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Abstract: This paper presents a new method for the design of separable-denominator 2-D IIR filters
with nearly linear phase in the passband. The design method is based on a balanced realization model
reduction technique. The nearly linear-phase 2-D IIR filter is designed using 2-D model reduction
from a linear-phase 2-D FIR filter, which serves as the initial filter. The structured controllability and
observability Gramians Ps and Qs serve as the foundation for this technique. onal positive-definite
matrices that satisfy 2-D Lyapunov equations. An efficient method is used to compute these Gramians
by minimizing the traces of Ps and Qs under linear matrix inequality (LMI) constraints. The use of
these Gramians ensures that the resulting 2-D IIR filter preserves stability and can be implemented
using a separable-denominator 2-D filter with fewer coefficients than the original 2-D FIR filter.
Numerical examples show that the proposed method compares favorably with existing techniques.

Keywords: 2-D IIR digital filters; structured Gramians; Lyapunov inequalities; linear matrix
inequalities (LMI); balanced truncation

1. Introduction

Two-dimensional (2-D) infinite impulse response (IIR) digital filters have been used in
many signal processing applications such as image processing, video signal filtering, satel-
lite image processing, beam filters, X-ray, TV transmission, and biomedical imaging [1–5].
Many methods have been proposed for the design of 2-D IIR digital filters (see, e.g., [6–10]).
Some methods used linear programming approaches and mirror-image polynomials
for the design of 2-D IIR digital filters with separable and nonseparable denominators
(see, e.g., [11–14]). Optimization is also used for the design of separable and non-separable-
denominator 2-D IIR filters [15]. Stability criteria based on the system matrix are also used
for the design of separable-denominator 2-D IIR filters [16]. Some methods used genetic
algorithms [17,18]. Other methods are based on 2-D FIR filters or use model reduction for
the design of 2-D IIR digital filters (see, e.g., [19–23]). 2-D finite impulse response (FIR)
digital filters have several advantages. They are simple and involve only localized compu-
tations [9]. They are always stable and can have a constant group delay. In comparison to
2-D IIR filters, the fundamental downside is that a high 2-D FIR filter order is frequently
needed to meet performance requirements with high selectivity [9]. On the other hand, one
of the key challenges in dealing with the construction of nearly linear-phase 2-D IIR filters
is stability issues [10]. Some methods confine the filters to having denominators in the form
of cascaded low-order factors [10], for which sufficient and necessary stability conditions
are available [11,12,24]. Other methods used a state-space approach to investigate the
stability of 2-D discrete systems using the sufficiency of the 2-D Lyapunov equation to
ensure 2-D stability. Although studying the stability problems in state space might lead to
strong stability constraints, it has been shown in [25] that the existence of a positive-definite
solution pair to the 2-D Lyapunov equation is a sufficient but not necessary condition for
2-D stability.
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For 2-D IIR filters with a separable denominator D(z1, z2) = D1(z1)D2(z2), the stabil-
ity is much easier to guarantee than the stability of non-separable-denominator filters [9,26].
Two-dimensional (2-D) IIR filters with separable denominators have received more atten-
tion because, in addition to fewer stability constraints, the complexity of the implementation
is reduced due to fewer coefficients with a separable denominator than with a nonsepa-
rable denominator of the same order [9,27,28]. The process of designing separable filters
often results in filters that have high order. For various reasons, it is desirable to replace a
high-order filter with a lower-order one to reduce the implementation cost and improve
computational efficiency. Many academics have been studying balanced realization model
reduction strategies for 2-D digital filters over the past few years as a solution to this chal-
lenge, and the findings have been shown to be helpful in the design of digital filters [8,29].
Since the controllability and observability Gramians of the system determine a balanced
realization in the main, different types of Gramians can be appropriately described for a
given 2-D system. As a result, for a given 2-D discrete system, there are many balanced re-
alization types that result in various balanced approximations [30]. This paper is concerned
with a balanced realization model reduction of 2-D digital filters based on the structured
controllability Gramian Ps and the structured observability Gramian Qs, where Ps and
Qs ∈ Rn×n. In other words, to use a balanced truncation, the controllability Gramian P and
the observability Gramian Q are needed. Linear matrix inequality (LMI) methods in the
MATLAB environment can be employed to compute these Gramians. The theory of LMI
has captured the interest of various research communities, particularly those working in
the field of control systems [31–33]. Given that linear programming problems are easily
handled by computers, the idea of LMI and its applications is founded on this fact [34].
Some of the earlier design work using LMI includes the work of Li and Paganini [35],
and Vandendorpe [36]. In [36], frequency-weighted balanced and closed-loop balanced
truncation are used to solve the same problem. In addition, block-diagonal solutions of LMI
are used in model reduction of uncertain systems, where the state partitions correspond to
different frequency variables [37]. One of the most important steps in creating a coordinate
system with balanced realization is to calculate the leading diagonal block matrices of the
Gramians of the supplied 2-D system [38]. There have been many 2-D IIR filter design
techniques that satisfy magnitude specifications using various methods [21,22]. The ap-
proach proposed in this paper differs in the sense that it ensures almost linear phase in
the passband. Methods satisfying such specifications have been few [6,8,14,18–20,29,39,40].
The paper introduces a new method for designing nearly linear-phase 2-D IIR filters by
leveraging a balanced realization model reduction technique, with a focus on controllability
and observability Gramians to ensure stability and reduced coefficients, demonstrating fa-
vorable results in numerical examples. The contributions of this paper in the area of 2-D IIR
filter design include the emphasis on achieving nearly linear phase in the passband, the use
of balanced realization model reduction, the incorporation of 2-D FIR filters, the utilization
of structured Gramians, efficient computation method for Gramians through LMIs, stability
preservation of the obtained filter, and the reduction of the number of filter coefficients.
Additionally, the paper’s comparison with existing techniques highlights its contribution
to the field of 2-D IIR filter design.

