1 + ci2 ∈ Zm
q

8: pi ← di + xi
9: end for

10: return (pk = ai, pi) {pk stands for public key}

Discrete Implementation: Let the chosen parameters for this particular implementation
be n = 4, m = 3 and q = 13.

• The private key is chosen uniformly at random and is such that

S =


2 3
5 0
0 4
6 2


• It is selected

A =

1 8 6 2
0 5 1 3
7 1 6 3
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Compute the product C = AS, such that

C =

1 8 6 2
0 5 1 3
7 1 6 3




2 3
5 0
0 4
6 2

 =

 2 5
4 10
11 12


• With the aid of the linear map f ∈ Z2

q →∈ Zq, f : (x, y) = x + y and the matrix
transformation

F =

(
1
1

)
compute the matrix product D = CF, such that

D =

 7
1

10


• Select matrix

E ∈ Z3
q =

 1
0
−1


The public key is

(A, P = D + E) =

1 8 6 2
0 5 1 3
7 1 6 3

,

8
1
9

.

5.4.2. The Cantor Pairing Function

Based on the first version of the LWE cryptosystem and on the same idea, i.e., to
map the elements of a Z2

q in Zq, in this case, the Cantor pairing function is chosen. The
set of nonnegative integers is denoted as N0 = {0, 1, 2, . . . }. The Cantor pairing function,
introduced by Cantor in 1878, maps N0 ×N0 injectively onto N0.

Definition 32. The Cantor pairing function is a quadratic bijection, such that

C(x, y) =
1
2
(x + y)(x + y + 1) + y

Using the Cantor pairing function, we present Algorithm 3 and the function graphi-
cally plots ci1 on the x-axis and c12 on the y-axis.

Algorithm 3: KeyGen(2): Key Generation 2
1: q, n, m, l, χ← params(λ)
2: S← Zn×2

q
3: for i ∈ 1→ m do
4: xi ← χ
5: ai ← Zn

q

6: ci ← Zmx2
q

7: di ← (ci1 + ci2)(ci1 + ci2 + 1)/2 + ci2 ∈ Zm
q

8: pi ← di + xi
9: end for

10: return (pk = ai, pi) {pk stands for public key}
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5.4.3. An Inverse Transformation

In general, a linear map f : Zm
q → Zm

q is chosen, which is an isomorphism with
m × m matrix F and inverse m × m matrix F−1. In this case, we choose m = l. In our
implementation, we choose m = 3.

For l = 3, we choose the linear isomorphism f : (x, y, z) = (2x, 4x + y, 2x + 3y + z).
In Z3

q , we run Algorithm 4.

Algorithm 4: KeyGen(3): Key Generation 3
1: q, n, m, l, χ← params(λ)
2: S← Zn×3

q
3: for i = 1→ m do
4: xi ← χ
5: ai ← Zn

q

6: ci ← Zmx3
q

7: di,1 ← 2ci1
8: di,2 ← 4ci1 − ci2
9: di,3 ← 2ci1 + 3ci2 − ci3

10: pi ← di + xi
11: end for
12: return (pk = ai, pi) {pk stands for public key}

Discrete implementation
The chosen parameters for this particular implementation are: n = 4, m = 3 and q = 13.

• The private key is chosen uniformly at random and is such that

S =


2 3 1
0 5 4
1 4 0
0 1 3


• The parameter is m = 3, so the public key is generated with the help of the uniformly

at random A ∈ Z3×4
q .

It is chosen

A =

1 8 6 2
0 2 1 3
7 1 6 4


Compute the product C = AS, such that

C =

1 8 6 2
0 2 1 3
7 1 6 4




2 3 1
0 5 4
1 4 0
0 1 3

 =

8 4 0
1 4 4
7 2 10


With the aid of the linear map f ∈ Z3

q →∈ Z3
q, f : (x, y, z) = (2x, 4x + y, 2x + 3y + z),

with matrix transformation

F =

2 0 0
4 1 0
2 3 1


compute the matrix product D = CF, such that

D =

6 4 0
0 3 4
3 6 10
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Select matrix E ∈ Z3×3
q , each entry of which is selected according to Ψ̄a.

