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Abstract: Epilepsy is a complex neurological disorder characterized by recurrent and unpredictable
seizures that affect millions of people around the world. Early and accurate epilepsy detection is criti-
cal for timely medical intervention and improved patient outcomes. Several methods and classifiers
for automated epilepsy detection have been developed in previous research. However, the existing
research landscape requires innovative approaches that can further improve the accuracy of diagnos-
ing and managing patients. This study investigates the application of variable-frequency complex
demodulation (VFCDM) and convolutional neural networks (CNN) to discriminate between healthy,
interictal, and ictal states using electroencephalogram (EEG) data. For testing this approach, the EEG
signals were collected from the publicly available Bonn dataset. A high-resolution time–frequency
spectrum (TFS) of each EEG signal was obtained using the VFCDM. The TFS images were fed to the
CNN classifier for the classification of the signals. The performance of CNN was evaluated using
leave-one-subject-out cross-validation (LOSO CV). The TFS shows variations in its frequency for
different states that correspond to variation in the neural activity. The LOSO CV approach yields a
consistently high performance, ranging from 90% to 99% between different combinations of healthy
and epilepsy states (interictal and ictal). The extensive LOSO CV validation approach ensures the
reliability and robustness of the proposed method. As a result, the research contributes to advancing
the field of epilepsy detection and brings us one step closer to developing practical, reliable, and
efficient diagnostic tools for clinical applications.

Keywords: epilepsy; time–frequency analysis; variable-frequency complex demodulation; convolutional
neural networks

1. Introduction

The World Health Organization (WHO) has found that epilepsy, a chronic noncom-
municable group of neurological disorders of the brain, afflicts around 50 million people
around the world regardless of age, race, and ethnicity [1–3]. In a normally function-
ing brain, small electrical impulses travel in a calculated and systematic manner, whereas
epilepsy causes disruptions in the normal electrical balance, resulting in dynamic, repetitive
seizures that can induce involuntary convulsions, loss of awareness, and altered sensa-
tions [4,5]. Patients are typically diagnosed with epilepsy after they have had two seizures
that cannot be linked to any other previous/current medical condition [5]. The occurrence
of seizures is not always synonymous with epilepsy and a comprehensive analysis must
be administered to fully classify a patient as epileptic. To do so, healthcare providers will
collect a full patient history and perform a neurological exam that includes the adminis-
tration of an electroencephalogram (EEG), a diagnostic test that non-invasively measures
the voltage potential resulting from current flow among the neurons of the brain [6,7]. In
nominal brain activity, the electrical signals measured from EEG scalp electrodes follow a
normal regulation. When a patient experiences a seizure, there is an increase in abnormal,
large super-synchronous activity in either local or widespread areas with identifiable el-
liptic specific characteristics [8]. From EEG recordings, neurologists will visually scan the
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signals for any morphologic abnormalities representative of this activity that can indicate
the presence of or even the type of epilepsy a patient may have to arrive at a final diagnosis.

While accuracy rates of epileptic diagnosis are high, traditional screening for epilepsy,
most specifically the manual interpretation of EEG signals, has proven to be time-consuming
when provided with many hours of recordings [9]. It has also shown to be variable and
inaccurate in several cases, as the EEG readers level and technique of analysis may vary [10].
While this problem has been alleviated with the introduction of automatic seizure detection
software, such implementations generally have poor sensitivity and are overfitted to a
specific seizure occurrence, thus rendering them uncommon in most clinical settings. To
avoid such issues and improve accuracy, new research has proposed various improvements
and novel approaches to epileptic computer-aided diagnosis.

Recent research includes, but is not limited to, non-linear-, frequency-, time–frequency-,
and time-based methods, as discussed by Acharya et al. [11]. Most of these methods have
followed a similar approach, first establishing and extracting specific epileptic features
in EEG waveforms, then performing a statistical analysis to rank the features, and finally,
identifying the ideal classifier based on their respective performances. To further improve
these methods, some groups have implemented deep convolution neural networks (CNN)
to avoid feature extraction and selection [12–15]. This work has used custom CNNs and
various DL models (Alexnet, VGG16, ResNet, etc.) in both 1D [12] and 2D [14,15] domains.
The 2D approaches have explored the use of various inputs, including scaled spectrograms,
the delta, and continuous wavelet transform scalograms.

In contrast to traditional machine learning algorithms, such as support vector machines
or random forests, CNNs excel at automatically extracting hierarchical features from data,
particularly in image-based tasks [16,17]. For EEG analysis, CNNs exhibit an inherent
ability to differentiate subtle spatial and temporal relationships within time–frequency
spectrum (TFS) images. This capability aligns well with the intricate variations in neural
activity, characteristic of different epileptic states [18]. Furthermore, CNNs inherently
possess translation invariance, allowing them to detect patterns regardless of their location
within TFS images [18,19]. While other methods have demonstrated efficacy in various
machine learning applications, the unique architecture and feature extraction capabilities
of CNNs were deemed highly advantageous for deciphering the intricate patterns present
in EEG data, ensuring a more nuanced and accurate classification of healthy and epilepsy
states [20].

In this work, we propose using variable-frequency complex demodulation (VFCDM),
a high-resolution, time–frequency domain method of analyzing various biomedical sig-
nals [21], to prepare 2D TFS of EEG signals for input into a deep convolution neural network
for automated detection of epileptic traits. VFCDM can be summarized as a two-step pro-
cedure. First, complex demodulation is used to obtain an estimate of the time–frequency
spectrum from which the dominant frequencies of interest are selected to be further refined.
The second step involves passing the signal into a series of band-limited signals using
a collection of low-pass filters (LPFs) to isolate the dominating frequencies. A Hilbert
transform is applied to obtain an analytic signal for each band, providing a time–frequency
spectrum containing simultaneous estimates of amplitude, frequency, and phase. To the
best of our knowledge, no similar work has been performed with VFCDM spectrum-based
inputs with convolutional neural networks.

