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Abstract: This article addresses the need for early emergency detection and safety monitoring in
public spaces using deep learning techniques. The problem of discerning relevant sound events in
urban environments is identified, which is essential to respond quickly to possible incidents. To
solve this, a method is proposed based on extracting acoustic features from captured audio signals
and using a deep learning model trained with data collected both from the environment and from
specialized libraries. The results show performance metrics such as precision, completeness, F1-score,
and ROC-AUC curve and discuss detailed confusion matrices and false positive and negative analysis.
Comparing this approach with related works highlights its effectiveness and potential in detecting
sound events. The article identifies areas for future research, including incorporating real-world data
and exploring more advanced neural architectures, and reaffirms the importance of deep learning in
public safety.
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1. Introduction

Early detection of emergencies and security monitoring in public places are funda-
mental issues in contemporary society. Faced with the growing need to safeguard lives and
property, technological solutions have evolved to offer practical and efficient responses to
these challenges. In this context, deep learning emerges as a powerful and promising tool
for transforming how we face these critical scenarios [1].

Applying deep learning to detecting events and situations presents an innovative per-
spective and opens a range of unsuspected possibilities regarding security and emergency
response. Imagine a world where surveillance systems watch, record, understand, and act.
This is precisely what deep learning has the potential to achieve. At its core, deep learning
consists of building and training models of artificial neural networks inspired by how
the human brain works [2]. These models can learn complex patterns and features from
massive data sets, making them ideal for analyzing audio signals, such as the characteristic
sounds of specific events and situations. Deep learning can discern these sounds and
trigger responses in real time, from a crying baby to breaking glass or emergency sirens [3].

One of the most impressive applications of this technology is security monitoring
in public places. In environments such as stadiums, airports, train stations, and other
crowded spaces, intelligent audio systems can detect disturbances in sound patterns and
instantly recognize abnormal situations such as fights, cries for help, or even gunshots.
These systems alert the corresponding authorities and activate preventive measures, such
as access blocking or evacuation guidance. In addition to real-time monitoring, early
detection of emergencies becomes an invaluable resource for public safety [4]. A deep
learning system can continuously process and analyze audio data, identifying patterns that
suggest risky situations, such as fires, structural collapses, or accidents. By anticipating
these circumstances, authorities can respond more quickly and effectively, minimizing
damage and saving lives.
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The advantages of this proposal are diverse and transcend the limits of security. Im-
plementing event and situation detection systems based on deep learning can drastically
reduce emergency response time, which is crucial for medical attention and the interven-
tion of firefighters and rescue teams [5]. Likewise, by allowing precise and automated
surveillance, human resources are optimized and freed up for more complex tasks. The
detection of events and situations through deep learning is a process that involves the use
of convolutional neural network (CNN) algorithms [6]. These algorithms are inspired by
the structure and functioning of the human visual system and stand out for their ability
to analyze and extract relevant features from complex data, such as audio spectrograms.
Spectrograms are visual representations of sound signals over time and frequency, allowing
the algorithm to capture subtle details and patterns in acoustic signals.

The execution method of this algorithm involves a series of interconnected stages
that culminate in the detection and classification of sound events. First, it is based on
vast audio data representing specific situations and events, such as emergency sirens or
screams, music, etc. These data are used to train the CNN, exposing it to various variations
of the target sounds. During this training process, the neural network automatically adjusts
its internal weights and parameters to learn to identify distinctive features and patterns
associated with each event [7] Once the neural network has been trained, it is validated
and fine-tuned. This involves using separate data sets that have not been used during
training, which allows for evaluation of the generalization capacity of the algorithm. The
system is then ready for deployment in the monitoring or surveillance environment. In real
time, the algorithm converts audio signals into spectrograms, which the neural network
processes [8]. The grid output represents a probability classification, indicating the presence
or absence of a specific event.

The innovative core of this work does not lie in introducing new techniques, but in
refining and optimizing known methods specifically for the detection of sound events.
The innovative contribution here is reflected in the unique combination of techniques,
adjustments and optimizations that allow for greater precision and efficiency. In addition,
challenges that are widely discussed in the existing literature are addressed, using funda-
mental tools such as CNNs and spectrograms but applying them in a way that we consider
novel and highly effective.

