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Abstract: Explaining the complex structure and dynamics of sleep, which consist of alternating
and physiologically distinct nonREM and REM sleep episodes, has posed a significant challenge.
In this study, we demonstrate that a single wave model concept captures the distinctly different
overnight dynamics of the four primary sleep measures—the duration and intensity of nonREM and
REM sleep episodes—with high quantitative precision for both regular and extended sleep. The
model also accurately predicts how these polysomnographic measures respond to sleep deprivation
or abundance. Furthermore, the model passes the ultimate test, as its prediction leads to a novel
experimental finding—an invariant relationship between the duration of nonREM episodes and the
intensity of REM episodes, the product of which remains constant over consecutive sleep cycles. These
results suggest a functional unity between nonREM and REM sleep, establishing a comprehensive
and quantitative framework for understanding normal sleep and sleep disorders.
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1. Introduction

Despite significant progress in understanding the brain mechanisms involved in sleep
regulation [1], the physiological function and dynamics of sleep within the sleep–wake
homeostasis framework [2] remain uncertain and a topic of debate [3,4]. Sleep has a
complex structure, known as sleep architecture, and, in humans, typically includes five
to six sleep cycles per night (Figure 1a). Each sleep cycle consists of two types of sleep:
it starts with nonrapid eye movement sleep (NREMS) followed by rapid eye movement
sleep (REMS).

In contrast to the wake state, both NREMS and REMS are characterized by a low
perception of the environment, but they are otherwise remarkably different states of the
organism. Gradual disengagement from the environment in NREMS is associated with slow
brain activity and reduced muscle tone, though capacity for motor activity is preserved.
REMS is known as paradoxical sleep, since it manifests as high brain activity and rapid
eye movements, active dream mentation, irregular heart rate and respiration, and sexual
arousal, all on the backdrop of further reduction in perception and loss of muscle tone and
thermoregulation [5,6]. This unique simultaneous presence of wake-like and sleep-like
features makes the nature and significance of REMS particularly puzzling.

Understanding the intricate patterns of sleep dynamics represents a major challenge
in the field. For several decades, there has been a recognized need for a comprehensive
mathematical model that can describe both the sleep–wake and NREMS–REMS state transi-
tions. Such a unifying model could provide a framework for elucidating the underlying
mechanisms and help identify key factors and variables that affect the timing, duration,
and quality of the sleep state and its components.
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mechanisms and help identify key factors and variables that affect the timing, duration, 
and quality of the sleep state and its components. 

 
Figure 1. Human sleep architecture and overnight dynamics of the four primary sleep measures. 
(a). Schematic of consolidated sleep pattern, consisting of consecutive sleep cycles, each including 
longer NREMS (cyan) and shorter REMS (multicolor) episodes. Five sleep cycles are shown. (b). 
Schematic of typical changes in sleep measures over consecutive sleep cycles of regular nighttime 
sleep: NREMS duration (cyan), NREMS intensity (% of slow-wave sleep, black), REMS duration 
(orange) and REMS intensity (REM density, green). 

A major advance was achieved by the two-process model of sleep regulation [2], 
which is based on the empirical analysis of the intensity of NREM sleep. It proposed that, 
during wakefulness, homeostatic mechanisms define an exponential rise in “sleep pres-
sure” or “need for sleep”. This process was also described as the rise in “wake state insta-
bility” [7], manifesting as an increase in sleepiness, performance deficits, and variability 
in motor and cognitive responses [8–10]. As sleep deprivation continues, subjective and 
objective symptoms of state instability diversify, involving autonomic regulation, micro-
vascular and cardiovascular functions, and more [11–13]. The most prominent indicators 
of high wake state instability are microsleep intrusions and involuntary sleep initiations, 
which increase in frequency and duration over extended wakefulness [14]. Considering 
that the main driver of any state transition, whether in physics, chemistry, or biology, is 
the relative instability of one state compared to the other, these experimental observations 
suggest that the accumulation of wake state instability facilitates the spontaneous transi-
tion to a more stable sleep state. 

These important models and concepts, however, did not incorporate REM sleep and, 
over the years, other theoretical approaches have been employed to address the complex-
ities of the NREMS–REMS dynamic [2,15–18]. They considered the potential homeostatic 
relationship between REMS and NREMS or inter-REMS intervals [19], postulation of a 
specialized REMS oscillator that is active only during sleep [20], and modeling of ultra-
dian oscillations based on classical mechanics of a particle oscillating between three po-
tential wells representing wakefulness, NREMS, and REMS [16]. Although these models 
can simulate realistic patterns of sleep-like oscillations, they have not been able to quanti-
tatively reproduce typical sleep architecture or functionally unite NREMS and REMS. 

In our approach to sleep dynamics, we relied on earlier concepts of homeostatic reg-
ulation of sleep pressure and state instability [2,7]. We then suggested that quasi-periodic 

Figure 1. Human sleep architecture and overnight dynamics of the four primary sleep measures.
(a). Schematic of consolidated sleep pattern, consisting of consecutive sleep cycles, each includ-
ing longer NREMS (cyan) and shorter REMS (multicolor) episodes. Five sleep cycles are shown.
(b). Schematic of typical changes in sleep measures over consecutive sleep cycles of regular nighttime
sleep: NREMS duration (cyan), NREMS intensity (% of slow-wave sleep, black), REMS duration
(orange) and REMS intensity (REM density, green).

A major advance was achieved by the two-process model of sleep regulation [2], which
is based on the empirical analysis of the intensity of NREM sleep. It proposed that, during
wakefulness, homeostatic mechanisms define an exponential rise in “sleep pressure” or
“need for sleep”. This process was also described as the rise in “wake state instability” [7],
manifesting as an increase in sleepiness, performance deficits, and variability in motor
and cognitive responses [8–10]. As sleep deprivation continues, subjective and objective
symptoms of state instability diversify, involving autonomic regulation, microvascular
and cardiovascular functions, and more [11–13]. The most prominent indicators of high
wake state instability are microsleep intrusions and involuntary sleep initiations, which
increase in frequency and duration over extended wakefulness [14]. Considering that the
main driver of any state transition, whether in physics, chemistry, or biology, is the relative
instability of one state compared to the other, these experimental observations suggest that
the accumulation of wake state instability facilitates the spontaneous transition to a more
stable sleep state.

These important models and concepts, however, did not incorporate REM sleep and,
over the years, other theoretical approaches have been employed to address the complexi-
ties of the NREMS–REMS dynamic [2,15–18]. They considered the potential homeostatic
relationship between REMS and NREMS or inter-REMS intervals [19], postulation of a
specialized REMS oscillator that is active only during sleep [20], and modeling of ultradian
oscillations based on classical mechanics of a particle oscillating between three potential
wells representing wakefulness, NREMS, and REMS [16]. Although these models can simu-
late realistic patterns of sleep-like oscillations, they have not been able to quantitatively
reproduce typical sleep architecture or functionally unite NREMS and REMS.

In our approach to sleep dynamics, we relied on earlier concepts of homeostatic
regulation of sleep pressure and state instability [2,7]. We then suggested that quasi-
periodic alternations between the two types of sleep may reflect the wave dynamics of
the global physiological states of sleep and wake (Video Abstract). These global states are
known to involve numerous interdependent negative feedback loops that define complex
oscillations of critical biological variables around equilibrium setpoints on various levels,
from the molecular to the systemic. To maintain the dynamic stability of an organism within
physiological limits, it is essential for these homeostatic loops to be in coherence [21,22]. It
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is well established in physics that coherent behavior of multiple oscillators typically leads
to the formation of a wave; thus, global physiological states may present wave behavior.
Wave processes are prevalent in biological systems, playing an important role in signal
transduction and facilitating rapid long-range spatiotemporal coordination and signal
preservation [23]. These attributes of wave processes can be critically important for global
physiological states.

Since both sleep and wake states are stochastic processes, predicting the precise
timing and duration of overall sleep or its components is challenging. However, on
average, normal overnight sleep exhibits typical changes in the duration and intensity of
NREM and REM sleep episodes (see Figure 1b). This pattern resembles the behavior of
probability waves [24]. This would not be surprising, considering that both experimental
and theoretical physics have shown that classical stochastic systems can mimic probability
wave dynamics and be accurately described using wave mechanics [25–29].

Developing a comprehensive and unifying wave model of sleep dynamics requires
incorporating the interactions between sleep and wake states as well as between NREM and
REM sleep (Video Abstract). Such a model must then undergo rigorous quantitative testing
of its predictions against the dynamics of multiple independent experimental measures
representing both NREM and REM sleep. Notably, the dynamics of the four primary
sleep measures are strikingly distinct from one another (see Figure 1b). Over successive
sleep cycles, there is a gradual decline in NREM episode duration, accompanied by a
rapid exponential decrease in NREM intensity, a linear increase in REM intensity, and a
bell-shaped pattern of REM episode duration.

Here, we show that the wave model of sleep dynamics can accurately and quantita-
tively describe typical human sleep architecture and dynamics of all four primary sleep
measures (Video Abstract). It then accurately predicts the effects of shorter- or longer-than-
usual wakefulness on these sleep measures, resulting in relative “sleep abundance” or
“sleep deficit”, respectively. Importantly, the model suggests a functional link between
NREMS and REMS, predicting an invariant relationship between NREMS duration and
REMS intensity over the course of the night, which we now demonstrate experimentally.

2. Results
2.1. Modeling Sleep–Wake Homeostasis through Interacting Waves

We modeled the dynamics of wake and sleep states as an interaction of two waves,
each shaped by the Morse potential well. This mathematical function is widely used
in physics and chemistry to describe atomic interactions in molecules near their equilib-
rium, shaping the probability waves of molecular vibrations. Section 4 and Supplemental
Figure S1 detail the choice of the Morse potential for modeling sleep dynamics, as well
as some analogies between the dynamics of atomic and homeostatic states and their
regulating parameters.

Figure 2 illustrates two distinct potential wells: UW representing the wake state and US
representing the sleep state. These potential wells effectively confine the respective waves
and demonstrate their unique dependence on a single variable, the regulating parameter of
state stability, x. In this context, x serves as a one-dimensional reduction of a number of
regulatory physiological parameters that define the system’s capacity to maintain stability
(see more on this in the Section 3). Theoretically, either state can manifest at any x value,
but their energy and thus stability exhibit distinct dependencies on x. Specifically, the wake
state (UW) exhibits minimal energy and maximal stability at lower x value, compared to
the sleep state (US). For each state, a deviation from its x value of minimal energy increases
the instability of the state. Therefore, as per the minimal energy principle, spontaneous
selection between being in the wake or sleep state depends on the given x value, with high
x values favoring the sleep state (Methods 1–3).
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line) and the xc region of efficient interaction of the two states (gray area). This increases the energy 
of state instability 𝜀 (vertical red arrow and vertical axis) above the homeostatic energy threshold 
(Uxc, black dot; the crossing point of UW and US curves). Sleep (US, purple potential) is initiated at xo 
(red dot) of the initial energy level Jin (first sleep cycle). Relaxation of x and 𝜀 occurs in the form of 
a sleep wavepacket propagating along energy levels (blue arrows), where xin—maximal deviation. 
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potential, energy gaps Δ𝜀  between levels increase linearly over the course of energy relaxation 
(downwards black arrow) and correlate negatively with the width of the potential well. *—maximal 
stability of the corresponding state. The direction of horizontal blue arrows shows which state is 
favored by changes in x value: within the equilibrium xc region, REM sleep is favored, x-values 
greater than xc favor NREM sleep, and x-values less than xc favor the wake state. The schematic only 
serves to illustrate the concept. For actual position of Uxc and Jin within US, see Supplemental Figure 
S2. 