2. Materials and Methods

In this section, we present a detailed description of the basic steps involved during
our research. We begin with an overview of the database used for EEG signal acquisition.
This is followed by an explanation of the VFCDM method used for analysis and obtention
of TFS. We then describe the CNN model that we used to accurately discriminate between
different seizure states. Figure 1 illustrates the pipeline of the proposed methodology.
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Figure 1. Pipeline of the proposed methodology.

2.1. Database

In our study, we used the publicly available EEG dataset from the University of
Bonn, as described by Andrzejak et al. [22]. The dataset has been extensively used to
investigate various epilepsy states. It consists of five unique subsets (Z, O, N, F, and S)
that are recorded using a 10–20 electrode placement system. Each subset contains one-
channel 100 EEG segments of 23.6 s in length. The recordings were obtained at a sampling
frequency of 173.61 Hz, resulting in 4097 samples for each EEG segment. Subsets Z and O
were derived from recordings of five healthy volunteers, with Subset Z corresponding to
segments collected with the eyes open and Subset O corresponding to segments collected
with the eyes closed. N, F, and S subsets consist of EEG recordings taken from 5 epilepsy
patients. Subsets N and F refer to seizure-free intervals during the interictal state. Note
that Subset F includes segments recorded from the epileptogenic zone of the hippocampal
formation, whereas Subset N signals were obtained from the contralateral hippocampal
formation. Subset S includes EEG segments recorded during seizures (ictal state). Further,
all the subsets were band-pass filtered to improve signal quality. The filter has a low cut-off
frequency of 0.53 Hz and a high cut-off frequency of 40 Hz. To ensure the reliability of the
dataset, an expert manually inspected all EEG segments for artifacts due to muscle activity
and eye movements. The description of the dataset is shown in Table 1.

Table 1. Detailed description of the database used in the study [22].

Healthy Subject Epilepsy Subject

Eyes open Eyes closed
Seizure-free interval (interictal state)

Seizure activity
(ictal state)Hippocampal

formation
Hippocampal formation

of the opposite hemisphere of the brain

Z O N F S

In this study, we used three distinct cases of grouping the segment into classes, de-
signed to address specific classification scenarios. The details of these cases are presented
in Table 2 for a comprehensive overview. Case I refers to the identification of segments
collected from healthy subjects from seizure segments, whereas Case II refers to the three-
class identification of healthy, interictal, and ictal segments. Finally, Case III refers to the
identification of healthy vs. epileptic patients. Considering three classes in the classification
scenarios enables the study to provide a comprehensive analysis of EEG data, allowing
for the differentiation of healthy, interictal, and ictal states. This multi-class approach con-



Signals 2023, 4 819

tributes to a deeper understanding of epilepsy and its neural dynamics, which is valuable
for both diagnostic and research purposes.

Table 2. Description of cases considered for classification.

Case Classes Description

I
• Z vs. S
• O vs. S
• (Z+O) vs. S

Healthy vs. Seizure

II • (Z+O) vs. (N+F) vs. (S) Healthy vs. Interictal vs. Ictal

III • (Z+O vs. N+F+S)
• (Z+O vs. N+F) Healthy vs. Epileptic

2.2. Variable-Frequency Complex Demodulation Algorithm

We used TFS obtained from EEG signals to objectively capture the changing dynamics
in the central nervous system during normal and seizure conditions. To overcome the
challenge of limited data samples, we employed a segmentation strategy that equally
divided the EEG signals into seven segments. This increased the dataset and provided a
more robust basis for TFS analysis. The foundation of our analysis is the use of the variable-
frequency complex demodulation (VFCDM) technique. This approach has been extensively
described in previous literature [21,23] and extensively validated with various physiological
signals, such as blood pressure [21], renal blood flow [24], heart rate variability [25], and
electrodermal activity [26,27].

The two-step process involved in estimating the TFS of EEG using VFCDM is as fol-
lows: First, an initial estimate of the TFS is obtained using fixed-frequency CDM (FFCDM)
or complex demodulation. Second, the VFCDM approach is used to improve the time–
frequency resolution by selecting the dominant frequencies of interest.

2.2.1. Complex Demodulation

In this step, each signal was decomposed into numerous band-limited signals using a
series of low-pass filters (LPFs). Then, the Hilbert transform was applied to these signals.
The result was analytical signals that provide estimates of instantaneous characteristics,
such as amplitude, frequency, and phase, within their respective frequency bands. Con-
sider a signal s(t), which is characterized as a narrow-band oscillation. This signal exhibits
a central angular frequency denoted as ω1 and time-dependent attributes, including its
instantaneous amplitude, represented as V(t), and the initial phase, denoted as θ(t). Ad-
ditionally, s(t) includes a DC component, referred to as Vdc, which contributes a constant
offset to the signal:

s(t) = Vdc + V(t)cos[ω1t + θ(t)] (1)

The time-dependent attributes, such as V(t), θ(t) for a specific carrier, can be extracted
by multiplying s(t) by e−jω2t. This operation yields the unfiltered modulated signal m(t):

m(t) = s(t)e−jω2t= Vdce−jω2t +
V(t)

2

(
ej(ω1−ω2)t+jθ(t) + e−j(ω1+ω2)t−jθ(t)

)
(2)