The paper is organized as follows: In Section 2, the definition of structured controllability
and observability Gramians of 2-D discrete systems is presented. Section 3 presents an LMI-
based algorithm for computing the structured controllability Ps and structured observability
Qs Gramians. In Section 4, a design procedure for a balanced realization model reduction
technique for separable-denominator 2-D IIR digital filters is proposed. To demonstrate the
effectiveness of the suggested approach, several examples, including plane wave filtering
using a 2-D fan filter, are provided in Section 5. Section 6 concludes the paper.

2. Gramians of 2-D Discrete Systems

For a given 2-D system, multiple types of Gramians can be specified correctly. Simi-
larly, for a 2-D discrete system, there are various types of balanced realizations that result in
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various balanced approximations [25,30]. In this section, we are interested in the structured
controllability and observability Gramians for 2-D discrete systems. The benefits of using
this type of Gramians over the others are that the resulting positive-definite block-diagonal
Gramians satisfy the 2-D Lyapunov equation and are, therefore, sufficient for 2-D stabil-
ity [25]. Further, they can be used to obtain a block-diagonal similarity transformation
which will lead, as it will be discussed in Section 4, to a guaranteed stable 2-D reduced-order
system. We use an LMI-based algorithm to compute these Gramians where the problem is
formulated as a minimization problem that can be solved numerically by minimizing the
trace of the Gramians Ps and Qs under LMI constraints. Using this algorithm, the Gramians
Ps ∈ Rn×n, Qs ∈ Rn×n are constrained to be positive-definite Ps > 0, Qs > 0, symmetric
Ps = PsT , Qs = QsT , and block-diagonal Ps = diag(p1, p2), Qs = diag(q1, q2).