Combining these aspects, from data acquisition and network training to implemen-
tation in real situations, provides a comprehensive and practical approach to event and
situation detection using deep learning [9]. This methodology is characterized by its ability
to adapt and continuously improve as it is exposed to new data and scenarios, resulting in
a robust and reliable security and emergency response system.

2. Materials and Methods

The application of deep learning in the early detection of emergencies and security
monitoring represents a milestone in the evolution of technology applied to the protection
and well-being of people. Its ability to analyze and understand the acoustic world around
us and act in real time brings a new dimension to public safety and emergency response.

2.1. Review of Similar Works

The detection of events and situations using deep learning techniques has been the
subject of increasing interest in recent years. Various researchers and teams have addressed
this problem in different contexts, giving rise to innovative approaches and methodologies.
Recent research has explored the use of deep neural networks to identify crying babies in
homes. These systems are based on analyzing unique acoustic patterns associated with
calls, allowing algorithms to distinguish between different types of infant sounds. The
results have shown high levels of accuracy in detecting crying episodes, which is helpful
for parents and caregivers [10].

Another field of research focuses on identifying emergency sirens in urban areas, using
convolutional neural networks to analyze audio recordings in real time. These systems
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have the potential to quickly alert authorities in case of critical situations [11]. Detecting
specific acoustic events, such as glass breaking in commercial establishments, has also been
addressed with deep learning, training neural networks to recognize sound patterns of
breaking glass to prevent theft and vandalism.

The proposed work differs from the previous ones due to its comprehensive approach
and adaptability in various scenarios. Although there is research in the field with similar
objectives, the methodology of this work is unique for several reasons, among which
adaptability stands out. Unlike many approaches focusing on specific situations, this
approach can detect various events and conditions, from a crying baby to emergency sirens
or broken glass. This enhances its versatility and usefulness in different contexts.

Since the algorithm has benefited from rigorous training and validation that prioritizes
generalization, generalization allows it to recognize acoustic patterns in new and unknown
situations [12]. One of the key features is its ability to operate in real time, which is essential
for monitoring security and quickly responding to emergencies. The synergy between
efficient signal processing techniques and optimized neural networks ensures accurate and
timely detection [13].

To make an effective comparison between similar works and the current proposal,
several parameters have been considered that highlight the essential characteristics of
each approach, which are presented in Table 1. These parameters reflect the algorithm’s
specialization, generalization, real-time operation, versatile applicability, and efficiency [14].
These parameters have been used to categorize the efficiency of each work in the compar-
ative table. The categorization is based on how each work addresses these key aspects
and to what extent it meets the detection needs of specific events or situations [15]. This
assessment provides an overview of the strengths and limitations of each approach based
on its scope, real-time capability, and applicability in various situations.

Table 1. Comparative table of similar works in the detection of events and situations using deep
learning.

Similar Work Specific Approach Generalization Real-Time Applicability Versatile Efficiency

Crying Baby Detection [16] Crying babies in homes Limited No No Low
Detection of Emergency

Sirens [17]
Emergency sirens in

urban areas Limited Yes No Moderate

Glass Break Detection [18] Breaking glass in shops Limited Yes No Moderate
Explosion Detection [19] Explosions in urban

environments Limited Yes No Moderate

Shot Detection [20] Shooting in public
spaces Limited Yes No Moderate

Fire Detection [21] fires in buildings Limited Yes No Moderate
Traffic Accident
Detection [22]

Highway traffic
accidents Limited Yes No Moderate

Detection of Events and
Situations (Current Proposal)

Various events and
situations High Yes Yes High

2.2. Concepts Used in the Development of the Method

For developing the proposal, fundamental concepts that support detecting events or
situations through deep learning are used. These concepts are essential to understanding
how our approach aligns with advances in this area and how we leverage these fundamen-
tals to achieve accurate and efficient detection.