By assuming ω1 ≈ ω2, the frequency spectrum of s(t) has been shifted left by an
amount of ω2. If we subject s(t) to an LPF (cut-off frequency = ωc < ω2), the signal m(t) is
filtered such that only spectral components falling within the range [−ωc, ωc] will remain.
In this filtered output, the only component within this range corresponds to the difference
frequency term. The outcomes can be expressed as follows:

mLP(t) =
V(t)

2

(
ejθ(t)

)
(3)
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V(t) = 2|mLP(t)| (4)

θ(t) = tan−1
(

Im(mLP(t))
Re(mLP(t))

)
(5)

Here, mLP(t) is denoted as the CDM of a signal. The time derivative of θ(t) acts as a
correction factor for the ω2, which can be employed to estimate the ω1 of the input signal
using Expression (6):

ω′1(t) =ω1 +
dθ(t)

dt
(6)

2.2.2. VFCDM

In a scenario where the modulating frequency is not constant, as previously described,
but varies as a function of time, the signal s(t) can be represented in the following manner:

s(t) = Vdc + V(t)cos
∫ t

0
2π f (τ)dτ + θ(t)

]
(7)

Following similar operations as those described in Equations (1) and (2), multiplying

Equation (7) by e−j
∫ t

0 2π f (τ)dτ results in the determination of both instantaneous amplitude
V(t) and instantaneous phase θ(t). This process yields:

m(t) = s(t)e−j
∫ t

0 2π f (τ)dτ= Vdce−j
∫ t

0 2π f (τ)dτ +
V(t)

2

(
ejθ(t) + e−j

∫ t
0 4π f (τ)dτ+θ(t)

)
(8)

Expanding from Equation (8), if we filter the signal m(t) using an ideal LPF, the result
will be the filtered signal mLP(t) with identical instantaneous amplitude V(t) and phase
θ(t), as presented in Equations (4) and (5). The instantaneous frequency can be determined
as provided in [28] and is given by:

f (t) = f0(t) +
1

2π

dθ(t)
dt

(9)

In this study, the EEG signal is represented by the signal s(t). The Hilbert transform
method was used to compute the instantaneous frequency and amplitude [29]. Applying
the Hilbert transform to the equation above for all time points associated with the obtained
low-pass-filtered frequency components resulted in the derivation of the complete time–
frequency spectrum. The use of CDM and Hilbert transforms enabled the generation of
a high-resolution TFS. This facilitated the accurate and precise extraction of amplitude
information.

The procedure for implementing the TFS based on CDM is outlined as follows:

1. Filter Design: Design a finite-impulse response LPF with a specified bandwidth ( Fw)
and filter length ( Nw). Set center frequencies as ( f0i):

f0i = 2× Fw(i− 1), i = 1, 2, 3, . . . , int
[

fmax/2× Fw

]
(10)

2× Fw = Spacing between neighboring center frequencies,
fmax = Highest signal frequency.

2. CDM Dominant Frequency Extraction: Employ the CDM technique to identify the
dominant frequency within the defined bandwidth and iterate this process by incre-
menting f0i across the entire frequency band.

3. Signal Decomposition: Decompose the signal into sinusoidal modulations using
the CDM.

4. Instantaneous Frequency Calculation: Calculate the instantaneous frequencies using
Equation (9), based on the phase (as per Equation (5)) and the instantaneous am-
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plitudes (as per Equation (4)) of each sinusoidal modulation component, using the
Hilbert transform.

5. Time–Frequency Representation: Obtain the TFR of the signal by using the estimated
instantaneous frequencies and amplitudes, providing a detailed depiction of signal
variations across both time and frequency domains. For more details about the
VFCDM algorithm, please refer to [21].

2.3. Convolutional Neural Networks

Convolutional neural networks are widely used across various domains due to their
robust performance based on a deep feedforward architecture, reducing the number of
parameters needed, smooth training, and expandability [30]. While there are specific CNN
architectures that have been repeatedly used, all CNNs follow the same general structure
that allows them to be easily modified, trained, and implemented depending on the desired
application and restrictions presented [31,32]. CNNs have an intrinsic ability to automati-
cally extract features and classify them, streamlining the typical extraction/classification
work required in other models [33]. CNN operates by passing images through three sec-
tions that include an input layer, a collection of hidden layers, and an output layer. The
hidden layers can be further segregated into specific components that consist of a (1) con-
volution layer, (2) pooling layer, and finally (3) a fully connected layer, which handles
the classification.

(1) Convolution Layer (CL)

The first hidden layer is the CL, which defines the operation of the entire CNN by
extracting the features present based on the composition of its filters. The filter, commonly
called a kernel or a weight vector, is a defined set of learnable parameters that is convoluted
with a restricted area of the input that is dimensionally equivalent. This 2D convolution
is repeated multiple times as the kernel slides along the length and width of the image.
The frequency of the convolutions is controlled by the stride parameter, which defines
the number of pixels the kernel shifts in each step. The output is then combined with
an activation function that increases the non-linearity of the network. One of the most
used functions is the rectified linear unit (ReLU), as it prevents the exponential growth in
computational costs required to implement the CNN.

(2) Pooling Layer (PL)

The next consecutive layer in the CNN is the PL, which works to reduce the size
of feature maps and, in turn, reduce the overall computation time of the network. Since
the location of a detected feature is not as relevant once identified [34], PLs, or rather
sub/down-sampling layers, can reduce the parameters of the data by solely keeping
meaningful information by implementing a specified pooling function (e.g., max, mean,
and sum) determined by the type of PL. The function is applied using the sliding kernel
method, similar to that of the CL. One of the most used pooling methods is max pooling.