Consider a 2-D discrete state-space system realization Σ = (A, b, c, d) described by
Roesser’s model [41]:xh(i + 1, j)

xv(i, j + 1)

 =

A11 A12

A21 A22

xh(i, j)

xv(i, j)

+

b1

b2

u(i, j) (1)

≡ Ax(i, j) + bu(i, j) (2)

y(i, j) = [c1 c2]x(i, j) + du(i, j) (3)

≡ cx(i, j) + du(i, j) (4)

where xh(i, j) ∈ Rm×1 is the horizontal state vector, xv(i, j) ∈ Rn×1 is the vertical state
vector, u(i, j) ∈ R is the input, y(i, j) ∈ R is the output, and A11, A12, A21, A22, b1, b2, c1, c2,
and d are real matrices with appropriate dimensions.

The structured controllability and observability Gramians [30] are defined by the
positive-definite solutions Ps and Qs of the following Lyapunov inequalities:

APs AT − Ps + bbT < 0 (5)

ATQs A−Qs + cTc < 0 (6)

The matrices Ps and Qs are block-diagonal matrices, Ps = diag(p1, p2) and Qs =
diag(q1, q2), representing the solutions to the above Lyapunov inequalities. In the following
section, a method to obtain the structural controllability and observability Gramians using
LMI will be presented.

3. Proposed Computation Method for Structured Gramians

LMIs’ versatility and computational efficiency for handling a wide range of system
design challenges have made them an effective computational design tool in systems and
control engineering [32,42–45].

In general, an LMI has the form:

F(x) , F0 +
m

∑
i=1

xiFi > 0, (7)

where x = (x1, . . . , xm) is a vector of m real numbers called the decision variables,
i.e., xi ∈ Rm, for i = 0, . . . , m and Fi ∈ Rn×n are given symmetric matrices. The prob-
lem is to determine if there is a vector x that exists and satisfies the matrix inequality.

In [46,47], it has been shown that for certain special cases, the rank minimization
problem can be reduced to a semi-definite problem. Under these hypotheses, it is possible
to say that the solution can be obtained by solving the associated LMI. One effective
heuristic, applicable when the matrix variable is symmetric and positive semi-definite, is
to minimize the trace instead of the rank [32,42]. This results in a semi-definite problem
(SDP), which can be efficiently solved. This heuristic obviously does not apply to problems
in which the matrix is non-square, since the trace is not even defined [32,42,48]. In the
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following, we use an LMI-based algorithm to compute the Gramian matrices Ps and Qs of
a 2-D discrete system represented by Roesser’s model.

Given a 2-D system in state-space form represented by Roesser’s model Σ = (A, b, c, d),
then the block-diagonal positive-definite solutions Ps and Qs of the Lyapunov inequalities
given by (5) and (6) are the structured controllability and structured observability Gramians.
The existence of such Ps and Qs ensures the stability of the system Σ, but the converse does
not hold, as shown in [6,25]. Finding Ps and Qs satisfying (5) and (6) can be solved by
formulating an optimization problem using the traces of Ps and Qs.

Given a 2-D system realization Σ = (A, b, c, d), one can find Ps by minimizing

min tr(Ps) (8)

subject to

APs AT − Ps + bbT < 0

Ps > 0 (9)

Ps = PsT
(10)

Ps = diag(p1, p2)

and
min tr(Qs) (11)

subject to

ATQs A−Qs + cTc < 0

Qs > 0 (12)

Qs = QsT
(13)

Qs = diag(q1, q2)

This problem can be solved as a linear objective minimization problem under LMI
constraints. The controllability and observability Gramian matrices Ps and Qs obtained by
using this method are block-diagonal positive-definite matrices.

We refer the reader to Appendix A, where several numerical examples, including
separable and non-separable-denominator 2-D systems, are presented. These examples
illustrate the use of the LMI to solve 2-D Lyapunov inequalities.