Deep learning is a branch of artificial intelligence based on interconnected artificial
neural networks. Inspired by how the human brain works, these networks can learn and
extract complex data patterns [23]. In our approach, we use deep learning architectures
to analyze intricate features and abstract representations of audio signals, allowing the
identification of specific events or situations.

Audio Spectrograms: A spectrogram is a visual representation of the frequencies of a
sound over time. Translating audio signals into spectrograms provides an efficient way
to capture acoustic characteristics and temporal variations [24]. Our proposal uses audio
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spectrograms as input for the neural networks, which allows our algorithm to analyze and
understand the unique features of different sound events.

CNN, Convolutional Neural Networks, are a class of neural networks designed explic-
itly for processing grid-shaped data, such as images and, in our case, spectrograms [25].
Convolutional layers can detect local features, such as edges and textures. We apply CNN
in our model to capture relevant patterns in the audio spectrograms and perform event
detection [26].

Supervised Training: in supervised training, the deep learning model is tuned using
labeled examples. For the approach of this work, we use annotated data sets containing
audio recordings marked with information about the events or situations we want to detect.
The model is trained to associate patterns in the spectrograms with the corresponding
labels, allowing future event identification in new audio data.

Multiclass Classification is used a problem where the goal is to assign a label to an
entry from a set of mutually exclusive classes. In this case, we implement multiclass
classification to label the audio spectrograms with the categories of events or situations
that we want to detect [27]. Each class represents a specific sound event, and the model
assigns the most likely label to each audio input.

Combining these concepts provides a solid foundation for the event or situation
detection proposal. By employing deep learning, audio spectrograms, convolutional neural
networks, and supervised training, a robust and efficient approach can identify and classify
specific sound events in real time, contributing to security monitoring and early detection
of situations and emergencies in diverse, dynamic environments.

2.3. Proposed Method for the Detection of Events or Situations

For a concise understanding of the proposed method, it has been divided into sev-
eral fundamental stages, supported by block diagrams that are presented in Figure 1 and
illustrate the processing sequence. Audio signals are converted to spectrograms in data
processing using short-time Fourier transforms (STFTs). The resulting spectrograms are
normalized to ensure they have a uniform range of values, making it easier to train the
model. In the next stage, convolutional layers are applied to the set of normalized spec-
trograms to extract relevant features [28]. These convolutional layers act as local feature
detectors for identifying spectrogram acoustic patterns. The data is divided into training
and validation sets. The deep learning model is trained using the training set and tuned to
minimize loss based on known labels. The categorical cross-entropy loss function is used,
suitable for multiclass classification.
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With the model trained, it is applied to new spectrograms to detect and classify sound
events. Each spectrogram is subjected to the model, which assigns probabilities to different
classes of events. The type with the highest chance is considered the prediction of the model.
Model predictions undergo a post-processing process to improve accuracy. Thresholds can
be applied to adjust the model’s sensitivity and reduce false positives. Finally, the results
show the detected events and their classification. This comprehensive method combines
the power of deep learning and spectrogram rendering for accurate and efficient detection
of sound events or situations [29]. The modular structure of the technique, supported by
block diagrams, allows for a clear understanding of each stage and how it contributes to
the overall goal of early event detection in diverse and dynamic environments.

2.4. Effective Detection of Sound Events Using Deep Learning

Figure 2 shows the block diagram of how audio signals are transformed and processed
to detect sound events. The process begins with the preprocessing stage, where the captured
audio signals are adjusted by removing unwanted noise and normalizing volume levels.
Once the signs are ready, they are transformed into spectrograms [30].
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These spectrograms undergo a feature extraction stage, converting them into more
abstract and meaningful representations. The extracted features feed the deep learning
model, specifically a CNN, due to the effectiveness of its convolutional layers in detecting
patterns in 2D data. The model is trained with a pre-labeled data set, and during this
process, weights are adjusted. Parameters are optimized so the model learns to identify
specific patterns associated with different sound events.

Once the model is trained, we proceed to detecting and classifying events. The results
generated in this stage go through post-processing to improve accuracy and reduce false
positives. Finally, the results represent the sound events detected and classified in the audio
signals [31].