(3) Fully Connected Layer (FC)

The next consecutive layer is the FC layer. Defined by un-looped nodes, the FC is a
feedforward layer that converts the condensed data layer into a 1D feature map. The map
is calculated by taking the dot product of the weight matrix and input vector. A SoftMax
function can also be commonly found in this layer.

The CNN used in this study consists of two CLs, two PLs, one flattened, and two FC
layers. The CLs have the same architecture, both using a kernel of size 3 × 3 and stride
1. A ReLU activation function is implemented using the output. A max pooling layer of
size 2 × 2 follows immediately after each CL to reduce the spatial dimension of the feature
map. After the two sequential CL, the output is flattened, and two dense FC layers are
used. The first FC layer consists of 128 ReLU-activated nodes and the second consists of
2 SoftMax-activated nodes. The structure is summarized in Figure 2.
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2.4. Performance Evaluation of CNN

In order to thoroughly evaluate the performance of the model, a rigorous leave-
one-subject-out (LOSO) cross-validation scheme was employed [35,36]. This meticulous
approach ensured that the data from each patient were used for both the training and the
testing of the model. Essentially, each patient served as an individual test case, with the
remaining patients constituting training. This comprehensive evaluation strategy allowed
us to assess the ability of the model to effectively generalize to the entire patient population.
Additionally, the performance of the CNN was evaluated using accuracy (Acc), precision
(Pre), recall (Rec), and F1-score (F1) metrics [37]. The mathematical expressions used to
calculate each metric are described in Table 3.

Table 3. Description of metrics used to evaluate CNN.

Metric Description Expression

Acc Measures the proportion of predictions that are correct. TP + TN
TP + TN + FP + FN

Pre Quantifies the accuracy of positive predictions. TP
TP + FP

Rec Evaluates the model’s ability to identify all actual positives. TP
TP + FN

F1
Harmonic means of precision and recall. It provides a balance
between precision and recall, considering both false positives

and false negatives.

2 × Pre × Rec
Pre + Rec

3. Results

The representative EEG signals in healthy, interictal, and ictal states are shown in
Figure 3. The amplitude and fluctuation characteristics of the representative EEG in each
state are described below.

Z and O—Healthy State: In this state, the EEG signals have a root mean square (RMS)
amplitude that is typically in the range of 40 to 43 µV. This low amplitude, with amplitude
fluctuations averaging 28 to 29 µV, indicates a consistent and stable level of neural activity.
These patterns are indicative of a baseline of neuronal excitability. This means that neuronal
activities in the healthy brain remain within a steady and balanced range, typically hovering
around 40–43 µV.

F and N—Interictal State: RMS amplitude values are significantly higher, ranging
from 49 to 50.5 µV, in this state. This increased RMS amplitude may indicate increased
neuronal excitability compared to healthy states. Examining fluctuations, interictal states
show more pronounced and erratic fluctuations, reaching 49 to 50.5 µV. These increased
fluctuations are indicative of neuronal instability, often associated with epilepsy or pre-
seizure conditions. The increased variability reflects a transition to an altered neural state
that may be predisposing the brain to seizure activity.

S—Ictal State: This state has an intermediate range of RMS amplitude values, around
36.5 µV. This is significantly lower than the interictal states. This suggests a neural state in
transition, as these values fall between the amplitudes of the healthy and interictal states.
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However, the most characteristic feature of ictal states is the presence of intense amplitude
fluctuations. These can reach up to 478.5 µV. These fluctuations are significantly more
pronounced than those observed in healthy or interictal states and indicate an ongoing
epileptic event.

Signals 2023, 4, FOR PEER REVIEW  8 
 

 

H
EA

LT
H

Y 

  
Z O 

IN
TE

R
IC

TA
L 

ST
A

TE
 

  
F N 

IC
TA

L 
ST

A
TE

 

 

 S 

Figure 3. EEG signal characteristics in different brain states. Representative EEG signals depicting 
neural activity in healthy, interictal, and ictal states. The figure illustrates distinctive amplitude 
and fluctuation patterns: Healthy state (Z and O): low and stable RMS amplitude (40–43 µV) with 
consistent fluctuations (28–29 µV). Interictal state (F and N): higher RMS amplitude (49–50.5 µV) 
with pronounced and erratic fluctuations. Ictal state (S): intermediate RMS amplitude (36.5 µV) 
with intense, synchronous neuronal activity. 

Z and O—Healthy State: In this state, the EEG signals have a root mean square 
(RMS) amplitude that is typically in the range of 40 to 43 µV. This low amplitude, with 
amplitude fluctuations averaging 28 to 29 µV, indicates a consistent and stable level of 
neural activity. These patterns are indicative of a baseline of neuronal excitability. This 
means that neuronal activities in the healthy brain remain within a steady and balanced 
range, typically hovering around 40–43 µV. 

F and N—Interictal State: RMS amplitude values are significantly higher, ranging 
from 49 to 50.5 µV, in this state. This increased RMS amplitude may indicate increased 
neuronal excitability compared to healthy states. Examining fluctuations, interictal states 
show more pronounced and erratic fluctuations, reaching 49 to 50.5 µV. These increased 
fluctuations are indicative of neuronal instability, often associated with epilepsy or pre-
seizure conditions. The increased variability reflects a transition to an altered neural 
state that may be predisposing the brain to seizure activity. 