Compute

P = D + E

6 4 0
0 3 4
3 6 10

+

−1 0 0
1 0 0
0 1 −1

 =

5 4 0
1 4 4
3 7 9


The public key is (A, P = D + E) ∈ Z3×4

q ×Z3×3
q .

We wish to decrypt the message

v =
(
0 1 1

)
and

t =
(
0 3 3

)
respectively, for q = 13, p = 4.

For
a =

(
1 0 0

)
we compute

u = ATa =


1 0 7
8 2 1
6 1 6
2 3 4


1

0
0

 =
(
8 9 7 6

)
Moreover, we compute

c = PTa + t =

5 1 3
4 4 7
0 4 9

1
0
0

+ t =
(
0 3 3

)
=
(
8 11 9

)
+
(
0 3 3

)
=
(
8 11 12

)
The ciphertext is the pair

(u, c) =
((

8 9 7 6
)
,
(
8 11 12

))
.

Given the above ciphertext (u, v) and the secret key S, we compute

m = c− STu =
(
8 11 12

)
−

2 0 1 0
3 5 4 1
1 4 0 3




8
9
7
6

 =
(
8 11 12

)
−
(
10 12 10

)
=
(
11 12 2

)
.

So, the plaintext is
v =

(
0 1 1

)
∈ Z3

4

where each coordinate vi is such that mi − t(vi) is closest to 0 mod 13.
Our construction could be appropriate and suitable for heavily based applications

to hard encryption, such as file storage services that encrypt data both in transit and at
rest, or operating systems that offer the option of full hard disk encryption. Moreover,
applications that use strong encryption techniques are those that use end-to-end encryption
to secure conversations, e.g., platforms like Signal or WhatsApp. Additionally, email
encryption in some services uses end-to-end encryption, and this type of encryption is also
widely used on platforms like Zoom, whose main use is the proceedings of meetings, file
sharing and communication channels that must maintain the security of sensitive personal
information. Sensitive personal data are also required to be protected in financial and
banking applications, like online payment methods and electronic transactions.
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5.5. Attacks and Threats

Cryptanalysis involves studying and analyzing the weaknesses of the underlying
problem of a cryptographic scheme in order to decrypt ciphertexts and codes or obtain
hidden information. The LWE problem is based on the hardness of finding a unique solution
to a system of linear equations in the presence of some random errors. It is believed to
be secure because solving these systems of equations is considered to be computationally
hard, even for quantum computers. However, many attempts have been made to find
vulnerabilities or attacks carried out on cryptographic systems based on this problem,
especially now that the LWE cryptosystem and its variants are regarded as candidates for
secure communication in the post-quantum era.

Due to the fact that the LWE cryptographic scheme is based on lattices, lattice reduction
attacks remain an active field of research. These types of attacks attempt to find short
lattice vectors and can be applied to break certain instances of LWE, especially when the
parameters are not selected properly. Given n samples, (ai, bi) is created by an n×m matrix
A with rows and vectors ai, and a lattice L is being formed by b, the columns of the matrix
A and certain parameters. In these types of attacks, the secret s is recovered by locating the
shortest vector in the above lattice L. M. Albrect et al. presented a study in 2015, where the
hardness of LWE was analyzed and the running times of algorithms, such as the LLL and
BKZ algorithms, were calculated [56].

A strategy to solve the LWE problem is by solving the SIS problem, i.e., finding a
short vector v in the scaled dual lattice L = {w ∈ Zm

q |wA ≡ 0 mod q}. Assuming that we
have m samples (A, c), either from Ls,χ satisfying c = As + e or c is uniformly random, the
main aim is to find a short vector v with v · A = 0. With this strategy, an eavesdropper
solves the distinguishing LWE problem, i.e., a sample is an LWE instance (A, t = Ats + e)
or it comes from a uniform distribution at random [30]. In this method, the adversary
locates a nonzero short vector v such that Av = 0 mod q, and examines if the inner product
⟨v, t⟩ is near to zero modulo q. In the case that t is uniform, there is a probability of 1

2
of the test’s acceptance. In the case that t = Ats + e, where e comes from a Gaussian
distribution with parameter s, it states ⟨v, t⟩ = ⟨v, e⟩ mod q, which is a Gaussian with
parameter ∥v∥ · s. When the value of this parameter is less than q, the uniform distribution
could be distinguished from the Gaussian with an advantage near to exp(−π · (∥v∥ · s/q)2).
Finding a short vector in the dual lattice is necessary for the dual attack to succeed, but this
may not always be possible, particularly for carefully selected parameters that defy lattice
reduction strategies.