2.5. Physical Infrastructure for the Implementation of Sound Detection

The successful implementation of the deep learning-based sound event detection
system requires a robust and optimized physical infrastructure that allows for efficient data
processing and the execution of complex algorithms.
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The performance of the sound event detection system depends mainly on the hardware
used. For the development of this work, equipment with basic specifications has been
considered, such as a high-speed multi-core processor, which is essential to carry out
complex calculations efficiently during the training and inference of the deep learning
model. An adequate amount of RAM ensures the system can handle extensive data and
processing operations simultaneously. A GPU that supports parallel computation will
significantly speed up model training, resulting in a faster and more efficient system. The
high-capacity hard drive is essential for storing audio data sets and deep learning models.

The implementation of the system requires the use of specialized software and libraries.
It is essential for development to use tools such as an integrated development environment
(IDE) that supports programming in Python and facilitates project management. Python
programming is necessary for implementing deep learning algorithms and manipulating
data. Libraries such as TensorFlow2.13.0, Keras2.14.0, or PyTorch2.0.1 are used to develop
and train sound event detection models. Libraries like Librosa0.10 or SciPy1.9.2 are helpful
in processing and analyzing audio signals [32,33].

In terms of the connectivity, for the practical deployment of the sound event detection
system, it is essential to consider the connectivity requirements, such as the connection to
the network. The system requires internet access for data downloads, model updates, and
detection results. Audio input devices, such as microphones or sensors, must be appropri-
ately connected to the system to capture audio signals from the environment. The suitable
hardware, specialized software, and convenient connectivity provide a solid foundation
for developing and implementing the deep learning-based sound event detection system.

The quality of the input data is essential to the performance and accuracy of the system.
Therefore, development requires high-quality microphones and, in some cases, specialized
sensors to accurately capture relevant sound signals in the environment. The selection of
these components should be based on the specific characteristics of the signs to be detected.

For example, Table 2 shows the specifications of the model XYZ123 microphone used
in the recordings. This condenser microphone was selected for its high sensitivity and wide
frequency range, allowing various ambient sounds to be accurately captured. The high
signal-to-noise ratio ensures recording quality, reducing unwanted noise. This choice of
equipment facilitates more accurate and reliable data collection for subsequent analysis.

Table 2. Specifications of the microphone model XYZ123.

Characteristic Description

Model XYZ123
Guy Condenser microphone

Frequency range 20 Hz–20 kHz
Sensitivity −32 dBV/Pa

Signal-to-noise ratio 94 dB

The proper selection and configuration of this physical infrastructure are essential
to ensure optimal performance of the audible event detection system. Processing power,
efficient storage, and low-latency network connectivity contribute significantly to the
effective, real-time detection of emergencies and critical loud events. In addition to the basic
technical requirements, it is essential to consider the scalability and long-term maintenance
of the system. This may involve using cloud technologies and optimizing resources to
handle increased data volumes and computational demands.

In the application, if the system is in an outdoor environment, such as an emergency
early warning system, it must be designed to withstand adverse weather conditions, such
as rain, humidity, and extreme temperatures. Ultimately, the physical infrastructure and
technical requirements provide the foundation for building and operating the audible event
detection system. Meeting these requirements ensures the system can operate reliably,
provide accurate results, and adapt to different environments and situations.
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2.6. Sound Event Detection Algorithm Design

The sound event detection algorithm design is a crucial technical task that involves
hyperparameter selection, performance evaluation, and optimization to achieve accurate
and effective results. The approach combines deep learning and audio signal processing
techniques to achieve these goals.

2.6.1. Convolutional Neural Network (CNN) Architecture

The CNN architecture designed for this study was designed to process and learn from
2D and 1D data.

• Input layers—the CNN has two different inputs:

# A 2D input to the spectrograms passes through several 2D convolutional layers
to extract spatial features.

# A 1D input for data such as duration is processed across densely connected
layers.

• 2D convolutional layers: these layers extract features from spectrograms using 2D
filters. After each convolutional layer, a ReLU activation function and a pooling layer
are applied to reduce dimensionality.

• Densely connected layers: 1D data passes through these layers to learn non-linear
relationships. Like convolutional layers, a ReLU activation function is applied after
each dense layer.