4. Balanced Realization/Truncation Technique for 2-D IIR Digital Filters

Balanced realizations are known to be useful realizations for model reduction. The in-
ternally balanced realization gives an indication of the dominance of the system states in the
input/output behavior [49]. The idea of a balanced realization model reduction, in general,
is to remove from the system matrices the blocks corresponding to the smaller Hankel
singular values [19,20,50,51]. In the following section, we present the design procedures
for nearly linear-phase 2-D IIR digital filters with separable denominators.

Design Procedures

For a 2-D IIR filter with a separable denominator, it is assumed that either A12 = 0 or
A21 = 0. The design steps proposed for this type of 2-D filter are described as follows:

1. Design a linear-phase 2-D FIR digital filter that approximates the required frequency
response.

2. Realize the designed 2-D FIR filter H(z1, z2) in state space using Roesser’s model [6,41]
as follows: [

Xh(i + 1, j)
Xv(i, j + 1)

]
=

[
A11 A12
A21 A22

][
xh(i, j)
xv(i, j)

]
+

[
b1
b2

]
u(i, j) (14)

y(i, j) =
[
c1 c2

][xh(i, j)
xv(i, j)

]
+ du(i, j), (15)
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where A11, A12, A21, A22, b1, b2, c1, c2, and d are real matrices.
3. Compute the structured controllability Gramian Ps and the structured observabil-

ity Gramian Qs using the LMI-based algorithm proposed in Section 3. Note that
since either A12 or A21 is zero, the equations are simplified and the computational
cost of these Gramians is reduced. The obtained structured controllability and struc-
tured observability Gramians are block-diagonal matrices, i.e., Ps = diag(p1, p2) and
Qs = diag(q1, q2).

4. Find the invertible matrices T1 and T2 such that

T−1
i pi(T−1

i )T = Σi = TT
i qiTi (16)

= diag(σ1i, σ2i, . . . σni i), i = 1, 2.

• Compute the matrices M1i = piqi, i = 1, 2.
• Decompose the matrices M1i as [ui, si, vi] = svd(M1i), i = 1, 2.

where the full singular value decomposition of an m-by-n matrix M involves:
m-by-m matrix u.
m-by-n matrix s.
n-by-n matrix v.

• Compute the matrices Ti = ui
√

si, i = 1, 2.

5. Obtain the similarity transformation matrix
T := diag(T1, T2).

6. Form the balanced realization model Σb = (T−1 AT, T−1b, cT).
7. Obtain the reduced-order (r1, r2) filter by partitioning the balanced realization ob-

tained in the above step Σr = (Ar, br, cr).

Figure 1 shows the flowchart of the proposed method.
The following section provides some design examples and a discussion of the imple-

mentation and evaluation details of this algorithm.

Figure 1. Flowchart of the proposed method.
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5. Illustrative Examples and Numerical Evaluation

In this section, we present several design examples to illustrate the effectiveness of the
proposed method. In these examples, 2-D FIR lowpass, bandstop, and fan digital filters
are first designed using window methods, and then the reduced-order 2-D IIR filters are
obtained by using the proposed method. The implementation of the resulting filter designs
is investigated and evaluated with respect to the maximum ripple in the passband region
∆p, the maximum ripple in the stopband region ∆s, the maximum ripple of the group delay
in the passband region ∆τ , and the number of arithmetic operations.

5.1. 2-D Lowpass Filters

For the sake of comparison, we carried out a study of an example of separable-
denominator 2-D IIR lowpass filter with nearly linear phase in the passband. This example
was presented by Xiao and Agathoklis in [6], where it is required to design a 2-D lowpass
filter to satisfy the following specifications:

| H(ω1, ω2) |=
{

1 ω1
2 + ω2

2 ≤ ω2
p

0 ω1
2 + ω2

2 ≥ ω2
s

(17)