The choice of parameters, such as the modulus and lattice dimension, influences
how hard it is to solve this problem. The problem becomes more complex with higher
dimensions and greater noise distributions. A. Pouly and Y. Shen introduced a simple
analysis of a dual attack [57], which is presented below and described in Algorithm 5.

Assuming an LWE sample (A, b) is given and s ∈ Zn
q is a secret, such that b = As + e

for an unknown e ∈ Zm
q . In the dual attack, in its most basic variation, the secret s is divided

into two parts, sguess ∈ Znguess
q and sdual ∈ Zndual

q , where n = nguess + ndual .
Consequently, the matrix A ∈ Zm×n

q is seperated into two parts A = [Aguess Adual ].
So, we have

b = As + e =
(

Aguess Adual
)(sguess

sdual

)
= Aguesssguess + Adualsdual + e

The algorithm makes an effort to guess s̃guess ∈ Znguess
q on the value of sguess and if this

guess holds true.
Assume we have the lattice

L∗q(Adual) = {x ∈ Zm : xT Adual = 0 mod q}

and the inequality det(L∗q(Adual)) ≤ qndual holds true.
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Thus, for every x ∈ L∗q(Adual), we have

xTb = xT Aguesssguess + xT Adualsdual + xTe = xT Aguesssguess + xTe(modq)

So,
xT(b− Aguess s̃guess) = xT(Aguess(sguess − s̃guess) + xTe(modq)

At this point, the basic remark is that if the algorithm’s guess is correct, i.e., s̃guess =
sguess, then xT(b− Aguess s̃guess) = xTe(modq) comes from a Gaussian distribution. Other-
wise, if the algorithm’s guess is wrong, then xT(b− Aguess s̃guess) = xTe(modq) follows a
uniform distribution. This results from the fact that x ̸= 0 and A was chosen uniformly
at random.

Let q be a prime power, δ > 0 , N ∈ N and LWE samples (A(i), b(i)), 1 ≤ i ≤ N.

Algorithm 5: Dual Attack
1: Input: q, m, δ, N, n = nguess + ndual

2: Input: list of (A(1), b(1)), . . . , (A(N), b(N))
3: Output: the first nguess coordinates of the secret or ⊥
4: for j = 1 to N do
5: Compute a basis of L∗q(A(j))

6: Compute a short vector xj ∈ L∗q(A(j))
7: end for
8: for s̃guess ∈ Znguess

q do

9: Compute the list y1, . . . , yN where yj = xT
j (b

(j) − A(j)
guess s̃guess)

10: S← ∑N
j=1 cos(2πyj/q)

11: if S ≥ Nδ then
12: return s̃guess
13: end if
14: end for
15: return ⊥

In 2010, R. Lindner and C. Peikert performed a new type of attack, optimizing the
simple distinguishing attack and solving the LWE problem by solving the BBD problem [58].

Another important type of attack against LWE is the dual attack, which tries to recover
the secret key by working in the dual lattice space and works best against LWE instances
where the plaintext messages are small. The dual attack mathematically attempts to solve
the short integer solution (SIS) problem in a dual lattice by performing a lattice reduction
algorithm to find short vectors. Typically, dual attacks rely on taking advantage of flaws
or structures in the LWE-based schemes’ implementation or particular parameters. They
may not work with every example of LWE-based cryptography and frequently require
fine-tuning of parameters. One popular example of a dual attack is the dual reconciliation
attack. This is an attack that targets particular parameter sets where a certain sublattice
of the dual lattice is located near the secret key [59]. More effectively than a direct attack
on the LWE problem itself, it attempts to recover the secret key by taking advantage of
this proximity.