S—Ictal State: This state has an intermediate range of RMS amplitude values, 
around 36.5 µV. This is significantly lower than the interictal states. This suggests a neu-

Figure 3. EEG signal characteristics in different brain states. Representative EEG signals depicting
neural activity in healthy, interictal, and ictal states. The figure illustrates distinctive amplitude
and fluctuation patterns: Healthy state (Z and O): low and stable RMS amplitude (40–43 µV) with
consistent fluctuations (28–29 µV). Interictal state (F and N): higher RMS amplitude (49–50.5 µV)
with pronounced and erratic fluctuations. Ictal state (S): intermediate RMS amplitude (36.5 µV) with
intense, synchronous neuronal activity.

These EEG signal characteristics and differences provide valuable insights into the state
of the brain. Healthy states are characterized by stable and low-amplitude signals, interictal
states show heightened fluctuations, and ictal states demonstrate rapid and synchronous
neuronal activity. These distinctions are crucial for diagnosing and monitoring epilepsy
and understanding the underlying neural dynamics.

The TFS of the representative EEG signals in healthy, interictal, and ictal states are
shown in Figure 4. To find the variations across these states, we conducted a comprehensive
analysis of several key features within each TFS. Specifically, we examined the mean,
maximum, standard deviation, spectral energy, dominant frequency, and % of significant
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frequency transitions. This analysis provides valuable insights into the distinctions between
healthy, interictal, and ictal states.
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showcases key TFS features, including the mean frequency range, spectral power, stability, dominant
frequency, and % of significant frequency transitions.



Signals 2023, 4 825

Z and O—Healthy State: These states exhibit moderate neural activity, as evidenced
by the mean frequency range around 14.47 Hz. Their highest spectral power is within the
range of 804 dB, indicating that extreme spikes in activity are relatively infrequent. The
stability of neural dynamics is observed in the mean of the standard deviation of TFR,
which remains around 65.6 Hz. The mean of total power suggests that there is a substantial
amount of spectral power in these signals, at approximately 5.9241 × 104 dB. Both Z and O
have a peak frequency around 3 Hz, indicating the frequency with the maximum power.
The mean of dominant frequency for healthy states is about 5.4 Hz, which is relatively
low. These states also exhibit 28% of significant frequency transitions, implying a moderate
variability in neural dynamics.

F and N—Interictal State: These states show a lower level of neural activity, as indi-
cated by a mean frequency range of around 10 Hz. Their highest spectral power is within
the range of 550 dB, lower than in the healthy state. The stability of neural dynamics
remains moderate, at approximately 42 Hz. The mean of total power in the interictal state is
about 4.1827 × 104 dB, indicating less spectral power. Surprisingly, the peak frequency for
interictal states reaches 500 Hz, suggesting a shift toward higher frequencies. A distinctive
feature of the interictal state is the mean of dominant frequency, which is approximately
97 Hz, indicating increased activity in higher frequency bands. These states also have a
moderate 5% of significant frequency transitions.

S—Ictal State: The ictal state stands apart with notably distinct TFS characteristics.
This state is marked by a substantially higher mean frequency range, at approximately
1.6776× 103 Hz, pointing to intense neural activity during seizures. The mean of maximum
TFS reaches around 6.3788 × 104 dB, signifying high levels of neural activity during ictal
events. However, this heightened activity also results in a significantly elevated stability
of TFS. In terms of mean total power, the state exhibits notably high values, reaching
approximately 6.8699 × 106 dB, indicating a substantial amount of spectral power in these
signals. Unlike healthy and interictal states, the ictal state exhibits a peak frequency close
to 0 Hz, which suggests a wide range of frequency activity during seizures. The mean
dominant frequency is remarkably low, approximately 0.0072 Hz, underlining the diversity
of neural dynamics during seizures. In contrast to the other states, ictal states have a low
significant frequency transition, around 0.0244%, suggesting relatively stable frequency
patterns during seizures.

The TFS image of each EEG segment was used as input to the CNN for classify-
ing various combinations of healthy and epileptic states. The results of each case are
described below.

3.1. Case I: Healthy vs. Ictal State

The performance of CNN in classifying healthy and ictal states using LOSO CV is
shown in Figure 5. The results demonstrate the robustness of the CNN model across
multiple state classifications. The model yielded the highest Acc, Pre, Rec, and F1 of 99%
when classifying healthy state Z compared to ictal state S. Additionally, the model achieved
96% accuracy in differentiating healthy O from ictal S, with Pre and Rec of 97% and 96%,
respectively. The model also achieved 94% accuracy when considering the combined
healthy states (Z+O) versus the ictal state S. The precision rate remains high at 96%, and
the recall rate of 94% demonstrates the ability of the model to capture the majority of
(Z+O) instances. These results demonstrate the ability of the CNN model to accurately
characterize different states based on TFS images.

The training and validation metrics of the CNN, as shown in Figure 6a, exhibit different
patterns in different classification scenarios. In the Z vs. S scenario, both normalized
training accuracy (NTA) and normalized validation accuracy (NVA) fluctuated until the
10th epoch, but then stabilized at 1.0. The normalized training loss (NTL) and normalized
validation loss (NVL) consistently decreased to 0, indicating a stable learning process. For O
vs. S, NTA started at 0.54, reaching 1.0 by the 7th epoch, with NTL declining from 0.36 to 0.
NVA steadily increased to 1.0, and NVL consistently decreased to 0, with minor fluctuations
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from the 10th to the 15th epoch. In (Z+O) vs. (S), the model exhibited significant stability,
with NTA reaching 1.0 by the 7th epoch, NTL decreasing to 0, and NVA increasing to 1.0.
This highlights the model’s consistent performance across various classification scenarios.
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Figure 6b shows the normalized confusion matrices of the CNN for different classifi-
cation scenarios. For Z vs. S binary classification, the model yielded 100% true positives
(TP) and true negatives (TN), while avoiding false positives (FP) and false negatives (FN).
In the O vs. S case, the model demonstrated strong performance, achieving a 100% TN
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rate while accurately detecting ictal states. However, there were some instances where ictal
states were misclassified as healthy states, leading to an 8.57% FN rate. Finally, in the (Z+O)
vs. S classification, the model accurately identified S with a TP rate of 2.86%. Nonetheless,
the model exhibited an FP rate of 17.14%, indicating the misclassification of Z+O as S state.
Despite this, the model demonstrated high overall Acc and F1. Collectively, the results
highlight the model’s ability to effectively distinguish between these different states.