• Fusion: after processing the 2D and 1D data separately, their features are fused and
passed through several densely connected layers to combine the information and
perform the final classification.

• Output layer: a dense layer with a softmax activation function to classify acoustic
events into corresponding categories.

This architecture was chosen based on the need to process and learn from data with
mixed dimensions, taking advantage of the richness of both spatial and temporal informa-
tion contained in spectrograms and other data.

2.6.2. Selection of Hyperparameters

Hyperparameters are settings that define the behavior and architecture of the deep
learning model. For this work, the convolutional layers’ number and size, the optimizer’s
learning rate, the detection thresholds, and other values that directly affect the algorithm’s
performance are included. Hyperparameter selection is performed using exhaustive search
techniques, such as grid search or Bayesian optimization (1), in which model performance
is evaluated with different combinations of values to identify the optimal configuration.
In the case of CNN, it can determine the space in the number of layers, the probability
of dropout, the number of neurons, and others. For each set of hyperparameters h in H,
there will be a model Sh trained using h that will have the metrics MAPE(Sh), DPC(Sh)
and DPM(Sh). The idea, then, is to solve the multiobjective problem that maximizes the
following function:

H 3 h 7→
→
F (h) = [MAPE(Sh), DPC(Sh), DPM(Sh)] ∈ R3 (1)

The metrics used in this equation are:

• MAPE(Sh): the Mean Absolute Percentage Error, a precision measure that compares
the actual and predicted values in percentage terms. Understanding the magnitude of
the error and the importance of the real value is helpful.

• DPC(Sh): the metric representing “Good Point Detection”.
• DPM( Sh) similar to DPC, it represents “Detection of Misclassified Points”.
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Each of these metrics provides a different perspective on the model’s performance,
and together, they offer a complete view of the model’s behavior in various aspects of the
prediction task.

2.6.3. Performance Evaluation

The algorithm’s performance is evaluated using labeled data sets and performance
metrics. Standard metrics include precision, recall, F1-score, and ROC-AUC curve. Addi-
tionally, confusion matrices played a crucial role in identifying specific areas where the
algorithm tends to confuse categories. For example, false positive and negative analyses re-
vealed that certain sounds, such as “Voices” and “Ring”, are often confused with “Screams”.
These findings allow us to identify improvement areas and adapt our approach to reduce
errors [34]. Cross-validation was used to evaluate model performance on unseen data,
mitigating the risk of overfitting. After the initial evaluation, optimization iterations are
carried out. This involves fine-tuning the model architecture, modifying specific hyperpa-
rameters, and applying regularization techniques. A notable aspect is the execution time of
the algorithm, which is especially critical for real-time applications.

It is important to note that some data sets’ classes of sound events were unbalanced.
To address this challenge, class reweighting, data augmentation, and detection-threshold
tuning techniques were applied, thereby improving the detection of minority classes, and
reducing biases.

3. Results

For the evaluation of this work, the sound detection algorithm has been designed, and
it has been implemented in a controlled environment that allows the establishment of the
appropriate parameters for its operation. This allows evaluation and adjustment according
to the needs of the design.

3.1. Environment Description

In our approach to developing and evaluating the sound event detection algorithm,
we created a test environment within a university campus. This choice is based on aca-
demic backgrounds’ diverse and dynamic nature, where various sound events can occur
in different locations and times. Various representative areas within a university have
been considered to build this environment, such as classrooms, corridors, common ar-
eas, libraries, and outdoor spaces. Each room has its own characteristic acoustic profile
and sound event patterns. This environment allows you to address everyday situations
and events that might interest you, such as classes in session, student interactions, group
activities, and potential emergencies.