Figure 2. Wave model of sleep dynamics. See Video Abstract for dynamic presentation. In the wake
state (UW, red potential), driving force F (horizontal red arrow) increases the value of regulating pa-
rameter x (horizontal axis) beyond the sleep–wake homeostatic equilibrium setpoint xc (vertical cyan
line) and the xc region of efficient interaction of the two states (gray area). This increases the energy
of state instability ε (vertical red arrow and vertical axis) above the homeostatic energy threshold
(Uxc, black dot; the crossing point of UW and US curves). Sleep (US, purple potential) is initiated at xo

(red dot) of the initial energy level Jin (first sleep cycle). Relaxation of x and ε occurs in the form of
a sleep wavepacket propagating along energy levels (blue arrows), where xin—maximal deviation.
When the wavepacket reaches xc, a portion of its energy ∆ε (yellow arrows) is released. In the
Morse potential, energy gaps ∆ε between levels increase linearly over the course of energy relaxation
(downwards black arrow) and correlate negatively with the width of the potential well. *—maximal
stability of the corresponding state. The direction of horizontal blue arrows shows which state is
favored by changes in x value: within the equilibrium xc region, REM sleep is favored, x-values
greater than xc favor NREM sleep, and x-values less than xc favor the wake state. The schematic only
serves to illustrate the concept. For actual position of Uxc and Jin within US, see Supplemental Figure S2.

During daytime wakefulness, the collective action of homeostatic, circadian, and
environmental forces drives x away from the parametric region of a stable wake state, thus
increasing the energy of state instability, ε (Video Abstract). Once the system passes the xc
equilibrium region, where the two curves cross and the energy of the two states is equal, the
principle of minimal energy should allow for a spontaneous state transition from the wake
to the sleep state. However, this is counteracted by the continuous work of the driving
forces that promote consolidated daytime wakefulness and the further exponential rise in
the energy of state instability.



Clocks&Sleep 2023, 5 690

At night, these driving forces subside, and the energy accumulated during wakefulness
is spontaneously transferred from the unstable wake state to the more stable sleep state.
Sleep onset occurs in between the two potential walls (xo) at initial US level jin, generating
a sleep wavepacket with energy ε jin (Figure 2; Methods 4, 5). This event initiates the process
of energy relaxation through a series of quasi-periodic oscillations, the sleep cycles, with
each cycle resulting in a transition to a lower energy level. Eventually, this energy relaxation
can move the system back to the original state of a stable wake state, closing the homeostatic
sleep–wake loop.

Figure 3a illustrates the two simple model parameters—the width of the potential
well (σ) and the number of the top occupied energy levels (jin)—that are sufficient for
the definition of the character of oscillations within the Morse potential, including the
period, amplitude, and the energy lost during the transition to a lower level (energy gaps).
The model predicts that these two parameters depend on two principal modulators of
sleep dynamics—habitual sleep duration and the duration of wakefulness prior to the
experimental sleep night. Thus, once the analysis of the dynamics of one primary sleep
measure defines the values of these two model parameters for a given experimental group,
they would allow us to predict the dynamics of other primary sleep parameters in the
same dataset.
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Figure 3. The wave model provides accurate quantitative description of dynamics in NREMS episode
duration. (a). Two model parameters that allow us to describe NREMS episode duration (cyan solid
line): σ—width of US potential and jin—order number (N) of the initial energy level at which sleep
is initiated. ε jin —energy of state instability reached by the time of sleep initiation (cyan dashed
line). (b). Regular sleep: NREMS episode durations. Dashed line—changes predicted by the model,
orange triangles—experimental data (min, mean ± SEM) as a function of sleep cycle order number n
(horizontal axis). Due to jin being populated at a variable point xo (see Figure 3), the first experimental
NREMS episode duration is, on average, 1

4 shorter than the theoretical one for this energy level.
Data collected in 24 young healthy subjects, 39 nine-hour nights (Method 16). R2 value: 0.905.
(c). Extended sleep. Dashed line—changes predicted by the model, blue triangles—experimental
data (min, mean ± SEM) as a function of sleep cycle order number n (horizontal axis). Data collected
in 11 young healthy subjects over 308 fourteen-hour nights, as reported by Barbato and Wehr [30].
First NREMS episode duration is explained in (b). R2 value: 0.993.
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2.2. The Wave Model Accurately Describes the Dynamics of NREMS Episode Duration

We used group data to test the model against physiological sleep measures as the
stochastic nature of individual sleep patterns requires additional considerations, such as
probabilistic treatment of model parameters and the influence of intrinsic and environ-
mental perturbations or noise. First, we tested the model against the dynamics of NREMS
episode duration in our group of young healthy volunteers with normal sleep of regular
duration (Figure 3b, Method 16).

The decrease in NREMS episode duration over consecutive cycles (Figure 1b) is similar
to the decline in the period of oscillations of the sleep wavepacket along the regulating
parameter x in the Morse potential (Supplemental Figure S2). As predicted, the right
combination of the two model parameters σ and jin (Figure 3a) allowed for the accurate
depiction of relative changes in NREMS episode duration in this experimental dataset
(Figure 3b; χ2 goodness of fit test p > 0.88, first episode excluded). As expected, the
duration of the first NREMS episode was curtailed by approximately a quarter of the
theoretically predicted whole period due to the position of sleep onset (xo) in between the
two potential walls (Figure 2).

To validate the model against independent observations and in subjects with differ-
ent habitual sleep duration and prior wakefulness, we then tested the model against the
dynamics of NREMS episode duration in a dataset collected by Barbato and Wehr [30,31].
In this experimental group, subjects displayed extended sleep duration over four weeks
of daily exposure to 14 h sleep-favoring conditions. The model’s predictions were again
affirmed, providing its excellent fit to the experimental data (Figure 3c), with high statistical
significance for this experimental group (χ2 goodness of fit test p > 0.99, first episode
excluded) reflecting the high statistical power of this outstanding dataset (308 sleep nights).
The model prediction that the first NREMS episode is, on average, curtailed by approxi-
mately a quarter of that predicted for the initial energy level was also confirmed in this
analysis. Moreover, as predicted, longer sleep duration and more sleep cycles in the
extended sleep group were associated with increased σ and jin (Supplemental Table S1).

Collectively, our findings demonstrated that the overnight decline in the duration of
NREMS episodes can be accurately and quantitatively described by the consecutive periods
of wavepacket oscillations within the Morse potential based on the right combination
of the two model parameters, σ and jin. However, for any model to claim adequate
representation of an overall process, it is necessary to predict the dynamics of several
independent measures characterizing this process that are not part of the development of
the model. Hence, to demonstrate that the two interacting probability waves can indeed
describe overall sleep architecture, the model had to precisely predict all four primary sleep
measures (Video Abstract). To date, no sleep model has attained this validation threshold.

2.3. Quantitative Predictions of the Dynamics of NREMS Intensity

The intensity of a wave is directly proportional to the square of its amplitude L2, as
per wave mechanics. As we already knew the two model parameters σ and jin for both
the regular and extended sleep datasets (Figure 3), we calculated the amplitude of the
wavepacket oscillations, L (Figure 4a; Method 13). The model also predicted that initial
wave intensity and the rate of its decline positively correlate with the energy of the initial
level, ε jin . Accordingly, the intensity of wavepacket oscillation at each energy level was
expressed as κL2, where the coefficient κ is inversely proportional to |ε|, the absolute value
of wavepacket energy (Method 13). Note that, in general, ε values in a potential well are
presented as negative, so an increase in ε leads to a lower |ε| (Figure 2).

Conventionally, NREMS intensity is evaluated based on the power of slow-wave
activity (SWA) in the brain cortex or the duration of slow-wave sleep (SWS) [32]. To test our
quantitative prediction regarding NREMS intensity, we compared SWS durations per cycle
in experimental groups with regular and extended sleep to our model’s predictions. Within
each group, NREMS intensity was normalized to the first sleep cycle. We found that our the-
oretical curves were in good agreement with experimentally observed dynamics of NREMS
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intensity for both experimental groups (Figure 4b, χ2 p > 0.99 for both datasets). Using
SWA data for regular baseline sleep and recovery following 36 h sleep deprivation [32]
produced similar results (Figure 4c, χ2 p > 0.95 for both datasets).

Overall, an accurate description of the dynamics of NREMS episode duration by a
combination of two model parameters generated a precise prediction of the dynamics
of NREMS intensity over consecutive sleep cycles. This also provided a mathematical
and conceptual explanation for the expedient decline in NREMS intensity, which flattens
out mid-sleep, substantially outpacing the decline in NREMS episode duration or overall
sleep duration.
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2.4. Quantitative Predictions of the Dynamics of REMS Intensity

Validation of the model’s prediction that propagation of the wavepacket at each energy
level corresponds to NREMS, as per both NREMS duration and intensity (Figures 3 and 4),
suggested that the position of REMS episodes in between NREMS episodes may correspond
to the transition of the wavepacket from a higher to a lower energy level. Accordingly,
the intensity of REMS was then predicted to be proportional to the magnitude of the
energy released during each transition (Figure 2). This corresponds to the energy gap
∆ε between adjacent levels that depends on the same two model parameters, σ and jin
(Figure 3a). Notably, in the Morse potential, as in other semi-classical potentials, ∆ε is
inversely proportional to the period of oscillation and increases linearly towards lower
energy levels.

As an experimental correlate of REMS intensity, we used the number of eye movements
per minute of REMS episode, often referred to as REM density [33–36]. We elaborate on
the choice of this measure in Section 3. Since energy gaps in the Morse potential are
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small at high energy levels and increase linearly as the energy is relaxed (Figures 2 and 5a),
the model predicted that REMS intensity should also be low at the start of sleep and
increase linearly over consecutive REMS episodes. This is consistent with experimental
data accumulated over the past decades that show linear increases in quantitatively assessed
REM density over consecutive cycles of normal sleep [33–36] (Figure 5b). These increases
depend on sleep homeostasis, not circadian regulation [36].