where the passband edge ωp = 0.4π and the stopband edge ωs = 0.6π. First, the linear-
phase 2-D FIR filter prototype of order (24,24) was designed using the window method.
After that, the proposed algorithm is guaranteed to obtain a stable 2-D IIR filter with nearly
linear phase in the passband. The solution was computable in a reasonable amount of
time on a PC with an Intel (R) Core (TM) i5-2450M CPU @ 2.50 GHz and RAM of 6.00 GB.
The computation time for the controllability Gramian Ps and the observability Gramian
Qs was 7.46 s. The magnitude response of the full-order, (24,24), 2-D FIR lowpass filter
is shown in Figure 2a. Figure 2b shows the magnitude response of the reduced-order
(13,13) 2-D IIR filter presented in [6]. Figure 2c shows the magnitude response of the
reduced-order (13,13) 2-D IIR filter using the proposed method. The magnitude contour
of the obtained filter is shown in Figure 2d. Figure 2e,f show the passband group delays,
τ1 = τ2 ≈ 12 samples, of the reduced-order 2-D IIR filter. Table 1 summarizes the results of
the filter designed by the proposed method, the filter presented in [6], and the results of
the filter reported in Table 1 of [52]. These results are presented in terms of the reduced
order, the obtained group delays τ1 and τ2 and their ripple ∆τ , the maximum ripple ∆p in
the passband region, and the maximum ripple in the stopband region ∆s. The proposed
method gives a filter with comparable performance to that of the same order filter obtained
in [6,52], with improvements in the maximum passband ripple ∆p, the stopband ∆s, and the
group delay ripple ∆τ , as shown in Table 1 below. The table also shows that a smaller
number of coefficients is required by the obtained 2-D IIR filter than the original 2-D FIR.

Table 1. Comparison results of the 2-D IIR filters.

Proposed Method in Method in
Method [6] [52]

Orders (13,13) (13,13) (18,18)
Group Delay (12,12) (12,12) (12,12)

∆p 0.0102 0.0124 0.0128
∆s 0.0060 0.0111 0.0350
∆τ 0.0425 0.0725 -

CFIR 625 625 676
CI IR 224 224 399

We also analyze the complexity of the implementation based on the number of non-
zero coefficients in the transfer function of the filter. When implementing a general N1 × N2
2-D FIR filter, the number of filter coefficients C is (N1 + 1)(N2 + 1), so the cost of imple-
mentation increases rapidly as N1 or N2 increases. In this example, for the 2-D FIR filter of
order (24,24), C is 625, whereas for the reduced-order (13,13) 2-D IIR filter with a separable
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denominator, C is 14× 14 for the numerator plus 2× 14 for the denominator (i.e., C = 224).
We can see that implementing the 2-D IIR filter designed by the proposed method requires
less than half of the number of coefficients required by the 2-D FIR filter.

(a) (b)

(c) (d)

(e) (f)

Figure 2. Magnitude responses and group delays of 2-D lowpass FIR and IIR filters discussed in
Example 1 of Section 5.1: (a) 2-D FIR lowpass filter of order (24,24); (b) 2-D IIR of reduced order
(13,13) in [6]; (c) 2-D IIR of reduced order (13,13) using LMI; (d) magnitude contour of reduced-order
filter; (e) group delay τ1 of reduced order (13,13); (f) group delay τ2 of reduced order (13,13).

5.2. 2-D Bandpass Filter

In this example, we design a 2-D bandpass filter to satisfy the following specifications:

| H(ω1, ω2) |=
{

1 ω2
p1 ≤ ω1

2 + ω2
2 ≤ ω2

p2
0 otherwise

(18)
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where ωp1 = 0.2π and ωp2 = 0.5π. First, a linear-phase 2-D FIR filter of order (24,24)
is designed using a window method to satisfy the design specifications. Then, a 2-D
IIR bandpass filter of a reduced order (13,13) is obtained by using the proposed method.
In this example, the computation time for controllability Gramian Ps and observability
Gramian Qs was 6.88 s. The number of coefficients for the FIR filter of order (24,24) is
(N1 + 1)× (N2 + 1) = 625, while the obtained IIR filter of a reduced order of (13,13) has
a reduced number of coefficients equal to 224. The magnitude response of the full-order
(24,24) 2-D FIR bandpass filter is shown in Figure 3a. The reduced-order (13,13) filter is
stable, and its magnitude response is shown in Figure 3b. The group delays τ1 and τ2 over
the passband are illustrated in Figure 3c,d.