3.2. Case II: Healthy vs. Epilepsy Subjects

In our investigation, to classify healthy and epilepsy subjects using CNN, we consid-
ered two different scenarios. Specifically, we evaluated the effectiveness of the CNN in
classifying various combinations of healthy (Z and O) and epilepsy (N, F, and S) states. The
performance metrics for each case are shown in Figure 7. In the first case, when distinguish-
ing between a collective group of healthy subjects (Z and O) and interictal subjects (N and
F), the model achieved an Acc of 95%. Pre and Rec metrics, both at 95%, indicate the model
accuracy while balancing false positives and negatives. This balance is further evidenced
by its F1 of 95%. In the second case, we aimed to classify the combined healthy subjects
(Z and O) from the interictal (N and F) and ictal (S) states of epileptic subjects. The model
achieved 97% Acc, indicating a high degree of overall correctness. Further, Pre and Rec
metrics were also 97%, indicating the model’s ability to accurately identify relevant data
while managing false alarms.
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Figure 7. Radar plot representation of the CNN performance metrics for classifying healthy vs.
epileptic subjects.

The CNN training and validation metric curves shown in Figure 8a for healthy vs.
epileptic subjects demonstrate effective learning. For the (Z+O) vs. (N+F+S) scenario, the
model showed continuous improvement, reaching an NTA of 1.0 and an NTL of 0.0 by the
7th epoch. Although the NVA curve showed fluctuations, it also showed growth. Similarly,
in (Z+O) vs. S, the model maintained stability during its learning process, with the NTA
reaching 1.0 by the 6th epoch and the NTL decreasing to 0.0. The NVA continued to
grow and remained stable. These results emphasize the model’s effectiveness in accurately
classifying the chosen state combinations.
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The normalized confusion matrices for the two significant classification scenarios
considered in the CNN model are shown in Figure 8b. The model accurately classified Z+O
from N+F combinations. It had a TPR of 98.57% for the identification of N+F states, with a
low FNR of 1.43%. The TNR was 96.19% and the FPR was effectively minimized to 3.81%.
In the complex classification scenario Z+O vs. N+F+S, the model demonstrated robust
performance, yielding 100% TNR to accurately identify N+F+S states and maintaining a 5%
FPR. This indicates minimal errors in the classification of (Z+O) as (N+F+S). These results
demonstrate the model’s proficiency in the classification scenarios with remarkable overall
Acc and F1 values.

3.3. Case III: Healthy vs. Interictal vs. Ictal States

In this case, we extended our analysis to a more intricate scenario of distinguishing
between healthy states (Z and O), interictal states (N and F), and ictal states (S), separately.
The CNN performance metrics for this case are shown in Figure 9. In this comprehensive
case, the CNN model yielded an Acc of 90%. Furthermore, the precision, recall, and
F1-score metrics all reached an impressive 96%. These metrics emphasize the model’s
ability to make accurate predictions. The model also demonstrated an effective approach to
managing false positives and false negatives, maintaining a harmonious balance.

The CNN’s training and validation metric curves, as depicted in Figure 10a, provide
a visual representation of the model’s performance in the scenario of (Z+O) vs. (N+F)
vs. S. In this specific case, we observed a unique pattern compared to previous scenarios.
The learning curves for both NTA and NVA exhibited fluctuations, with NTA reaching
1.0 by the 12th epoch and NVA at 0.85 by the 27th epoch. On the other hand, NTL and
NVL consistently decreased, highlighting the ability of the model to determine complex
differences within these state combinations. The fluctuating patterns reflect the adaptability
of the model even in scenarios where accuracy and loss metrics occasionally vary.
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In the multi-class classification scenario with Z+O, N+F, and S, as shown in Figure 10b,
the CNN model exhibited significant performance. It yielded a 97% TPR for accurately
categorizing Z+O, demonstrating a high degree of accuracy in classifying this state. Notably,
Z+O was rarely misclassified as other states, as indicated by the absence of FPs. The
model also demonstrated an 87% TPR for N+F, with a 9% FNR, suggesting reasonable
identification of N+F. However, N+F had a 4% FPR, indicating rare misclassification as
S. For the ictal state, the model achieved a significant 83% TPR, accompanied by a 6%
FNR. Additionally, there was an 11% FPR for S, signifying few misclassifications as other
states. Overall, the model showcased its capability to differentiate between these states,
maintaining a good balance of accuracy and false positive/negative rates in this complex
multi-class classification scenario.

4. Discussion

The accurate and timely detection of epileptic seizures remains a critical challenge in
clinical neurology. While scalp EEG has long been the gold standard for seizure monitoring,
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manual interpretation of EEG data is both time-consuming and prone to human error.
Automated seizure detection systems that can provide real-time alerts have the potential
to significantly improve patient care by enabling timely interventions and reducing the
risk of seizure-related complications. They also have the potential to reduce the burden
on healthcare professionals and enhance the overall management of epilepsy. This study
investigated the application of VFCDM and CNN approaches in epilepsy detection using
EEG signals. The focus was on exploring the possibility of developing an automated
system for differentiating healthy, interictal, and ictal states. The VFCDM time–frequency
spectrum that accounts for non-linear and non-stationary variations of EEG signals was
used to develop the system. The results of the proposed method showcased high accuracy
and the ability to manage both simple and complex classification scenarios.