Clocks&Sleep 2023, 5, FOR PEER REVIEW  8 
 

 

correspond to the transition of the wavepacket from a higher to a lower energy level. Ac-
cordingly, the intensity of REMS was then predicted to be proportional to the magnitude 
of the energy released during each transition (Figure 2). This corresponds to the energy 
gap Δ𝜀 between adjacent levels that depends on the same two model parameters, 𝜎 and 
jin (Figure 3a). Notably, in the Morse potential, as in other semi-classical potentials, Δ𝜀 is 
inversely proportional to the period of oscillation and increases linearly towards lower 
energy levels.  

As an experimental correlate of REMS intensity, we used the number of eye move-
ments per minute of REMS episode, often referred to as REM density [33–36]. We elabo-
rate on the choice of this measure in Section 3. Since energy gaps in the Morse potential 
are small at high energy levels and increase linearly as the energy is relaxed (Figures 2 
and 5a), the model predicted that REMS intensity should also be low at the start of sleep 
and increase linearly over consecutive REMS episodes. This is consistent with experi-
mental data accumulated over the past decades that show linear increases in quantita-
tively assessed REM density over consecutive cycles of normal sleep [33–36] (Figure 5b). 
These increases depend on sleep homeostasis, not circadian regulation [36]. 

 
Figure 5. The wave model accurately predicts the slope of linear increase in REMS intensity. (a). 
Schematic of the region of homeostatic equilibrium between sleep and wake states (gray xc region 
in Figure 2, see caption for details) depicting linear increase in energy release (yellow arrows) that 
occurs in REMS due to linear increase in energy gaps between levels of Morse potential. (b). Rate of 
linear increase in REMS intensity (REM density) over consecutive sleep cycles documented in three 
similar but independent groups, as compared to theoretical prediction for a similar group by the 
wave model (orange dashed line). Group 1 (large open circle, n = 11 nights; R2 0.985; Method 16); 
group 2 in Aserinsky [34] (red circle, n = 20 nights, R2 0.961); group 3 in Marzano et al. [35] (small 
open circle, n = 50 nights; R2 0.997). Theoretical prediction was based on increase in energy gaps Δε 

Figure 5. The wave model accurately predicts the slope of linear increase in REMS intensity.
(a). Schematic of the region of homeostatic equilibrium between sleep and wake states (gray xc

region in Figure 2, see caption for details) depicting linear increase in energy release (yellow ar-
rows) that occurs in REMS due to linear increase in energy gaps between levels of Morse potential.
(b). Rate of linear increase in REMS intensity (REM density) over consecutive sleep cycles documented
in three similar but independent groups, as compared to theoretical prediction for a similar group by
the wave model (orange dashed line). Group 1 (large open circle, n = 11 nights; R2 0.985; Method 16);
group 2 in Aserinsky [34] (red circle, n = 20 nights, R2 0.961); group 3 in Marzano et al. [35]
(small open circle, n = 50 nights; R2 0.997). Theoretical prediction was based on increase in en-
ergy gaps ∆ε over consecutive cycles, with no adjusting parameters used (n = 39 nights, as in
Figure 3b). Mean group data for REM density are normalized to the first sleep cycle.

A strong validation of our model was then provided by comparing the theoretical
and experimental slopes of linear increase in REMS intensity over regular sleep period
(Figure 5b). In the model, the slope is defined by the same two model parameters σ and
jin (Figure 3a). The model also predicts that jin positively correlates with the duration of
prior wakefulness, while σ positively correlates with habitual sleep duration (Method 14).
Together, this suggested that groups with similar sleep durations prior to and over the
experimental period should have similar REMS intensity slopes.

To test this prediction, we compared the dynamics of quantitatively assessed REM
density data for normal sleep of regular duration documented in three groups of young
healthy volunteers, studied by us (n = 11 nights; Method 16), Aserinsky [34] (n = 20 nights),
and Marzano et al. [35] (n = 50 nights). Figure 5b illustrates that the slope angles were
almost identical between these independent experimental groups and matched the slope
predicted by the model well (Method 16; χ2 p > 0.99 for all datasets). The latter theoretical
slope was based exclusively on the values of σ and jin documented in the analysis of
NREMS episode durations during 39 nights of regular sleep (Figure 3b).
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2.5. Sleep Cycle Invariant: Theoretical Prediction and Experimental Demonstration

Figure 6 and Video Abstract illustrates the wave model’s prediction of a sleep cycle
invariant (SCI) based on the validated mathematical description of NREMS and REMS
dynamics. As described above, within each sleep cycle, NREMS episode duration corre-
sponds to the period of oscillation of the sleep wavepacket, and this period is inversely
proportional to the energy gap between levels, 1/∆ε (Method 5). On the other hand, the
intensity of the subsequent REMS episode is directly proportional to the energy released
at the end of the cycle, ∆ε (Figure 5). This predicts that the product of NREMS episode
duration and the intensity of the following REMS episode should remain constant over
consecutive sleep cycles, which constitutes the SCI (Figure 6; Method 5, 14, 15).

We suggested that various factors that interfere with sleep quality can modify SCI stabil-
ity and therefore tested this prediction against high sleep efficiency data (not less than 93%,
n = 11 nights). The product of NREMS duration and REMS intensity was calculated for
each sleep cycle of each individual night to evaluate the SCI.

Despite NREMS duration and REMS intensity showing distinct dynamics over consec-
utive sleep cycles, the product of these two sleep measures (SCI) remained near constant
over the course of the night (Figure 7a,b, p value > 0.92, see Statistical analysis in Methods).
This confirmed the invariant relationship between NREMS and REMS over consecutive
sleep cycles of normal high-efficiency sleep.

We then aimed to evaluate the SCI using previously published data on normal sleep
and sleep disorders, but encountered a methodological challenge. A robust linear in-
crease in REM density over the sleep period was originally demonstrated by Aserinsky,
the co-discoverer of REM sleep [5], through quantitative assessment of rapid eye move-
ments and was confirmed by others, also establishing its independence from the circadian
phase [34–36]. Conversely, most studies reported REM density based on more technically
simple semi-quantitative evaluations, such as assigning a score to a range of REMs or
counting a number of intervals that contained REMs. These semi-quantitative measures can
reveal major pathological changes in REMS intensity [37,38] but lack sensitivity, especially
at high intensity levels [39], and thus can obscure normal linear patterns. Consequently, we
could identify few studies that reported quantitative data on REMS intensity, and none that
reported them over consecutive sleep cycles in parallel with NREMS episode durations.

The model predicted that the remarkable similarity in the dynamics of NREMS dura-
tion (Figure 3a,b) and quantitatively assessed REMS density (Figure 5b) among independent
groups of young healthy subjects is indicative of similar dimensions of their sleep potential
wells (US), specifically the wells’ widths, and energy levels at which sleep is initiated.
This further suggested that the SCI might be discernible even if NREM and REM data
originate from distinct studies. We then used NREMS data from one study [30] and REMS
intensity data from another [34], with both studies being of the highest quality and allowing
their subjects the opportunity of extended sleep. Figure 7c illustrates the results of such a
“hybrid” analysis that supports the model’s prediction, demonstrating the SCI and further
underscoring the inherent conservation of typical human sleep architecture, at least in
healthy young adults.

In contrast, when we used the results of a semi-quantitative assessment of REMS
intensity in combination with NREMS episode duration documented within one top-
quality large-scale study [31], the invariant relationship was obscured (Figure 7d). Together,
these results further supported the existence of the SCI in normal sleep and underscored
the critical importance of the quantitative assessment of REM density.
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Figure 6. Wave model of sleep predicts sleep cycle invariant. Experimental sleep measures (purple
font) are proportional (∝) to the wave model parameters (black font). NREMS duration is ∝ to the
period of x oscillation and thus inverse ∝ to the energy gap, 1/∆ε. NREMS intensity is ∝ to L2/|ε|,
where L is the amplitude of x oscillation and |ε| is the absolute value of wavepacket energy. REMS
duration is ∝ to τ, the lifetime of coherent superposition. REMS intensity is ∝ to energy gap, ∆ε. The
model predicts that the sleep cycle invariant (SCI), being the product of NREMS duration and REMS
intensity, should remain constant over consecutive sleep cycles. Cyan—NREMS, multicolor—REMS.
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Figure 7. Sleep cycle invariant unites NREM and REM sleep. (a). The product of NREMS episode
duration and REMS episode intensity—the sleep cycle invariant (SCI, purple). NREMS duration
(cyan) and REMS intensity based on quantitative evaluation of REM density (light green) over
consecutive cycles of regular sleep in a group of 11 young healthy volunteers with sleep efficiency of
at least 93%; n = 11 for cycles 1–4 and n = 5 for cycle 5 (see Section 4). Data normalized to the first
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sleep cycle (=1) for each parameter and presented as group means ± SEM per cycle *. (b). Variation
in SCI over consolidated high-quality sleep. Data are presented as mean ± SEM; dashed line defines
the mean value (515.2); the rest as in (a). (c). Analogous to panel (a), the plot shows SCI based on
NREMS duration per sleep cycle, as reported by Barbato and Wehr [30] (n = 308 nights; 11 young
healthy volunteers), and REMS intensity per cycle, as reported by Aserinsky [35] and evaluated
using quantitative method (n = 20 nights; 10 young healthy volunteers). (d). Loss of linear time- and
cycle-dependency of REMS intensity when assessed using semi-quantitative method (dark green)
results in obscured NREMS–REMS invariant relationship (purple). REMS intensity was assessed in
parallel with NREMS duration, as reported by Barbato et al. [31] (n = 208 nights; 8 young healthy
volunteers). Data normalized to the first sleep cycle (=1) for each parameter and presented as group
mean per cycle *. * In (a–d), the duration of the first NREMS episode was multiplied by 3/4, as per
the model prediction of incomplete period of first cycle (see Methods and Figures 2 and 3).

2.6. Quantitative Predictions of the Dynamics of REMS Duration

Finally, we addressed the dynamics of the fourth primary sleep measure—the dura-
tion of REMS episodes. The validated model prediction that REMS intensity is directly
proportional to the energy released during the transition of a wavepacket to a lower level
suggested that the duration of REMS episodes is determined by the duration of this energy
release process.

As the wavepacket approaches the wake state (UW) towards the end of each NREMS
episode, it enters the region of sleep–wake homeostatic equilibrium (xc region) where the in-
teraction between sleep and wake waves is increased (Figures 2, 5a and 8). Such interaction
typically delays the waves’ propagation (Methods 6–9), leading to a temporary coherent
superposition of two waves representing different states. The sleep–wake interaction is
strongest at the crossing of the two potentials. This can create a resonant state that further
enhances the strength of interaction between sleep and wake waves and prolongs the delay
in wavepacket propagation within this xc region. The effect is maximal at resonance level
jc, the energy of which is distinct from US levels and corresponds to the homeostatic energy
threshold, U(xc) (Figure 8; Video Abstract, Methods 8–10). The energy dependence of the
time that the wavepacket spends in the xc region of homeostatic equilibrium is then defined
by the classical Lorentz resonance curve (Methods 11).