(a) 2-D FIR filter of order (24,24) (b) 2-D IIR filter of reduced order (13,13)

(c) Group delay τ1 (d) Group delay τ2

Figure 3. Magnitude responses and group delays of the reduced 2-D IIR bandpass filter described in
Section 5.2.

5.3. Two-Dimensional Fan Filter

Fan filters constitute an important class of 2-D filters that find applications, for example,
in geological and seismological data processing and beamforming [53,54]. This type of
2-D filter has the capability of directional filtering, where the signal is passed or rejected
according to its direction. In this example, the proposed method is employed in the design
of a 2-D fan filter having the magnitude response described in [55], with ω1 and ω2 as the
two frequency variables where −π ≤ ω1, ω2 ≤ π.

| H(ω1, ω2) |=
{

1 |ω2| ≤ |ω1|
0 otherwise

(19)

The first step is to construct a 2-D linear-phase FIR fan filter with order (49,49). Figure 4a
shows the magnitude response of the initial 2-D FIR fan filter. Second, a reduced-order nearly
linear-phase 2-D IIR fan filter of order (34,34) is obtained using the method proposed in
Section 4. The magnitude response of the reduced-order 2-D IIR fan filter is illustrated in
Figure 4b. The group delays τ1 and τ2 of the reduced-order 2-D IIR fan filter are shown in
Figure 4c,d, respectively. Figure 4e shows the impulse response of the reduced-order 2-D IIR
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fan filter. The magnitude contour of the same reduced-order 2-D IIR fan filter is illustrated in
Figure 4f. The number of multiplications and additions for the 2-D FIR initial filter of order
(49,49) is (N1 + 1)× (N2 + 1) = 2500 and 2499, respectively. For implementation purposes,
the obtained 2-D IIR fan filter with a reduced order of (34,34) has fewer computations: 1295
multiplications and 1294 additions. The computation time for controllability Gramian Ps and
observability Gramian Qs is 6.53 s. As can be seen, the designed 2-D IIR fan filter has a lower
order compared with the 2-D FIR filter, which would lead to reducing the computational
complexity in the implementation to achieve the same performance.

(a) (b)

(c) (d)

(e) (f)
Figure 4. 2-D FIR and IIR fan filters described in Section 5.3: (a) initial 2-D FIR fan filter of order
(49,49); (b) reduced 2-D IIR fan filter of order (34,34); (c) group delay τ1 of reduced 2-D IIR fan
filter; (d) group delay τ2 of reduced 2-D IIR fan filter; (e) impulse response of 2-D IIR fan filter;
(f) magnitude contour of the reduced fan filter.

5.4. Fan Filtering of Plane Wave Image

We present a 2-D fan filter for ground roll attenuation in this section. A specific kind of
Rayleigh wave with low frequency, low velocity, and high amplitude is called ground roll.
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It is the main type of coherent noise in land seismic surveys [56]. We generate an image
via the sum of plane waves (PWs) with two angles, θ1 = 80◦ and θ2 = 100◦, measured
counterclockwise from the horizontal. The wave has ω1 = 100/512× 2π rad/pixels and
ω2 = 53/512× 2π rad/pixels over the size N = 512 pixels of the output image. 2-D FIR
and IIR fan filters are designed to be applied to this PW image, where it is required to
design a reduced-order 2-D IIR fan filter to satisfy the following design specifications:

| H(ω1, ω2) |=
{

1 |ω1
2| ≤ 0.57|ω2

2 |
0 |ω1

2| > 0.57|ω2
2 |

(20)

Figure 5a shows the magnitude response of the initial 2-D FIR fan filter of order (24,24)
designed using the window method. The reduced 2-D IIR fan filter of order (17,17) obtained
by using the proposed method is shown in Figure 5b.