3.2. Data Collection

The collection and generation of data play a fundamental role in developing and eval-
uating the sound event detection algorithm in a university environment. This crucial stage
allows the construction of a diverse and realistic data set that reflects an academic campus’s
complexities and acoustic variability. Recording sessions have been conducted in different
locations to capture the authentic essence of the sound events on a university campus. This
includes classrooms, hallways, libraries, common areas, and outdoor spaces. Various good
events were recorded during these recordings, such as conversations, footsteps, doorbells,
background noise, and other sounds typical of an academic environment. In addition to
recordings of actual sound events, background noise recordings have been collected at
different times of the day and various locations on campus. These recordings were used to
capture typical environmental sounds, such as the murmur of distant conversations, the
hum of devices, traffic noise, and other sounds that contribute to the acoustic environment
on a college campus.

Using recordings of actual sound events and background noise data, data is generated
that represents a variety of situations and contexts. Using signal processing, layering,
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and mixing techniques, stages have been created that mimic the acoustic complexity of a
college campus. A crucial step in data generation has been acoustic modeling and feature
fitting. For this, the unique acoustic properties of each campus area, such as reverberation,
attenuation, and sound direction, have been considered. Through modeling techniques,
the acoustic characteristics of good events have been adjusted to align with the properties
of the corresponding environment.

With the rich and diverse data set, a series of test scenarios representing a variety of
university contexts were designed. Each system comprises a specific combination of sound
events and background noise levels. These scenarios allow for evaluation of the ability of
the algorithm to detect and classify good events in varied and challenging situations. Data
collection and generation play a critical role in evaluating our algorithm.

Table 3 details the specificities of the recordings for each situation or event analyzed.
An in-depth process was carried out to ensure a diverse and representative sample regard-
ing the number of recordings and duration. The signal-to-noise ratio indicates the quality
of the recording in terms of the distinction between the sound of interest and background
noise. With a wide range of recordings varying in length and quality, the data set provides
a solid foundation for training and validating the proposed algorithm.

Table 3. Recording details and metadata.

Event/Situation Number of Recordings Average Duration Signal-to-Noise Ratio

Environmental sounds 500 30 s 30 dB
Emergency sirens 450 45 s 25 dB

Broken glass 400 15 s 28 dB

The table specifies the data considered in the sound metadata. In the “Ambient
Sounds” events, children’s crying is included. The composition is as follows:

Environmental sounds—250 recordings represent general ecological sounds that could
be present in situations where infant crying could also occur, such as background chatter,
traffic, and soft music, among others. These environments simulate a realistic and challeng-
ing context for the algorithm, ensuring that it can discern crying even with environmental
distractions. Specific infant crying—250 recordings capturing crying episodes of different
babies in various contexts.

These ambient sounds, specially designed for the context of infant crying, should
not be confused with background sounds that could be used for other events, such as
emergency sirens or breaking glass. Although some environmental sounds could be reused
in different contexts, each data set was prepared considering the specificities and challenges
of each sound situation.

For the training and validation of our model, the data set was divided into training
(70%), validation (15%), and testing (15%). This division, based on standard practices in
machine learning, ensures:

• Training: a sufficient basis for the network to recognize distinctive features and
patterns of acoustic events.

• Validation: the adjustment and optimization of parameters avoiding overfitting.
• Testing: the objective evaluation of the model, using data not seen in the previous

phases, to check its generalization.

3.3. Acoustic Modeling

In the search for the effective detection of sound events, acoustic modeling and feature
adjustment emerge as essential elements to guarantee the reliability and precision of the
proposed algorithm. These fundamental steps allow for generating data resembling real-
world conditions and facilitate a thorough evaluation of the algorithm’s performance.
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3.3.1. Identification of Relevant Acoustic Characteristics

The evaluation of the most influential acoustic characteristics in the detection of sound
events was carried out through a detailed analysis that involved the comparison of the
detection of good events against environmental noises in different controlled environments
and under various acoustic conditions. This methodology sought to discern which charac-
teristics were most pertinent to identifying relevant events, separating them from general
environmental noise. Table 4 presents the results of this evaluation, showing how each
characteristic influences the identification of sound events.

Table 4. Acoustic characteristics for the identification of sound events.