In this study, the Bonn dataset was specifically selected due to its robustness and ex-
tensive use in epilepsy research. Its publicly available nature promotes reproducibility and
facilitates comparisons with previous studies. The dataset includes subsets representing
healthy, interictal, and ictal states. It provides intricate neural activity patterns, making it
well suited for multi-class classification tasks. To ensure the integrity and high quality of
the data, rigorous preprocessing steps, including band-pass filtering and artifact removal,
were implemented. The partitioning of the dataset into training and validation sets was
carried out with the utmost care and consideration, using stratification techniques to ensure
unbiased training and evaluation of the models. These deliberate choices profoundly
influenced the results of the study, yielding valuable insights into the dynamics of epilepsy
and significantly impacting the efficacy of learning-based methods.

EEG signals exhibit distinct characteristics that differentiate between healthy and
epilepsy states. In healthy individuals, EEG signals show low amplitude and stable neural
activity, reflecting a consistent and balanced level of neuronal excitability. In contrast,
interictal states, which are the EEG patterns observed between seizures, show increased
amplitude and pronounced fluctuations, suggesting greater neuronal instability, often
associated with epilepsy or pre-seizure conditions. Ictal states, the EEG patterns observed
during seizures, exhibit an intermediate range of amplitude values but are characterized
by intense amplitude fluctuations. These distinct EEG signal characteristics form the basis
for effective seizure detection and classification.

The analysis of the TFS of EEG signals using VFCDM further emphasized these
distinctions. Healthy states demonstrated moderate neural activity with a mean frequency
range of around 14.47 Hz. These states also exhibited stable dynamics. Interictal states
exhibited lower neural activity with a mean frequency range of around 10 Hz. A significant
shift toward higher frequencies was also observed in these states. Ictal states yielded
substantially higher mean frequency ranges and intense neural activity. This demonstrates
that there is a wide range of frequency activity during seizures. These TFS characteristics
align with the amplitude and fluctuation patterns observed in EEG signals.

The CNN model exhibited significant classification performance. The model con-
sistently demonstrated high performance for all three cases considered in the study. It
accurately classified both simple and complex combinations of states while maintaining a
balance between true positives and negatives. The highest performance (99%) was achieved
when classifying healthy (Z) and seizure states. The model adapted well to complex dif-
ferences within these state combinations, thus effectively managing variations in Acc and
loss metrics.

Previous studies have reported various methods for automated epilepsy detection
using the Bonn dataset. Numerous studies have addressed epilepsy detection, employing
diverse methodologies and classifiers. Table 4 provides a comparison of our proposed work
with the state-of-the-art methods. Faust et al. (2010) [38] employed the Yule–Walker method
and an SVM, yielding an Acc of 93.3%. Similarly, Acharya et al. (2009) [39] computed non-
linear measures, such as correlation and fractal dimension, and the Hurst and Lyapunov
exponent. These features were fed into the GMM classifier and achieved an accuracy of
96.1%. These findings emphasize the potential of advanced methods and classifiers for
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precise epilepsy diagnosis. Researchers such as Acharya et al. (2013) [40] have focused
on signal-processing methods. They employed DWT frequency band features and SVM
for epilepsy detection, maintaining a high accuracy of 96.0%. Additionally, Sharmila et al.
(2018) [41] used DWT entropy features with an SVM classifier, highlighting the significance
of exploring various signal-processing techniques for improved classification.

The emergence of deep learning approaches in the field of EEG analysis is evident
in the studies by Acharya et al. (2018) [13] and Ilias et al. (2023) [14]. While Acharya
et al. [13] achieved an accuracy of 88.7% using 1D EEG features and a CNN, Ilias et al. [14]
adopted spectrogram analysis with a CNN to attain an accuracy of 97.0%. These studies
showcase the potential of deep learning models in EEG analysis and the advantages
they offer in terms of accuracy. Further, the introduction of innovative feature extraction
methods has significantly influenced epilepsy detection. Mahfuz et al. (2021) [15] employed
CWT with a CNN classifier, achieving an accuracy of 98.46%. Their research highlights
the potential of wavelet-based features when coupled with CNN models. Additionally,
Yuan et al. (2017) [42] applied CWT scalogram analysis with GPCA and SDAE, achieving
absolute accuracy and precision. These studies illustrate the ability of advanced feature
extraction techniques.

Some studies have also used neural network architectures. Hussein et al. (2019) [43]
introduced TD features and RNN/LSTM for epilepsy detection, achieving an accuracy of
100%. Meanwhile, Chanu et al. (2023) [44] used DWT with SONN, resulting in an accuracy
of 99.2%. These studies emphasized the potential of neural networks in EEG analysis.
Recent advancements in deep learning are reflected in studies such as that of Islam et al.
(2022) [45], who explored TD features with the Epileptic-Net model, achieving an accuracy
ranging from 99.95% to 99.98%. Further, Bhattacharyya et al. (2017) [46] examined EWT
features with RF, reaching an accuracy of 99.4%. This highlights the need for a multimodal
approach to enhance diagnostic accuracy.