(a) FIR fan filter of order (24,24) (b) Reduced IIR fan of order (17,17)

Figure 5. Magnitude response of 2-D FIR and IIR fan filters described in Section 5.4.

For comparison purposes, the 2-D FIR fan filter of order (24,24) shown in Figure 5a is
applied to this PW image first, where Figure 6 shows the original and filtered images and
their 2-D spectra. The reduced-order 2-D IIR fan filter of order (17,17) shown in Figure 5b
is then applied to the same image, and the result is shown in Figure 7. In terms of the
computation complexity, the 2-D FIR fan filter of order (24,24) has a number of coefficients
C equal to 625, whereas for the reduced-order (17,17) 2-D IIR fan filter, we have 18× 18 for
the numerator plus 2× 18 for the denominator (i.e., the number of coefficients is C = 360),
which is reduced to less than 58%. For implementation, we can see that the obtained 2-D IIR
fan filter requires less than half the number of coefficients required by the 2-D FIR fan filter.
The results show that the reduced-order 2-D IIR fan filter designed using the proposed
method has good filtering performance on the PW image as well as the advantage of a low
implementation cost in terms of adders and multipliers over the 2-D FIR fan filter.
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Figure 6. Original and filtered plane wave images using 2-D FIR fan filter and their spectrum.

Figure 7. Original and filtered plane wave images using reduced-order 2-D IIR fan filter and
their spectrum.

6. Conclusions

A method to design nearly linear-phase 2-D filters has been presented. The method is
based on the model reduction of 2-D filters using balanced realization. The design method
starts with the design of a 2-D linear-phase FIR filter and its state-space representation as a
2-D system with a separable denominator. The balanced realization of this system can be
obtained using the 2-D structural controllability and structural observability Gramians of
the system. These block-diagonal Gramians satisfy a set of Lyapunov inequalities, which are
solved using an optimization approach under linear matrix inequality constraints. The use
of the structural Gramians ensures that the resulting reduced-order system satisfies a 2-D
Lyapunov equation and is, therefore, 2-D stable. The proposed method is illustrated by
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numerical examples that have shown that the method is suitable for the design of reduced-
order 2-D IIR filters with nearly linear phase in the passband. The performance of the
obtained 2-D IIR filters compares favorably with existing techniques, while at the same time
they can be implemented using a separable-denominator filter with less computational
complexity than the original 2-D FIR filter. Although the phase of the reduced-order
2-D IIR filter is only nearly linear, we can see that the reduced-order 2-D IIR filter offers
good selectivity, computation efficiency, and reduced system delay when compared to the
corresponding 2-D FIR filter.
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Appendix A

Appendix A.1

In this Appendix, two examples of obtaining the structured controllability and struc-
tured observability Gramians are presented. They include 2-D system matrices in the
non-separable and separable characteristic polynomial.

Example A1. Consider a 2-D discrete system described by Roesser’s model, (m, n) = (2, 2),
as follows:

A =


−0.5000 0.7500 0.3895 0.0389

0 0 0 0
0.1423 0 −0.4000 0.0200
−0.0342 0 −0.6000 0.0300


where xh ∈ R2 and xv ∈ R2.

b =
[
1 0 1 0

]T
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c =
[
1 0 0 0

]
Applying the proposed LMI algorithm to solve the Lyapunov inequalities, the structured

controllability and the structured observability Gramians are found to be positive-definite block-
diagonal matrices as given below:

Ps =


2.6744536 0.0000005 0 0
0.0000005 0.0000018 0 0

0 0 1.7237207 0.1361198
0 0 0.1361198 0.7926782



Qs =


1.6523883 −0.8820146 0 0
−0.8820146 1.2662409 0 0

0 0 1.2060296 0.0671541
0 0 0.0671541 0.0173983


Example A2. In this example, we consider the following 2-D model Σ = (A11, A12, A21, A22,
b1, b2, c1, c2), also presented as an illustrative example in Section 3.4 in [22]. The corresponding
system matrices are given below:

