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The great success of the Surfaces Special Issue entitled “Electrochemical Surface Science (EC-SS):
Basics and Applications” reflects the great vitality and relevance of the addressed topic. EC-SS stems from
the merging of two different disciplines, i.e., surface science (SS) and electrochemistry (EC), which dates
back to ca. four decades ago. The two separate disciplines mainly contributed either a methodological
approach (SS, aiming at understanding the microscopic processes occurring at surfaces/interfaces at
an atomic level) or a selection of the objects to study (EC, aiming at describing the phenomena at
electrified interfaces). The combination of the two is nowadays making possible the challenge of
unraveling the complex mechanisms of the electron transfer processes occurring at electrodes, i.e., truly
interface-driven phenomena which encompass both solid/liquid, solid/solid, and solid/gas interfaces.
This hybrid approach has had an enormous impact on fields such as electrocatalysis [1–3], solar energy
harvesting [4–6], corrosion, electrochemical energy storage and conversion devices [7], and sensors [8].

Among them, electrocatalysis is omnipresent and plays a key role. Actually, processes at electrodes
are often kinetically limited to efficiently run multi-charge transfer reactions. An electrocatalyst is
usually needed, i.e., a substance that can reduce the overall activation barrier height of the redox
chemical reaction via complex surface-chemistry steps (adsorption/desorption of reactants and products,
low kinetic barriers for charge transport) and determine the product selectivity distribution. The figures
of merit of an electrocatalyst are nowadays determined following the standard parameters of catalysis,
i.e., turnover frequency and number. Determining such parameters and correlating them with the
electrocatalyst structure is a task highly facilitated by the adoption of the hybridized EC-SS method.

A historical perspective is useful to better understand the evolution of electrocatalysis. At the
beginning of the 20th century (1905), Julius Tafel [9], in Switzerland, reported on the hydrogen
evolution reaction (HER) on various electrode materials, thus establishing a quantitative method for
HER electrocatalysts benchmarked through the “Tafel equation” [10]. The HER two-electron process,
which started to be academically studied in the 1950s, is still under development in many laboratories
in the world [11]: the main goal is to provide a sustainable route for the preparation of molecular
hydrogen through the electrochemical splitting of water (water splitting; WS). Actually, WS is expected
to promote the envisioned hydrogen economy [12], based on molecular hydrogen as an energy vector
for the development of a sustainable energy infrastructure established on the efficient interconversion
of chemical energy into electricity and vice versa.

One of the current key concepts in electrocatalysis is the replacement of noble-metal-based
electrocatalysts with those based on elements that are abundant on Earth [13,14]. The role played by
the synergetic EC-SS approach in such a paradigmatic revolution is similar to that it already played
in the 1980s, when platinum-based electrocatalysts were optimized [15,16]. In addition, nowadays,
two more relevant key concepts have appeared, i.e., in situ and operando techniques. In situ or
operando characterization tools aim to monitor the electrochemical reaction while the electron transfer
process is occurring [17,18]. The difference between the two terms is subtle. The in situ term relates
to experiments where the experimental conditions (e.g., pressure, atmosphere, potential, current,
electrolyte, etc.) are controlled during acquisition, but no temporal discrimination is explicitly taken
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into account. On the other hand, operando tools are related to the study of the system in real life
applications. When applied to electrocatalysis, this means obtaining more detailed electrochemical
information while monitoring the working electrodes with other techniques, such as X-ray diffraction
(XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM), Raman spectroscopy,
ultraviolet visible (UV-vis) absorption spectroscopy, X-ray absorption near-edge structure (XANES),
nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), etc.

In this Special Issue, a total of 27 scientific papers (one of which is a review) report some of the
latest advances in the field of EC-SS. It was a particular target of the Guest Editors to demonstrate the
importance and the large scope of EC-SS through examples from a variety of systems and applications.
Four papers are related to innovative methods for characterization. As expected, electrocatalysis papers
make up the lion's share, but other interesting topics such as sensors, switchable interfaces, potential
driven self-assembly on surfaces, and flexible electrodes are also addressed. The Guest Editors hope
that the readers will appreciate the different contributions closest to their own field of research.
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