Hybrid attacks are attacks that leverage multiple vulnerabilities or combine different
techniques to compromise LWE-based systems. To undermine the security assumptions
of LWE, a hybrid attack, for example, might combine lattice reduction techniques with
algebraic property exploitation [60]. Moreover, hybrid attacks could involve analyzing the
statistical properties of the error distribution in LWE instances while simultaneously apply-
ing computational methods, like lattice reduction, to exploit potential biases or weaknesses.

Exploring the effectiveness of combining multiple attack techniques, such as lattice
reduction, algebraic methods, statistical analyses, and potentially quantum algorithms,
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to create stronger attacks against LWE-based schemes is an active scientific area. The
exploration of novel combinations or variations of these attacks remains an open field of
study. Continuing efforts are being made to strengthen security proofs for LWE-based
cryptographic schemes. Researchers are working on refining parameter selection guidelines
to ensure robustness against known attacks and provide higher levels of security assurance.
LWE is considered one of the leading candidates for post-quantum cryptography, so
preventing attacks on learning with errors and its variations involves implementing robust
cryptographic schemes and making informed choices in parameters and implementations.
Some of the well-studied and recommended strategies are careful parameter selection, such
as using larger parameters, randomness in error generation vectors, the implementation
of appropriate techniques to resist lattice reduction attacks, and, as expected, continuous
evaluation and updates.

6. Conclusions and Future Research

Lattice theory, originating from diverse mathematical inquiries into geometry, number
theory and abstract algebra, has evolved into a foundational concept in modern cryp-
tography, particularly in the context of post-quantum cryptography. Recent advances in
quantum computing necessitate the evolution of cryptographic practices that anticipate
the emergence of powerful quantum computers and the potential threat they pose to
existing cryptographic algorithms. LWE is pivotal in post-quantum cryptography due
to its fundamental role in creating cryptographic schemes resilient to attacks from both
classical and quantum computers. For the science of cryptography and computer science,
the importance of LWE is why it has been a constant subject of study, research and analysis
since its inception.

In this paper, we introduced a variant of the LWE cryptographic scheme, adding
to the key generation step of the protocol a transformation that changes the elements
of the product matrix of the secret key S and the uniformly random chosen matrix A.
Avoiding interference with the rest of the structure of the LWE algorithm, this additional
step maintains the efficiency and security of the protocol without scaling up the complexity,
as the operations added into the protocol are additions and multiplications of matrices. We
discussed certain instances of our variant, choosing a particular transformation mapping f ,
and presented discrete implementations in small dimensions. The main advantage of our
variant is the addition of a transformation in the key generation algorithm, which has both
an algebraic and a geometric interpretation into a lattice. Moreover, our variant is regarded
as a primitive for applications that employ robust encryption, and our future work aims to
implement the protocol both generally and to certain applications.

Due to its potential security features, LWE has attracted a lot of attention lately,
especially in light of the concerns posed by quantum computing. Even though LWE and its
variants are widely studied and performed and have been advanced significantly, there
are still a number of open issues and creative uses that merit further investigation. The
computational expense of lattice-based encryption in comparison to more conventional
cryptographic techniques is one of its primary drawbacks. The goal of ongoing research
is to make lattice-based primitives more efficient in terms of computing complexity and
usefulness across a range of platforms. Blockchain technology and cryptocurrencies may
benefit from the use of lattice-based cryptography, which can improve privacy, scalability
and resilience to quantum attacks. Additionally, there are still open questions about
the best approaches for standardization. Investigating lattice-based consensus methods,
signature protocols and privacy-boosting strategies for blockchain networks may result
in novel blockchain systems with improved security features. This covers factors like
compatibility across various implementations and the proper parameter selection for
security and performance trade-offs.

Although our LWE-based cryptographic scheme is reasonably flexible, efficient and
secure, improvements and optimizations can be made. Optimizing LWE cryptosystems
requires a multidisciplinary approach that combines mathematical research, algorithmic
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advances, hardware breakthroughs and a thorough understanding of both theoretical
and practical aspects of cryptography. Ongoing research focuses on the implementation
and comparison of the proposed variant, the key size of cryptosystems to improve their
complexity and security, and the investigation of potential vulnerabilities to strengthen
them against possible attacks.
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