The same two model parameters, σ and jin (Figure 3a), characteristic of a specific
dataset, predicted energy relaxation dynamics as a function of cycle number, n. Fitting
the right combination of resonance energy level and resonance width (Figure 9a) then
allowed for a quantitative description of the nonlinear dynamics of REMS episode duration
(Method 12).

This analysis was applied to both regular and extended sleep datasets (same as in
Figure 3b,c and Figure 4b), and the model accurately described both patterns of REMS
episode duration (Figure 9b,c; χ2 goodness of fit test p > 0.95 and p > 0.99, respectively).
Under normal conditions, with no sleep debt accumulated prior to the experimental
procedures or during the study, the dynamics of REMS episode duration follows a bell-
shaped curve (Figure 9b,c). These experimentally observed bell-shaped patterns of REMS
duration were consistent with the Lorentz resonance curve, according to which the closer
the energy of the wavepacket is to the energy of resonance level jc, the longer the presence
of the wavepacket in the homeostatic equilibrium region, and thus the longer the duration
of the REMS episode. Accordingly, maximal REMS duration was observed around the
homeostatic energy threshold, Uxc. The lower peak of the bell-shaped curve in extended
sleep (Figure 9c) was consistent with wider resonance in a wider potential well that had
more energy levels and smaller energy gaps (Supplemental Table S1).
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Figure 8. The duration of coherent superposition within the equilibrium region of sleep and wake
states is enhanced by resonance. Around the crossing point U(xc) of US (purple potential) and UW (red
line), a strong sleep–wake interaction creates resonance level Jc and resonance state (gray area) with
energy-dependent (ε) strength (width of gray area). The propagation of the sleep wavepacket (purple)
is temporarily delayed by the resonance within the xc equilibrium region. There, the wavepacket in-
corporates the sleep and wake waves and forms their coherent superposition (red-purple wavepacket).
This represents REM sleep, associated with the release of a portion of energy ∆ε (yellow arrow).
This is a schematic representation; for actual typical position of Jc, see Supplemental Figure S2.
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Figure 9. Accurate quantitative prediction of the durations of REMS episodes by the wave model
of sleep dynamics. (a). In addition to model parameters σ—width of US potential (cyan horizontal
arrow) and Jin—initial energy level at which sleep is initiated (yellow line; and its energy—vertical
cyan arrow) used in the analysis of the duration of NREMS episodes, intensity of NREMS and
REMS (see Figures 4–6), quantitative description of REMS episode duration requires two more model
parameters: Γ—resonance width (red vertical double arrow) and energy of resonance level ε jc (red
vertical arrow). Gray area—resonance region, with wider area depicting stronger resonance. Black
dot—homeostatic energy threshold U(xc). (b). Regular sleep: theoretical curve (dashed line) and
experimental data (min, mean ± SEM) for REMS episode durations (circles) as a function of sleep
cycle order number n (horizontal axis). Data collected in 24 young healthy subjects, 39 nine-hour
nights (Method 16). R2 value: 0.811. (c). Extended sleep: theoretical curve (dashed line) and
experimental data (min, mean ± SEM) for REMS episode durations (circles) as a function of sleep
cycle order number n (horizontal axis). Data collected in 11 young healthy subjects, 308 fourteen-hour
nights, as reported by Barbato and Wehr [30]. R2 value: 0.965.
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2.7. Model Predicts the Effects of Sleep Deprivation or Abundance on Sleep Architecture

Validating a model under perturbed conditions is essential for ensuring its robustness
and reliability. In this report, we outline the model’s predictions only for acute perturbations
under entrained conditions when sleep is initiated at the habitual bedtime. These conditions
provide a stable adaptive synergy between circadian and homeostatic regulation of sleep.
The wave model demonstrated high accuracy in predicting the effects of acute sleep
deprivation (causing sleep deficit) and shorter-than-usual wakefulness (causing relative
sleep abundance) on sleep architecture, which have been extensively documented in various
experimental settings [10,32–34,40].

Specifically, the model predicted that recovery sleep following acute moderate sleep
deprivation starts with higher NREMS intensity due to higher initial energy and higher
amplitude of wavepacket oscillations at higher levels, on which NREMS intensity depends
(Figure 4). Figure 10 illustrates that the higher wake state instability reached following
prolonged wakefulness is predicted to correspond to weaker resonance, and hence shorter
initial REMS episode duration. Smaller energy gaps ∆ε between higher energy levels
of the Morse potential result in lower initial REMS intensity (Figure 5). Initial NREMS
episode duration is a less predictable parameter following sleep deprivation, mainly due
to increased variation in xo, the position of spontaneous sleep onset (Figure 2), or the
occurrence of exceptionally long NREMS episodes due to the well-known “skipped REMS
episode” phenomenon. The latter can be explained by very weak resonance at high energy
levels, which leads to a very brief coherent superposition and thus to REMS duration that
is too short to be reliably documented.
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Figure 10. The wave model predicts the effects of sleep deprivation and sleep abundance on the
duration and intensity of REMS episodes. Regular sleep: Maximal REMS duration (width of the
multicolor blocks) occurs near resonance level Jc at the homeostatic energy threshold (Uxc, black dot,
dashed line). Reductions in this experimental measure above and below the resonance level (gray
area) are defined by resonance width (Γ, vertical double-arrow). REMS episode intensity (height
of the multicolor blocks) follows a linear increase in energy gaps between levels (horizontal gray
lines) of the Morse potential. Sleep deprivation (SDep): following a prolonged wake state, sleep starts
at a higher initial energy level (Jin SD), resulting in smaller initial duration and intensity of REMS
episodes. If recovery sleep is of regular duration, awakening may occur before reaching or at the
homeostatic threshold level, preventing the formation of a bell-shaped pattern of REMS episode
duration. Sleep abundance (SAbn): following a brief wake state, with no prior sleep deficit, sleep is
initiated at a lower initial energy level (Jin SA), increasing the initial duration and intensity of REMS
episodes. Recovery sleep can be shorter than usual due to the relaxing energy of instability reaching
the homeostatic energy threshold faster than in regular sleep.
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Another important prediction of the model for the effects of sleep deprivation is that
recovery sleep of regular duration initiated at the habitual bedtime may not have enough
time to reach below the homeostatic energy threshold and thus the resonance level. As a
result, the REMS duration curve would not manifest itself in a bell shape but would only
show a continuous increase (Figure 10, SDep).

In contrast to the effects of sleep deprivation, when sleep onset at the habitual bed-
time follows prior acute sleep abundance, such as due to a prolonged daytime nap, sleep
initiation would be associated with lower energy level, larger ∆ε, and a smaller differ-
ence between jin and jc (Figure 10, SAbn). These accurately predict that sleep would
start with a lower NREMS intensity, higher REMS intensity, and longer REMS episode
duration, respectively.

3. Discussion
3.1. Interaction of Two Probability Waves Defines Dynamic Sleep Architecture

This study introduces an innovative conceptual model for understanding sleep dy-
namics, based on the interaction of two probability waves representing sleep and wake
states (Video Abstract). The model is rigorously tested against experimental data that
capture normal sleep patterns of both regular and extended duration. The results demon-
strate a high level of statistical significance in the model’s quantitative predictions of the
dynamics of both the durations and intensities of NREM and REM sleep. This finding
suggests an intrinsic connection between these two types of sleep, a concept that has
been pursued for seven decades since the discovery of REM sleep [5]. This suggestion
gains further support through experimental validation of the sleep cycle invariant pre-
dicted by the model. Notably, the discovery of invariants in various scientific fields has
led to the development of unifying theories that explain diverse phenomena under a
common framework.

The model relies on advanced mathematical tools from wave mechanics, yet it pro-
vides straightforward analytical formulas for key sleep measurements, enabling efficient
analysis of extensive datasets. This simplicity arises from the minimal number of model
parameters and the direct relationship between four specific characteristics of the quasi-
periodic process within the Morse potential and the four primary sleep measures of each
sleep cycle. These measures encompass the period of oscillation (NREM duration), its
amplitude (NREM intensity), the energy gap between levels (REM intensity), and the time
involved in overcoming that gap (REM duration).

The straightforward relationship between these four elements of sleep architecture
implies that the sequential occurrence of NREM sleep followed by REM sleep within each
sleep cycle reflects their distinct yet complementary roles. The model proposes that during
NREM sleep, the evolution of the wavepacket prepares energy for release. As the system
enters the equilibrium region between sleep and wake states, the strong interaction between
the two waves results in their coherent superposition, leading to REM sleep. During REM
sleep, a portion of the primed energy is released, followed by further evolution of the
wavepacket during the subsequent NREMS episode. In this way, throughout successive
sleep cycles, the gradual dissipation of the energy associated with state instability brings the
system closer to a more stable wake state. Consequently, longer and more intense periods
of REM sleep increase the likelihood of spontaneous awakening [31], as they facilitate a
more effective reduction in state instability.

The description of REM sleep as a coherent superposition of two waves representing
sleep and wake states may initially appear unexpected. However, this concept aligns
precisely with the accurate quantitative predictions of the model. Importantly, there is a
striking similarity between these phenomena. In physics, the coherent superposition of
interacting waves can give rise to a distinct new state that simultaneously exhibits the
characteristics of both constituent states, rather than being a mere combination or alterna-
tion between them [24,41]. This observation aligns with REM sleep, which simultaneously
displays features associated with both sleep and wake states. Due to these unusual charac-
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teristics, REM sleep is also conventionally referred to as “paradoxical sleep” [42] or a “third
state” of consciousness [43], highlighting its unique nature.

3.2. REM Sleep Intensity and the Role of Sleep Cycle Invariant

The traditional diagnostic criteria for assessing normal REM sleep involve the presence
of REMs, desynchronized EEG patterns, and the absence of skeletal muscle tone. The search
for EEG correlates of REMS intensity has yielded inconclusive results. In contrast, changes
in REM density or intensity (i.e., the magnitude of a quantity per unit) have emerged as a
distinct feature of sleep dynamics [33–36]. Interestingly, this measure was not universally
recognized as REMS intensity because, in analogy to the high NREMS intensity observed
after prolonged wakefulness, it was expected that REMS intensity would also be high at
the beginning of sleep, which sharply contrasted with the dynamics of REM density.

Eugene Aserinsky, the co-discoverer of REM sleep [5], conducted an extensive charac-
terization of REM density across sleep periods of varying lengths using a precise quantita-
tive method that involved counting each rapid eye movement [34–36]. He determined that
REM density increases throughout the duration of sleep and proposed that it serves as a
measure of “sleep satiety” [33]. This concept finds support in the wave model, which links
REMS density, as an indicator of REMS intensity, to the amount of energy of instability
relaxed within each sleep cycle. This energy release, as described by the Morse poten-
tial, exhibits a linear increase during the energy relaxation period. Importantly, the slope
of this increase quantitatively aligns with that of REM density across consecutive sleep
cycles (Figure 5b).