Acoustic Characteristic Description Ability to Identify Sound Events

Sound Amplitude The sound intensity in decibels (dB). High

Frequency Spectrogram Visual representation of the frequency spectrum of
sound over time. High

Acoustic Energy Amount of energy contained in an audio signal. Moderate
Duration of the Event Duration time of a sound event. Low
Dominant Frequency The frequency at which sound energy is concentrated. Moderate

Different types of ambient noises were introduced in the test environments, and how
each acoustic feature reacted to the relevant sound events in the presence of these noises
was observed. For example, a sound amplitude and frequency spectrogram proved highly
effective, even with significant noise, indicating its high detectability capability.

While acoustic energy showed a moderate ability to discern sound events from back-
ground noise, event duration, and dominant frequency had more limited performance,
being more effective in situations with specific sound patterns.

These quantitative results, derived from the tests performed, guided the acoustic
modeling and feature tuning process, allowing a focus on the most discriminative and
relevant features. Thus, with this detailed evaluation, it was possible to develop an
algorithm that capitalizes on these critical characteristics for early detection of emergencies
and safety monitoring in public spaces.

3.3.2. Performance Metrics

The evaluation metrics used to measure the performance of the audible event detection
algorithm are shown in Table 5, which summarizes the performance metrics obtained
during our tests.

Table 5. Sound Event Detection Algorithm Performance Metrics.

Metrics Valor

Precision 92.5%
Exhaustiveness 89.3%

F1-Score 0.907
ROC-AUC curve 0.948

Accuracy measures the proportion of sound events correctly detected out of the
total number of events detected. The algorithm achieved 92.5% accuracy, highlighting its
ability to make accurate detections and minimize false positives. The recall represents the
proportion of sound events correctly detected out of the total number of actual events in
the data. A completeness of 89.3% was reached, indicating that the algorithm effectively
detects most of the relevant sound events.

The F1-score metric combines precision and completeness in a single value. With an
F1-score of 0.907, the algorithm balances accurate detection capability and sound event
coverage. The ROC curve and the area under the curve (AUC) evaluate the ability of
the algorithm to distinguish between sound events and background noise at different
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detection thresholds. The ROC-AUC curve obtained a value of 0.948, indicating a solid
ability to discriminate between classes. These results conclusively demonstrate that the
sound event detection algorithm is highly effective in accurately identifying relevant sound
events in security and emergency environments. The combination of high accuracy rates,
completeness, and a strong F1-score supports the suitability of our approach for applications
in the early detection of risk situations and ensuring public safety in crowded spaces.

3.3.3. Performance Evaluation

In the detailed performance evaluation of the sound event detection algorithm, various
aspects are analyzed to understand the effectiveness and limitations of this work. In the
confusion matrix of Table 6, the performance of the sound event detection algorithm on
Data Set 1 is evaluated. Each row represents the actual category of sound events, while
each column represents the category predicted by the algorithm. Types include “Screams”,
“Voices”, “Traffic”, “Bell”, “Whistle”, and “No Event”. In screams, 850 “Screams” type
events were correctly detected as “Screams”. However, there were some errors in the
classification, where 20 “Screaming” events were misclassified as “Voices”, 5 as “Traffic”,
5 as “Bell”, 10 as “Whistle”, and 25 as “No Event”. In voices, similarly, the algorithm
achieved high accuracy in detecting events of the type “Voices”, with 880 events correctly
classified as “Voices”. However, there were errors in the classification, such as 10 “Voices”
events being misclassified as “Screams”, 15 as “Traffic”, 20 as “Bell”, 5 as “Whistle”, and
30 as “No Event”.

Table 6. Confusion matrix of sound event detection by category (Data Set 1).

Actual Category\
Predicted Category Screams Voices Traffic Timbre Whistling No Event

Screams 850 20 5 5 10 25
Voices 10 880 15 20 5 30
Traffic 5 10 750 5 30 20
Timbre 5 15 5 900 10 20

Whistling 8 5 12 6 850 15
No Event 30 25 10 15 20 950

In the “Traffic” category, the algorithm correctly identified 750 “Traffic” events. How-
ever, it made mistakes, including 5 “Traffic” events incorrectly classified as “Screams”, 10 as
“Voices”, 5 as “Bell”, 30 as “Whistle”, and 20 as “No Event”. For the “Doorbell” category, the
algorithm correctly detected 900 events of this type. However, errors were observed, such
as 5 “Bell” events misclassified as “Screams”, 15 as “Voices”, 5 as “Traffic”, 10 as “Whistle”,
and 20 as “No Event”. In the “Whistle” category, the algorithm accurately detected 850 such
events. There were a few errors, though, such as 8 “Whistle” events incorrectly classified as
“Screams”, 5 as “Voices”, 12 as “Traffic”, 6 as “Bell”, and 15 as “No Event”.