A11 =


0 1 0 0
0 0 1 0
0 0 0 1

−0.282145 0.551205 −0.875599 1.361780

,

A12 = 04×4 ,

A21 =


−0.020056 0.114892 −0.167819 0.227100
0.011559 −0.054709 0.120890 −0.150348
0.026037 0.035530 −0.034800 0.047409
0.032347 −0.055488 0.045669 0.077340

,

A22 =


0 0 0 −0.090322
1 0 0 0.199219
0 1 0 −0.390625
0 0 1 0.750000

,

b1 =
[
0 0 0 1

]T ,

b2 =
[
0.368103 −0.315109 0.227313 −0.073000

]T ,

c1 =
[
0.261041 −0.127614 −0.033891 0.424881

]
,

c2 =
[
0 0 0 1

]
,

d = 0.6520.

Here, xh ∈ R4 and xv ∈ R4. Note that since A12 is a zero matrix, this is a separable-
denominator system where the denominator of the corresponding transfer function can be factored
as the product of a polynomial in z1 by a polynomial in z2. The structured controllability matrix
Ps and the structured observability matrix Qs are found to be symmetric positive-definite and
block-diagonal matrices where Ps = diag(p1, p2) and Qs = diag(q1, q2) and these sub-matrices pi
and qi for i = 1, 2 are given as below:
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p1 =


8.1089 6.7562 4.6871 3.0064
6.7562 7.5461 6.2880 4.3242
4.6871 6.2880 7.0435 5.8058
3.0064 4.3242 5.8058 6.4723

,

p2 =


2.5173 −1.8049 1.0641 0.5113
−1.8049 4.2626 −2.7316 1.7339
1.0641 −2.7316 4.2820 −1.9780
0.5113 1.7339 −1.9780 5.2563

,

q1 =


0.6672 −0.7158 0.7194 −0.7046
−0.7158 1.5485 −1.5435 1.7515
0.7194 −1.5435 2.3619 −2.7027
−0.7046 1.7515 −2.7027 4.8899

,

q2 =


3.0759 1.8324 0.6877 0.3077
1.8324 2.7993 1.6562 0.5947
0.6877 1.6562 2.5770 1.5290
0.3077 0.5947 1.5290 2.3714

,

For the same system presented in the above example, we consider now a non-separable denomi-
nator case where the matrix A12 is given by:

A12 =


−0.0050 0.0287 −0.0420 0.0568
0.0029 −0.0137 0.0302 −0.0376
0.0065 0.0089 −0.0087 0.0119
0.0081 −0.0139 0.0114 0.0193


The results obtained for the block-diagonal structured controllability and observability Grami-

ans Ps = diag(p1, p2) and Qs = diag(q1, q2) are found to be as follows:

p1 =


8.7104 7.0353 5.0428 3.2759
7.0353 7.9591 6.6426 4.5683
5.0428 6.6426 7.3986 6.0962
3.2759 4.5683 6.0962 6.7877

,

p2 =


2.4947 −1.6721 0.7320 0.7283
−1.6721 4.0632 −2.3814 1.3424
0.7320 −2.3814 4.4503 −1.9242
0.7283 1.3424 −1.9242 5.5830

,

q1 =


0.7372 −0.7142 0.7476 −0.7911
−0.7142 1.5399 −1.5141 1.7804
0.7476 −1.5141 2.4323 −2.7913
−0.7911 1.7804 −2.7913 5.0316

,

q2 =


3.4080 1.8370 0.6826 0.3415
1.8370 3.1150 1.6702 0.5627
0.6826 1.6702 2.8215 1.6037
0.3415 0.5627 1.6037 2.4459

,
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