The model’s prediction of the sleep cycle invariant and our empirical evidence sup-
porting it (Figure 7a,b) lend new significance to REMS intensity, providing compelling
evidence that NREMS and REMS are integral parts of a unified process. Discovering the SCI
opens up new avenues for experimentation and conceptual analysis. In physics and other
fields, invariant or symmetry relationships are generally indicative of conservation laws
and principles governing a behavior, and commonly provide insight into the underlying
mechanisms of a system. Similarly, the SCI arose from a general property of quasi-classical
potentials, where the period of wavepacket oscillations is inversely proportional to the
gap between energy levels, with the period and energy lost correlating with NREMS dura-
tion and REMS intensity, respectively. The existence of an invariant relationship between
NREMS and REMS strongly suggests that these two types of sleep are not independent but
rather regulated by a common mechanism.

The SCI may provide a unique metric that integrates NREMS and REMS to measure
sleep quality for each cycle and across the entire sleep period. This presents a significant
opportunity to investigate the dynamic mechanisms underlying sleep disturbances, such
as the different types of insomnia, and provide new insights into the pharmacodynamics
of both established and novel medications, as they exhibit unique, time-dependent effects
on sleep.

The SCI may be particularly relevant in the context of psychiatric and neurological
disorders, including the effects of drugs of abuse, where sleep disturbances are prevalent
and often the first symptom of disease or its relapse [37,38,44–47] Remarkably, changes in
the two measures that form the SCI, REMS intensity and NREMS duration, are the most
prominent in these disorders. A tendency for preserving the SCI may explain why the
changes in these two parameters that occur in pathological conditions can be coordinated,
no matter which direction the shift is in [37,38,44–53]. For instance, in affective disorders,
an increase in REMS intensity is typically accompanied by a decrease in NREMS episode
duration, particularly well documented in the first sleep cycle and often referred to as short
latency to REMS [37,38,44–52]. These changes are found to correlate with disease severity
and treatment outcomes [37,38,44–53] and, for major depression, are widely accepted as
a diagnostic biomarker in patients [37,38,44–49] and potential vulnerability marker in
family members [50].
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In contrast, patients with Parkinson’s disease exhibit reduced REMS intensity and
an increased duration of the first NREMS episode [53]. Detailed quantitative assessment
of REMS intensity over the entire sleep period should determine the extent to which the
invariant relationship between NREMS and REMS is preserved or altered in these disorders.
It is thus especially important to recognize that the frequently used semi-quantitative
analyses of REM density are not suitable for detailed studies on sleep dynamics and the
SCI (Figure 7).

3.3. State Instability and Strength of Interaction Define the Sleep–Wake Cycle

Figure 11 illustrates the time-dependent behavior of the only independent variable of
the wave model, the regulating parameter x and the associated energy of state instability
ε, which increase when the system’s stability is altered. In physics, the concept of a regu-
lating parameter plays a fundamental role in the study of complex systems. It provides
insights into a physical system’s behavior, properties, and transitions between phases or
states. These regulating parameters can encompass variables like temperature, pressure, or
internuclear distance in molecules. Given that the sleep state is a complex physiological
phenomenon, the identity of its regulating parameter remains to be elucidated. The sleep
state involves intricate reciprocal interactions of various physiological functions, including
cognition, immunity, metabolism, and more. At the molecular level, it coordinates essential
processes like hormonal secretion, antioxidant defense, and DNA repair. The question of
whether a single central biochemical or systemic parameter governs the sleep state or if the
regulating parameter reflects the combined impact of all these processes on state stability,
integrated at the level of brain nuclei involved in state transitions [1], remains unresolved.
For the purpose of the mathematical modeling presented here, the exact nature of this
parameter becomes less critical. It can be conceptualized as a simplified representation, a
one-dimensional reduction, of numerous regulatory physiological parameters that collec-
tively determine the system’s ability to maintain stability. Nevertheless, making precise
predictions about its dynamics throughout the wake and sleep periods under normal and
disrupted conditions allows the wave model to function as a valuable tool for testing
pertinent hypotheses regarding the nature of this regulating parameter.

The homeostatic relationship between sleep and wake states is widely acknowledged.
However, prior models did not include specific parameters like the homeostatic setpoint
or threshold, relying instead on the constraints imposed by the circadian clock [2,15].
In contrast, the wave model of sleep dynamics formalizes the homeostatic relationship
between wake and sleep states by introducing a critical homeostatic energy threshold
situated near the equilibrium setpoint where the two potential curves intersect (Figure 2).
This threshold marks the region of robust interaction between the wake and sleep states
and, as a result, also serves as the site of resonance amplification for the duration of coherent
superposition. The position of this homeostatic threshold can be estimated based on the
peak of the normal bell-shaped curve of REMS duration. Notably, the peak and thus
the threshold might not be reached in case an individual had an insufficiently long sleep
period (Figure 10). Variations in this homeostatic threshold among individuals may hold
significance for understanding differences in normal sleep patterns and sleep disorders.
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Figure 11. Time-dependent changes in the regulating parameter of state stability and energy of state 
instability. Top panel: Time-dependent changes in the regulating parameter of state stability x (ver-
tical axis) over wake (white area) and sleep (purple area). In sleep, the period of x oscillations corre-
sponds to the duration of consecutive NREMS episodes, while a decline in their amplitude squared 
corresponds to the drop in NREMS intensity. Each cycle ends around xc (horizontal cyan line), the 
region of sleep–wake equilibrium where REMS episodes occur (multicolor blocks). F—the driving 
force (red arrow) that increases x. Bottom panel: Time-dependent increase in the energy of state 
instability 𝜀 (vertical axis) over the wake state (white area) and stepwise decline over consecutive 
sleep cycles (block width—duration; NREMS—cyan; REMS—multicolor). Small reduction in 𝜀 at 
the start of wake period corresponds to sleep inertia. Maximal energy level reached (𝜀௝೔೙ ) defines 
initial NREMS intensity. Linearly increasing portions of energy released Δ𝜀 correspond to REMS 
intensity (block height). Horizontal cyan line—potential energy of homeostatic threshold, U(xc). Ver-
tical cyan line—timing of U(xc), with daytime timing around mid-afternoon peak in sleep propen-
sity. Horizontal axis—time since awakening (hours). 
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3.4. Future Directions

The wave model has demonstrated a remarkable accuracy in describing normal sleep
architecture and dynamics. However, there are obvious additional factors that have to be
accounted for while analyzing sleep dynamics and its responses to perturbations, whether
intrinsic, environmental, or pharmacological.

It is well-established that both wake and sleep states in humans are regulated not
only by a homeostatic mechanism but also by the circadian clock system. Among the
four sleep measures analyzed in this study, three are largely independent of circadian
regulation, namely NREMS episode duration, intensity, and REM density [36,54]. This
aligns with the wave model’s premise that the circadian clock modulates the strength of
interaction between the sleep and wake states, thus influencing sleep and wake propensities
and the duration of REMS episodes [54]. Conversely, the dynamics of the duration and
intensity of NREMS and REMS intensity are confined to the sleep state (US, Figure 2);
they do not depend on the strength of the sleep–wake interaction and for this reason are
not directly impacted by the circadian clock. While this study focuses on investigating
typical sleep patterns under regular entrained conditions, the specific contributions of
circadian and homeostatic forces to the sleep–wake interaction will have to be addressed in
a separate report.
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Another significant concern to be addressed by the wave model is the probability
of state transitions, which is reflected in sleep propensity or wake propensity. Empirical
evidence of a bimodal daily pattern of sleep propensity is primarily attributed to circadian
modulation. Nevertheless, the wave model suggests that the homeostatic interaction
between the wake and sleep states may exhibit nonlinearity and also influence the daily
profile of sleep propensity.

In the fields of physics and chemistry, the precise mathematical description of a sys-
tem’s normal behavior has proven to be a valuable tool for predicting and comprehending
the effects of specific disruptions and discovering strategies to counteract them. The overar-
ching objective of quantitatively modeling sleep dynamics is to enhance our understanding
of both normal sleep and sleep-related pathologies and, ultimately, to uncover innovative
preventative and therapeutic approaches. Notably, understanding certain pathological
alterations in sleep may necessitate a better understanding of wake state architecture and
dynamics. The notion of an ultradian structure within the wake state has been a subject
of study for decades, dating back to Kleitman’s basic rest–activity cycle (BRAC) [55], but
has yielded inconclusive results [56]. We anticipate that the wave model could provide
valuable insights to help elucidate previous observations or that its predictions might aid
in further investigations into the ultradian structure of the wake state.

Finally, we would like to emphasize that the sleep and wake probability waves that
the model operates with are not of quantum mechanical nature. It is well established
that stochastic classical systems can mimic the dynamics of probability waves observed in
quantum physics [25–29]. We consider our findings another example of this phenomenon.
We propose that the conceptual and mathematical framework of wave mechanics can
be applied to explore various aspects of both wake and sleep states, including their re-
sponses to chronic sleep deprivation, circadian phase shifts, disease states, pharmacological
interventions, or environmental factors.

4. Methods

In this section, we first outline the analogies between the dynamics of sleep and wake
states and the dynamics of electronic states in the well-established model of a diatomic
molecule that informed our work (a–f). Next, in Methods 1–15, we detail the wave model of
normal human sleep dynamics and explain how the comparisons between the experimental
data and theoretical predictions were made. Method 16 describes the experimental datasets
(ours and of others) that were used to validate the model and includes the Inclusion and
Ethics statement for our dataset. Method 17 details the statistical testing.

It is important to note that human sleep is a stochastic process, as reflected in the high
inter-individual and night-to-night variation of sleep architecture. Therefore, this work
is intended to model average sleep patterns in groups of human subjects studied under
well-controlled laboratory conditions. Additionally, it should be noted that the wave model
in this paper only addresses normal sleep in adult humans.