Additionally, Sharma et al. (2017) [47] employed flexible WT and fractal dimension
with SVM, achieving an accuracy of 99.2%. Their research shows the potential of combining
multiple techniques for enhanced results. Further, Goel et al. (2023) [48] introduced
recurrence plots with an SVM classifier, achieving an accuracy of 98.21% and a precision
rate of 99.61%. These studies showcase the potential of unique approaches in feature
extraction and classification.

Building upon the foundations laid by previous works, the proposed approach in
this study, which used VFCDM and CNN for automated epilepsy detection, demonstrated
promising performance, with accuracy ranging from 90% to 99% across various classifica-
tion scenarios. This performance compares favorably with other state-of-the-art techniques,
such as those based on SVMs or RNNs, which typically achieve accuracies in the range
of 80% to 95%. Interestingly, to the best of our knowledge, there are very few LOSO CV
studies. LOSO CV offers a more robust evaluation of biomedical applications by accounting
for subject-specific variability and ensuring clinical relevance.

In addition to its performance, the proposed approach offers several advantages over
other techniques. VFCDM stands out from other TF methods in its ability to effectively
handle the non-linear and non-stationary characteristics of EEG signals. By using vari-
able frequencies, VFCDM adapts to the changing nature of EEG data, capturing intricate
dynamics and preserving instantaneous amplitudes, crucial for identifying and character-
izing neural activity. VFCDM’s non-parametric nature allows it to handle complex and
unpredictable EEG patterns without relying on a priori assumptions, making it a powerful
tool for analyzing EEG signals. Additionally, CNNs are powerful classifiers that can learn
complex patterns from these features, making them well suited for seizure detection.

While the VFCDM and CNN combination demonstrated promising potential for
automated epilepsy detection, further research is needed to fully evaluate its clinical
utility. Additional studies on larger, more diverse datasets are required to confirm the
approach’s generalizability. Prospective clinical trials should also be conducted to assess
its effectiveness in real-world settings. Additionally, addressing limitations, such as the
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limited dataset scope, exclusion of the pre-ictal state, focus on single-channel EEG analysis,
lack of testing in noisy environments, and the absence of comprehensive comparisons with
other methods, will strengthen the proposed approach’s clinical applicability.

Table 4. Comparison of various studies related to the automatic detection of epileptic classes using
the Bonn University database of EEG signals.

Author Method Classifier Cross-
Validation

Performance (%)

Acc Pre Rec F1

Faust et al. 2010 [38] Yule–Walker SVM $ - 93.3 - - -

Acharya et al. 2009 [39] Non-linear
measures GMM $ - 96.1 - - -

Acharya et al. 2013 [40] DWT Frequency
Bands SVM $ - 96.0 - - -

Sharma et al. 2017 [47]
Flexible

WT/Fractal
Dimension

SVM 10-Fold 99.2 - - -

Acharya et al. 2018 [13] 1D EEG Features CNN 10-Fold 88.7 - - -

Ilias et al. 2023 [14] Spectrogram/Delta CNN 10-Fold 97.0 97.14–97.18 * 96.00–97.99 * 96.41–97.52 *

Mahfuz et al. 2021 [15] CWT CNN Split 10/90 98.46 - - -

Hussein et al. 2019 [43] TD RNN/LSTM 3/5/10-Fold 100 - - -

Chanu et al. 2023 [44] DWT SONN Split 30/70 99.2 98 100 98.99

Islam et al. 2022 [45] TD Epileptic-Net 10-Fold 99.95–99.98 * - - -

Yuan et al. 2017 [42] CWT Scalogram GPCA/SDAE Split 80/20 100 100 100 100

Ullah et al. 2018 [12] TD P-1D-CNN 10-Fold 97.4–100 * - - -

Guo et al. 2011 [49] Genetic
Programming KNN Split 60/40 93.5 - - -

Bhattacharyya et al. 2017 [46] EWT RF 10-Fold 99.4 - - -

Sharmila et al. 2018 [41] DWT Entropy SVM Split 50/50 78–100 * - - -

Goel et al. 2023 [48] Recurrence Plots SVM - 98.21 99.61 - -

Abdulhay et al. 2020 [50]
Entropy,

non-linear, and
spectra

SCANN 10-Fold 98.5 - - -

Proposed Approach VFCDM CNN LOSO CV 90–99 * 96–99 * 94–99 * 93–99 *

SVM = support vector machine; GMM = Gaussian mixture model; RF = random forest; RNN = recurrent neural
network; LSTM = long short-term memory; SONN = self-organizing neural network; GPCA = global principal
component analysis; SDAE = stacked denoising autoencoders; P-1D-CNN = pyramidal-1d CNN; WT = wavelet
transform; DWT = discrete WT; EWT = empirical WT; CWT = continuous WT; TD = time domain. $ Performance
of the classifier is evaluated using receiver operating characteristic (ROC) analysis. * Performance range in
classifying between various combinations of healthy and epileptic states.

In summary, the proposed approach represents a promising step forward in the devel-
opment of automated seizure detection systems. The combination of VFCDM and CNN
offers a powerful and efficient method for extracting and classifying non-linear features
from EEG signals. This approach has the potential to significantly improve patient care by
reducing the burden on healthcare professionals and enhancing the overall management
of epilepsy.

5. Conclusions

This study presented a novel approach for automated epilepsy detection using VFCDM
in combination with CNN. The results demonstrated that VFCDM effectively extracted
non-stationary and non-linear variations in EEG signals, enabling the discrimination of
various epileptic states. The application of this method, in combination with LOSO CV,
demonstrated significant performance, ranging from 90% to 99%. Considerations for
real-world clinical implementation, including the development of user-friendly tools and
validation in clinical settings, are vital for the practical application of this methodology.
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