4.1. Analogies between the Wave Model of Sleep and the Model of a Diatomic Molecule

In our exploration of the dynamics of the sleep state, we view it as an outcome of an
interaction of two probability waves, each representing the sleep and wake states. These
waves emerge from the intricate workings of numerous biochemical oscillators—homeostatic
feedback loops—critical for the organism’s structural and functional integrity. As we
developed the mathematical framework for dynamic sleep architecture, we drew inspi-
ration from a structural analogy with a model from quantum mechanics: that of a di-
atomic molecule [24]. Several key parallels between these seemingly disparate domains
became evident:
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(a) Fast and slow components: In a diatomic molecule, the dynamics encompass reciprocal
rapid changes in electronic states alongside the slower adjustments of the regulating
parameter, the distance between the molecule’s two nuclei (R). In our model, we
suggest that changes in the biochemical and electrochemical processes that form sleep
and wake states are relatively fast, whereas variations in state stability, reflected in
the regulating parameter of state stability, denoted as x, occur more gradually, akin to
alterations in R. In both types of systems, there is a reciprocal relationship between
their fast and slow components. As noted in Section 3, the sleep state engages in
reciprocal interactions with a multitude of physiological functions and it remains
unknown whether a single molecular or systemic parameter central to the sleep
state exists, or if the regulating parameter reflects the combined effects of multiple
processes on state stability that are integrated by the neuronal structures involved in
state transitions [1]. For the purpose of the mathematical modeling of sleep dynamics
presented here, the regulating parameter x is regarded as a one-dimensional reduction
of numerous regulatory physiological parameters that collectively define the system’s
capacity to maintain stability.

(b) State stability of the fast component. In the molecular system, the electron component
can be in a stable (ground) or unstable (excited) state, which are states of different
symmetry at a given value of R. Changes in R can result in the swap of symmetry
of state, such that a former ground state becomes unstable, while a former excited
state becomes stable. Similarly, in our model, the stability of sleep and wake states
is determined by the regulating parameter x, and changes depend on variations in
x value. Low x values favor the wake state and high x values favor the sleep state.

(c) The interaction and feedback relationship between the fast and slow components. For dif-
ferent electronic states in a diatomic molecule, the energy of the fast (electronic)
component depends on R, and this dependence creates a potential energy U(R) for
the slow nuclear motion. We expect a similar relationship within sleep and wake
dynamics, where parameter x regulates the stability of the underlying fast processes,
e.g., individual homeostatic loops. In turn, those fast processes modulate the dy-
namics of the regulating parameter x, creating distinct potential energies US(x) and
UW(x), respectively.

(d) Probability waves. The wave nature of probabilistic processes can be illustrated by
probability waves, or de Broglie waves, which describe the dynamics of the electronic
and nuclear components in a diatomic molecule. The nondeterministic nature of the
sleep and wake processes, as well as the coherent dynamics of their slow and fast
components, suggests the use of quantum mechanical analogies in the description of
sleep architecture.

(e) State transitions. The probabilistic transitions between electronic states of different
symmetry, that is the swapping of stable and metastable (excited) states, can oc-
cur within certain restricted regions of the R parameter where the electronic en-
ergies of different states have close values. We predict that transitions between
the sleep and wake states will have similar behavior in the region of crossing or
pseudo-crossing of the US(x) and UW(x) potential curves. xc represents the point of
sleep–wake homeostatic equilibrium, with Uxc as the homeostatic energy threshold or
setpoint (Figure 2).

(f) Discrete energy spectra of the stationary probability waves. In the molecular system,
stationary probability waves have a discrete spectrum of energy for both the electronic
and nuclear components, the latter being represented by R-vibrations. Analogously,
in our model, we introduce the energy parameter ε, which represents the measure of
instability for either the wake or sleep state. An increase in state instability leads to an
increase in ε.
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4.2. Mathematical Apparatus of the Wave Model of Sleep Dynamics
4.2.1. Wave Equations for the Sleep and Wake States

It has been demonstrated through both experimental and theoretical studies that
classical systems can mimic behaviors commonly associated with quantum mechanics,
such as energy level quantization, tunneling, spin structures, and double-slit interference,
among others. These effects have been observed in some macroscopic systems containing
classical stochastic waves near instability threshold [25–29]. We thus suggested that the
probability waves for sleep (S) and wake (W) can be also described using a mathematical
analogy with probability waves in quantum mechanics. This enabled the use of the two-
component Schrödinger equation for the slow nuclear motion in diatomic molecules to
describe the motion of regulating parameter x in our model.

The amplitudes and phases of S and W probability waves are described by the time-
dependent wave functions ΨS(x, t)× |s, x〉 and ΨW(x, t)× |w, x〉, where |s, x〉 and |w, x〉
are the wave functions of the fast intrinsic variables of underlying S and W processes,
which are regulated by the x variable. These functions, which are analogues of the wave
functions of different electronic states in a diatomic molecule, are orthogonal at any x and
x′ because of < x, s|w, x′ > = 0. Functions ΨS(x, t) and ΨW(x, t) describe the dynamics of
variable x in both S and W states. Two-component wave equations can be written in the
matrix form:

i
∂

∂t

(
ΨS(x, t)
ΨW(x, t)

)
=

(
ĤSS(x) VS,W(x, t)

VW,S(x, t) ĤWW(x)

)(
ΨS(x, t)
ΨW(x, t)

)
+ D̂ (x, t)

(
ΨS(x, t)
ΨW(x, t)

)
, (1)

ĤSS(x) = −1
2

d2

dx2 + US(x) and ĤWW(x) = −1
2

d2

dx2 + Uw(x), (2)

where US(x) and UW(x) are the potential energies modulating the propagation of S and
W waves, respectively, and VS,W(x, t) = V∗W,S(x, t) is the matrix element of the operator
responsible for the interaction between S and W states. Note that VS,W reflects both the
x-dependent and time-dependent interstate interaction, including the entrained 24 h pe-
riodicity in the sleep–wake cycle that is controlled by the circadian system [54]. Efficient
S↔W state transitions can be induced by a S–W interaction near the crossing point of
the US(x) and UW(x) potential curves. Although the potentials US and UW exist simul-
taneously at the same coordinate x, each affects only the corresponding wave. The time,
coordinate, and energies in Equations (1) and (2) are dimensionless values measured in
their specific units. The normalization of the wave functions

∫ +∞
−∞ dx

(
|ΨS|2+|ΨW |2

)
= 1

provides the probabilities of the realization of the S or W state: PS(t) =
∫ +∞
−∞ dx

∣∣∣ΨS

∣∣∣2 and

PW(t) =
∫ +∞
−∞ dx

∣∣∣ΨW

∣∣∣2.

Operator D̂ (x, t) in Equation (1) includes driving force F, which increases the energy
of the system, and forces that damp the kinetic energy of the x coordinate. The closest
quantum analogy with Equations (1) and (2) is the system of equations for the nuclear
motion of diatomic molecules with two electronic states of different symmetry [24,57]. In
this mathematical analogy, electronic states represent fast underlying processes regulated
by the value of microscopic interatomic distance. However, in the dynamics of macroscopic
probability waves [25–29], which we assume S and W waves are, the time and spatial scales
are many orders of magnitude greater than those described in quantum physics. The time
evolution of wave functions ΨS(x, t) and ΨW(x, t) determines the entire dynamics of S
and W states, and consequently of sleep architecture.
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4.2.2. S and W Stationary Waves

Complete sets of eigen functions (stationary waves) can be used as a standard mathe-
matical tool for the determination of wave functions satisfying Equations (1) and (2). The
equations for S and W stationary waves can be obtained by neglecting the S–W interaction
(VS,W = 0) and the action of the D̂(x, t) operator. In this case, the stationary S waves
ΨS,j(x, t) = exp

(
−i ε j t

)
× ϕj(x) and W-waves ΨW,k(x, t) = exp(−i εw,k t) × ψk(x) are

expressed via two sets of independent eigen functions ϕj(x) and ψk(x) and their eigen
energies ε j and εw,k, respectively. Since the objective of our model is an accurate description
of sleep architecture, we mainly consider the stationary S waves representing the bound
states of the potential US(x) with a discrete set of energies ε j (j = 0, 1, 2, 3 . . .). Experimental
data on the architecture of the W state are limited, and an analysis of W stationary waves is
beyond the scope of our model. However, the wave model suggests that the interaction of
S and W states plays a key role in energy relaxation during sleep, specifically in the process
of energy release, and that this is reflected in sleep architecture.

4.2.3. Energy Spectra of the S waves in the Morse Potential

The quasi-periodic nature of sleep cycles with gradually reducing durations of NREMS
episodes TNR (Figure 1b) indicates that neither parabolic nor rectangular potential wells
can describe the sleep process (Supplemental Figure S2). In contrast, the Morse potential
US(x), commonly used in atomic and molecular physics, provides a set of energy levels ε j
that are sufficient for an accurate quantitative description of S wave propagation and the
energy relaxation process. The one-dimensional Morse potential is given by the equation:

US(x) = U0 ×
(

e−2 x
σ − 2e−

x
σ

)
, (3)

where U0 and σ are positive constants that describe the depth and width of the potential
well, respectively. Our model is designed to predict the relative values of TNR in different
sleep cycles, so we can scale the depth of US potential, U0 = 1. As a result, energies ε j
at each level and the corresponding eigen wave functions depend on the single param-
eter σ. The spectra of discrete energy levels ε j of the Morse potential are given by the
following equation [24]:

ε j = ε j(σ) = −
(

1−
j + 1

2
N(σ)

)2

(j = 0, 1, 2, . . . jMax) (4)

where N(σ) =
√

2σ is the dimensionless parameter that regulates the total number of
discrete energy levels in the Morse potential, jMax =

[
N(σ)− 1

2

]
.

The discrete energy spectrum and wave functions of stationary waves can also
be approximated using the quasi-classical Bohr–Sommerfeld model [24,58]. The quasi-
classical approximation illustrates the connection between wave and particle dynam-
ics, and describes the propagation of the wavepackets of probability waves. We will
later consider the dynamics of the quasi-classical wavepacket of S waves and thus de-
termine the NREMS episode durations, TNR. In the Morse potential, the period of os-
cillations of the wavepacket moving with an energy close to ε j declines as energy ε j
drops, while energy gaps ∆ε(j) = ε j − ε j−1 between consecutive levels increase (Figure 2;
Supplemental Figure S2).

4.2.4. Energy Relaxation and Structure of the S Wavepacket

A spontaneous W→ S transition initiating sleep generates a wavepacket of S waves
with initial energy ε ≈ ε jin . Relaxation of instability energy ε in stepwise transitions,
j→ j− 1, occurs through the release of discrete portions of energy ∆ε(j) = ε j − ε j−1. The
level j(n) occupied by the wavepacket during the n-th sleep cycle of the relaxation process is
determined by the initial level jin and the order number n of the sleep cycle (Figures 1 and 2),
j(n) = jin − n + 1. In the general case, the exact composition of the wavepacket with an
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arbitrary energy ε includes all stationary S waves belonging to the discrete and continuous
spectra. At the same time, in the quasi-classical approximation, it can be mostly represented
by a single S wave from j energy level, if ε is close to the energy level ε j. For simplicity, we
neglect the wavepacket dispersion over the entire relaxation process and consider that the
wavepacket energy ε j(n) is reduced only in the stepwise j(n)→ j(n + 1) transitions during
REMS episodes.

4.2.5. Quasi-Classical Motion of the Wavepacket

At a large j, the period Tj of quasi-classical oscillations of the center of the wavepacket
corresponds to the period of motion of a classical particle with energy ε j bouncing between
the potential walls of US(x). Tj can be expressed through the energy difference between

the neighboring energy levels [57]: Tj = 2π/
(

∂ε j
∂j

)
≈ 2π/∆ε(j), where the derivative

∂ε j
∂j

has been replaced with the energy gap ∆ε(j). The wavepacket motion is also quasi-classical
at lower energy levels j where the Morse potential is similar to the potential of the harmonic
oscillator (Equation (3) and Figure 2). The unitless value of Tj is given by the equation:

Tj =
2π

∆ε(j)
= 2π

1
ε j(σ)− ε j−1(σ)

= 2π
σ2

√
2 σ− j

(5)

The discrete set of Tj reflects the discrete structure of the energy spectra ε j of S station-
ary waves. The set of consecutive Tj(n) periods with j = j(n) predicts the relative durations
of consecutive NREMS episodes TNR(n), i.e., periods of quasi-classical motion in the Morse
potential. These values depend only on the width of potential well σ and actual level j
occupied by the wavepacket during the n-th sleep cycle.

4.2.6. Interaction between S and W Stationary Waves and Their Coherent Superposition

The independence of S and W states is strongly violated within the δxc region of
nonadiabatic behavior around crossing point xc (Figures 2, 5a and 8), where the interaction
|VS,W(x, t)| is larger than or comparable to the difference between the potential energies:
|US(x)−UW(x)|.|VS,W(x, t)| [23]. Thus, inside δxc ∼ |VS,W(x, t)| /| ∂US

∂x −
∂UW

∂x |x=xc ,
stationary S and W waves can form a coherent superposition or entanglement. The for-
mation of S–W entanglement inside the moving wavepacket can be clarified by a sim-
plified example in which an entangled state is constructed from isolated stationary S and
W waves. A two-state model includes a single S wave eigenstate ϕs(x) and single eigenstate of
W-wave ψw (x) with energies εs and εw, and a time-independent potential of S–W interaction
VS,W(x, t) = V(x) can be used to explain this phenomenon. This interaction creates new
stationary waves with new energies Ea,b and wave functions Ψa,b(x, t) = χa,b(x)× e−i Ea,bt ,
where new eigen functions χa,b(x) are expressed via the coherent superposition of unper-
turbed ϕs(x) and ψw (x) waves of S and W states:{

χa(x) = cos θ
2 × ϕs(x) + sin θ

2 × ψw (x) ,
χb(x) = − sin θ

2 × ϕs(x) + cos θ
2 × ψw (x) ,

(6)

The eigen energies Ea,b and coefficients of the coherent superposition cos θ
2 and sin θ

2
are given by the equations:

Ea,b =
εs + εw

2
∓
√

∆εsw2

4
+ Ṽs,w2 , ∆εsw = εs − εw , and cos θ =

1√
1 +

(
2 Ṽs,w

∆εsw

)2
, (7)

where ṼSW =
∫ +∞
−∞ dx ϕ∗s (x)V(x)ψw(x) is the matrix element of the S–W interaction po-

tential and θ is the mixing angle. For simplicity, we assumed zero values of the diagonal
matrix elements, ṼSS = ṼWW = 0. Note that the energies Ea,b of the new states differ
from the energy levels of US and UW potentials. Probabilities ps and pw to detect the
characteristic features of S and W states in new stationary wave Ψa(x, t) are expressed in
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terms of the coefficients of coherent superposition: ps = cos2 θ
2 and pw = sin2 θ

2 . Under
the condition of weak state interaction, i.e., θ � 1, the new stationary wave χa(x) is mainly
represented by ϕs(x), occupying primarily the region of S stability x > xc. The second
stationary wave χb(x) is located predominantly within the region of W stability x < xc and

it is represented mostly by ψw(x). The parameter of perturbation β =
∣∣∣ Ṽs,w

∆εsw

∣∣∣ describes the

relative strength of interaction Ṽs,w and regulates the fractions of W and S states within
their coherent superposition, Ψa,b(x, t). In the case of β→ 0 , i.e., weak S–W interaction, or
very large energy difference ∆εsw, the entanglement is not formed. In contrast, a large value
of Ṽs,w or a small difference between S and W energy levels (β� 1 or ∆εsw → 0) creates
the conditions for strong coherent mixing of S and W waves. In this case, the mixture angle
is θ = π

2 , the wave mixture coefficients are cos θ
2 = sin θ

2 = 1/
√

2, and the coherent S–W
superpositions 1√2 [ϕs(x)± ψw(x)] include equal fractions of S and W waves.

The condition of ∆εsw → 0 can be seen as a resonance between two stationary waves
of different symmetry. Accidental resonance can occur between stationary waves contained
within different potential wells [59]. Under conditions of wavepacket propagation, its
motion is considered as an adiabatically slow process and the mechanism of formation of
coherent states includes a similar mixing of stationary waves, with one important difference:
the entanglement of S and W states is temporary and lasts for as long as the center of the
wavepacket remains inside nonadiabatic region δxc.

4.2.7. The Coherent Superposition of S and W Waves and Wavepacket Dynamics

In the energy relaxation process, the wavepacket is composed mainly of ϕj(n)(x) waves
and its center moves like a classical particle, bouncing between US(x) walls (Figure 2).
Within this semi-classical approximation, transitions between W and S states can occur
when the center of the wavepacket approaches the δxc region where the crossing of US(x)
and UW(x) potential curves enhances the efficiency of the S and W interaction. Within δxc,
the wavepacket can temporarily incorporate a substantial fraction of stationary W waves,
as shown in Equations (6) and (7). The S–W interaction creates a delay τ in wavepacket
propagation and leads to a new temporary state represented by the coherent superposition
of S and W waves. Thus, an organism can simultaneously exist in both S and W states
over time interval τ, until the wavepacket leaves the δxc region. In our model, this new
state corresponds to REMS, coherently incorporating S and W features. The τ defines the
lifetime of the coherent superposition within δxc and thus REMS episode duration TREM.

4.2.8. Short Time-Delay Induced in Landau–Zener Transition

The presence of the region of enhanced S–W interaction VS,W , i.e., the region of
nonadiabatic behavior of the S state, leads to additional accumulation of phase η(ε) of
the stationary wave with energy ε, and thus to a delay in wavepacket propagation. The
resulting time delay τ(ε) can be calculated using the energy dependence of the wave phase
shift, η(ε): τ(ε) = 2 dη(ε)

dε [60]. The time delay τLZ (ε) of the wavepacket passing through
δxc can be also estimated using the semi-classical Landau–Zener model [24]:

δxc ∼
|VSW(xc)|

| ∂US
∂x −

∂UW
∂x |x=xc

and τLZ
(
ε j
)
∼ δxc

vj
=

|VSW(xc)|
vj | ∂US

∂x −
∂UW

∂x |x=xc

,

where vj is the velocity of the classical particle moving with energy ε j through the
xc region. Usually, the Landau–Zener model cannot provide long τ because interaction
potential VSW(x) is considered a small perturbation with respect to US(x) and UW(x).
In our model, τLZ is the background time delay in the absence of the resonance process.
General mathematical analysis and experimental data on the nonadiabatic transitions and
phase accumulation for the extended Landau–Zener model have been reported in [61–64].
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4.2.9. Resonance Enhancement of REMS Episode Duration and Energy Release

Within δxc, the presence of the W-wave component of the wavepacket leads to the
action of the damping forces included in operator D̂(x, t), as shown in Equation (1). This
allows for the wavepacket to release a fraction of its energy ∆ε(j), corresponding to the
energy gap between the j and j − 1 levels. At a constant value of damping forces, the
efficiency of energy release depends on the strength of the S–W interaction and the time
delay τ

(
ε j
)
. The value of released energy ∆ε(j) increases with the number of cycles n.

Facilitating energy release requires more time for the action of the damping forces, i.e.,
increasing τ

(
ε j
)
. This can be accomplished through a resonance condition for the incoming

S wave: if the energy of resonance level ε jc is close to U(xc), the potential energies of S
and W states near their crossing point xc, where the strength of the S–W interaction is high.
The temporary capture of the wavepacket into the resonance state augments the lifetime of
coherent S–W superposition and thus TREM.

4.2.10. Mechanisms of Resonance Formation

The formation of a resonance state can occur through different mechanisms. One
example is Feshbach resonance [65], in which energy levels of US(x) and UW(x) are located
near U(xc). In this case, τ

(
ε j
)

determines the effective time in which the W state is present
within the composition of the S wavepacket when the center of the wavepacket is located
within the δxc region. Another mechanism by which S wave resonance may occur is through
a very strong local interaction between S and W waves, which creates a quasi-bound state
localized near xc. In this case, the avoided crossing structure of the adiabatic potentials can
support the resonance (quasi-bound) state for incoming S waves and temporarily localize
the wavepacket within δxc . Detailed mathematical descriptions of these resonance effects
have been developed in the theory of slow atomic collisions [66]. For either mechanism,
the energy of S wave resonance ε jc can be formally associated with resonance level jc.

4.2.11. Lorentz Resonance Curve

Independent of the mechanism of the resonance, at any energy ε j of the S wavepacket,
the resonance time delay τ

(
ε j
)

is sensitive to the energy difference between ε j and res-
onance energy ε jc. The time delay can be calculated from additional resonance phase
η
(
ε j
)

[57] with a simple expression for the resonance value of τ
(
ε j
)

given by the resonance
Lorentz formula [60,65]:

τ
(
ε j
)
= 2

dη(ε )

dε
|ε=ε j =

1
π

Γ
2

(ε j − ε jc)
2 +

(
Γ
2

)2 , (8)

where ε jc and Γ are the energy level and width of S wave resonance, respectively. The

jC value can be expressed via U(xc): jc ∼=
√

2 σ
(

1−
√
|U(xc)|

)
− 1

2 . It is not an
integer because, in the general case, resonance energy does not exactly match ε j levels.

The dynamic changes in τ
(

ε j(n)

)
over the process of stepwise energy relaxation describe

relative durations of consecutive REMS episodes TREM(n) over the course of sleep.
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4.2.12. NREMS and REMS Episode Durations in Absolute Time Units

TNR(n) and TREM(n) in absolute time units (min) can be obtained using Equations (5) and (8)
for relative durations Tj(n) and τ

(
ε j(n)

)
with j(n) = jin − n + 1, and the absolute time

scaling constants ANR and AREM, respectively:

TNR(n) = ANR Tj{n) = ANR 2π
σ2

√
2 σ− jin + n− 1

, (9)

TREM(n) = AREM τ
(

ε J(n)

)
= AREM

1
π

Γ
2

( ε jin−n+1 − ε jc)
2 +

(
Γ
2

)2 , (10)

To calculate the relative values of TNR(n), two model parameters are needed: the
width of US potential σ and initial level jin. To calculate the relative values of TREM(n),
two additional model parameters are required: the energy ε jc of resonance level and
resonance width Γ (Figure 8). These parameters have been inferred from comparisons
of the experimental data on TNR(n) and TREM(n) and the theoretical predictions of these
values given by the analytical formulas in Equations (9) and (10) (Supplementary Table S1).
Since the model predicts relative times, the time-scaling constants ANR and AREM were
used to convert values of relative durations into absolute time units (min).

4.2.13. Predictions of NREMS Intensity as a Function of Initial Energy ε jin and Amplitude
of X-Oscillations

NREM intensity INR(n), i.e., the duration of slow-wave sleep (SWS or slow-wave
activity), is maximal in the first NREMS episode (n = 1) and rapidly decreases over consec-
utive sleep cycles. This behavior correlates positively with the intensity of x-oscillations
(Figure 4), presumably because the relative intensities of some processes underlying
SWS are regulated by x and may follow similar oscillatory dynamics. At each level
j = j(n) occupied by the wavepacket in the energy relaxation process, we expect that
INR(n) is proportional to the intensity of x-oscillations, i.e., the square of x-amplitudes
L2(ε J

)
: INR(n) = κ(ε j(n))× L2

(
ε J(n)

)
, where coefficient κ

(
ε j(n)

)
regulates the efficiency of

SWS generation over the entire sleep process. The k-coefficient should be maximal at the
upper j level and decline at lower levels: κ

(
ε j
)
= const/

∣∣ε j
∣∣. Note that the energies of the

bound waves are negative −1 < ε j < 0 and the absolute value
∣∣∣ε j(n)

∣∣∣ increases as the level
index j(n) = jin + 1− n decreases in the energy relaxation process.

The Morse potential is asymmetric and the measure of the amplitude of nonharmonic
x-oscillations can be the distance L(ε) between the right and left classical turning points
(Figure 2). For the wavepacket bouncing between the walls of the Morse potential, oscil-
lation amplitude L(ε) is expressed through the width of potential well σ and wavepacket
energy ε:

L(ε) = 2σ ln[
1 +

√
1− |ε|√
|ε|

], (11)

where the value of ε in the n-th sleep cycle is given by ε j(n) in Equation (4), with j = j(n).
Theoretical values of INR(n) can be normalized to the first cycle and results are given by
the formula:

INR(n)
INR(1)

=

∣∣ε jin

∣∣∣∣∣ε j(n)

∣∣∣
 L

(
ε j(n)

)
L
(
ε jin
)
2

, (12)

were wavepacket energies ε j(n) and oscillation amplitudes L
(

ε j(n)

)
are given by

Equations (4) and (11) with j = j(n). In Figure 4b, theoretical predictions of relative
NREMS intensities for different sleep cycles are compared to experimental data obtained
from independent groups of healthy volunteers studied under regular sleep conditions and
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extended sleep conditions (Method 16, below). It is important to note that the theoretical
predictions for INR(n) in Equation (12) do not include any adjustable parameters, and
all necessary model parameters were inferred from the observed durations of REMS and
NREMS episodes (Supplementary Table S1).

4.2.14. Dynamics of REMS Intensity Depends on Energy Release

According to the model, a rise in REMS intensity IR(n) with n reflects an increase in
the portion of energy ∆ε(j(n)) released within the n-th REMS episode, IR(n) ∝ ∆ε(j(n)).
Theoretical values for IR(n), scaled to REM intensity in the first REMS episode (n = 1), show
linear dependence on cycle order number n:

IR(n)
IR(1)

=
∆ε( jin + 1− n)

∆ε(jin)
= 1 +

n− 1√
2 σ− jin

(13)

Figure 5b illustrates the theoretical linear dependence of REM intensity on n, calculated
using Equation (13) with the values of σ and jin determined in the analysis of REMS
and NREMS episode durations for the regular sleep opportunity group (Supplementary
Table S1, Method 16). The slope of the theoretical curve 1/

(√
2 σ− jin

)
depends on

two model parameters through the single combination
(√

2 σ− jin
)

that indicates an
approximate number of energy levels above jin. The slope of IR(n)/IR(1) increases as
the initial level jin approaches the maximal value jMax =

[√
2σ− 1

2

]
. Our theoretical

predictions for relative REM intensities were computed without any fitting parameters and
are in excellent agreement with experimental data collected by us and others [34,35] in
three independent groups of young healthy subjects, as shown in Figure 5b.

4.2.15. Sleep Cycle Invariant

The wave model predicts the existence of a value that remains constant over consec-
utive sleep cycles, the sleep cycle invariant (SCI). The SCI is defined as the product of
NREMS episode duration, Tj(n), and REMS episode intensity, IR(n):

Tj(n) × IR(n) =
2π

∆ε(j(n))
× const× ∆ε(j(n)) = 2π × const. (14)

The SCI value does not depend on the value of energy gap, ∆ε(j), and can serve as a
signature of sleep cycle integrity or overall sleep quality. Note that, while calculating the
SCI for the first sleep cycle, the shorter duration of Tj(n=1) (due to xo position; Figure 2) has
to be accounted for and the experimental value of Tj(n=1) has to be multiplied by 4/3.

4.2.16. Datasets

The model was validated against several sets of polysomnographic data collected
under well-controlled sleep laboratory conditions in groups of young healthy subjects with
normal sleep patterns. Those presented in Figures 3–5, 7 and 9 are described below:

(a) Regular sleep opportunity protocol. The representative group data for regular sleep
shown in Figures 3–5, 7 and 9 were part of our larger study on the circadian regulation
of sleep and hormonal functions (“Multimodal Circadian Rhythm Evaluation” PI: IVZ),
which will be reported in full elsewhere. The study was conducted in accordance with
the Declaration of Helsinki on Ethical Principles for Medical Research Involving Human
Subjects, adopted by the General Assembly of the World Medical Association, and approved
by the Boston University Institutional Review Board. All the participants provided written
informed consent. The subjects were 24 young healthy male volunteers (Mean ± SEM:
24.5 ± 4.4 years of age, ranging 19–34 years of age) who were selected based on the
following self-reported criteria: 7–9 h of habitual nighttime sleep, small (<1.5 h) changes in
sleep length on weekends, no sleep complaints, no history of chronic disorders or regular
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medications, no recent trans-meridian travel, no drug use, no smoking, habitual coffee
consumption not exceeding 3 cups a day.

Over the two weeks prior to the inpatient part of the study, participants’ sleep–wake
cycles were documented using activity monitors (Phillips Inc., Andover, MA) and a sleep
log. Starting on Friday night, subjects spent 3 consecutive nights in the General Clinical
Research Center of Boston University School of Medicine. Time in bed was scheduled
individually to correspond to the habitual bedtime and subjects were allowed to stay in bed
for 9 consecutive hours. Sleep was recorded using polysomnography (Nihon Kohden PSG
system), as per standard techniques, and sleep stages were visually scored for consecutive
30 s epochs [67]. To be included in the regular sleep data set, individual sleep nights had to
satisfy the following criteria: sleep efficiency of not less than 85% and the absence of sleep
apnea or other symptoms of sleep disorders (n = 39 nights total). NREMS–REMS cycles
were defined by the succession of an NREMS episode of at least 10 min duration and a
REMS episode of at least 3 min duration. No minimum criterion for REMS duration was
applied for the completion of the last cycle. An NREMS episode was defined as the time
interval between the first two epochs of stage 2 and the first occurrence of REMS within a
cycle. A REMS episode was defined as the time interval between two consecutive NREMS
episodes or as the interval between the last NREMS episode and the final awakening.

(b) The extended sleep opportunity protocol is described in detail in the original re-
ports by Barbato and Wehr [30] (n = 11 subjects, 308 nights total) and Barbato et al. [31]
(n = 8 subjects, 208 nights total). In brief, the studies were conducted on healthy male
volunteers, 20–34 years of age, who were studied for 4 weeks, with regular activities over
10 h of light and bedrest over 14 h of darkness, when they were encouraged to sleep. The
data used in the present study (Figures 3–5, 7 and 9) were obtained from Tables 1–3 of [30]
and Table 2 of [31], in consultation with Dr. Barbato.

(c) Slow-wave activity (SWA) data presented in Figure 4c were obtained from Table 1
of the original report by Dijk et al. [32] (9 male subjects, ages 22–26 year). Two baseline
nights were used in the analysis (n = 18 nights) and one recovery night per subject was
documented (n = 9 nights) following 36 h sleep deprivation.

(d) REMS intensity (REM density) data presented in Figure 3e were obtained from
original reports by Aserinsky [34] (11 normal subjects, young males and females) and
Marzano et al. [35] (50 normal subjects, young males and females). In both studies, the
subjects were identified as university students. REM density data per sleep cycle of baseline
night recordings were obtained from p. 550 of [34] and Figure 1 of [35].

4.2.17. Statistical Testing

Goodness of fit was assessed using a one-sided χ2 test, with the degrees of freedom
equal to n− 1− p, where n is the number of independent sleep cycle values being fit, and p
is the number of model parameters being fit (p = 4 for episode duration fits, and p = 0 for
intensity fits). Note that due to the normalization employed, the number of independent
sleep cycle values in each plot is one less than the number of cycles shown. χ2 and R2

calculations were carried out using standard R functions.

5. Conclusions

• The wave model of sleep dynamics represents the sleep and wake states as interacting
probability waves. By applying the mathematical apparatus of wave mechanics
developed for the analysis of probability waves and state transitions on the molecular
level, the model provides a precise quantitative description of the typical dynamics
of four principal measures of normal sleep architecture, including the durations
and intensities of consecutive episodes of NREM and REM sleep, as documented in
experimental groups of young healthy adults.

• The model demonstrates that the duration and intensity of consecutive episodes of
NREM sleep, as well as the intensity of REM sleep episodes, only reflect the behav-
ior of the sleep probability wave. The variability in these sleep measures between
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experimental groups can be described by two model parameters: first, the width of
the potential well containing the sleep wave, which depends on the habitual sleep
duration; and second, the energy level of state instability reached by the time of sleep
initiation, which depends on the duration of prior wakefulness.

• The model describes REM sleep as a coherent superposition of sleep and wake waves.
Accordingly, an accurate description of the duration of REM sleep episodes depends
on the strength of interaction between these two waves, which is maximal in the region
of their homeostatic equilibrium and further enhanced by the resonance between them.

• The model establishes an invariant relationship between NREM and REM sleep by
predicting that the product of NREM sleep duration and REM sleep intensity should
normally remain constant over consecutive sleep cycles. The analysis of experimental
group data collected in young adults with high quality sleep confirms this prediction,
indicating an intrinsic connection between NREM and REM sleep as part of the same
two-step sleep process.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/clockssleep5040046/s1, Figure S1: Consecutive periods
of energy relaxation in potential wells of different shape. Figure S2: Actual position of the initial
and resonance levels within the Us potential well. Table S1: The model parameters of normal sleep,
regular and extended.
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