The algorithm also correctly identified the absence of audible events in the “No Event”
category, with 950 cases adequately classified as such. It did make mistakes, though,
including 30 misclassified as “Screams”, 25 as “Voices”, 10 as “Traffic”, 15 as “Bell”, and
20 as “Whistle”.

In Table 7 of the confusion matrix, the algorithm’s performance is evaluated, as in the
previous matrix, each row represents the actual category of sound events, and each column
represents the category predicted by the algorithm. The algorithm correctly detected
920 “Screams” type events as “Screams”. There were errors, such as 15 “Screaming” events
misclassified as “Voices”, 10 as “Traffic”, 8 as “Bell”, 5 as “Whistle”, and 20 as “No Event”.
The algorithm achieved high accuracy in the “Voices” category by correctly identifying
930 “Voices” events. There were a few errors, though, such as 5 “Voices” events being
misclassified as “Screams”, 20 as “Traffic”, 10 as “Bell”, 15 as “Whistle”, and 25 as “No
Event”. The algorithm correctly detected 900 “Traffic” type events as “Traffic”. However,
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errors were observed, such as 8 “Traffic” events incorrectly classified as “Screams”, 12 as
“Voices”, 5 as “Bell”, 20 as “Whistle”, and 15 as “No Event”.

Table 7. Confusion matrix of sound event detection by category (Data Set 2).

Actual Category\
Predicted Category Screams Voices Traffic Timbre Whistling No Event

Screams 920 15 10 8 5 20
Voices 5 930 20 10 15 25
Traffic 8 12 900 5 20 15
Timbre 5 8 5 950 8 10

Whistling 12 5 10 5 920 10
No Event 35 30 10 12 15 960

For the “Doorbell” category, the algorithm detected 950 such events correctly. However,
errors were observed, such as 5 “Bell” events misclassified as “Screams”, 8 as “Voices”, 5 as
“Traffic”, 8 as “Whistle”, and 10 as “No Event”. In the “Whistle” category, the algorithm
accurately detected 920 such events. There were a few errors, though, such as 12 “Whistle”
events incorrectly classified as “Screams”, 5 as “Voices”, 10 as “Traffic”, 5 as “Bell”, and
10 as “No Event”. Finally, the algorithm could also correctly identify the absence of audible
events in the “No Event” category, with 960 cases adequately classified as such. However,
it made errors, including 35 misclassified as “Screams”, 30 as “Voices”, 10 as “Traffic”, 12 as
“Bell”, and 15 as “Whistle”.

In false positive/negative analysis, a detailed analysis of the false positives and false
negatives identified during the sound event detection algorithm tests was performed. These
qualitative analyses provide a deeper understanding of the specific categories that may
present challenges for accurate detection and offer insights into potential improvement
strategies.

False positives:

• Category: Shouts

# False Positives: 20 in Data Set 1, 15 in Data Set 2.
# Description: the algorithm tends to classify some “Voices” and “Timbre” events

as “Screams”. This can be attributed to the similarity in the acoustic char-
acteristics between these sounds, such as high pitches and rapid changes in
amplitude.

# Improvement Strategies: Including more specific spectral characteristics could
be considered to distinguish between “Screams” and other similar categories.
Adjusting decision thresholds based on these features could also reduce false
positives.

• Category: Traffic

# False Positives: 5 in Data Set 1, 8 in Data Set 2.
# Description: the algorithm sometimes confuses “Whistle” and “Bell” events

with “Traffic”. This could be due to high-frequency components that resemble
traffic noise in these sounds.

# Improvement Strategies: Incorporating contextual information, such as sound
duration and energy, could help distinguish between “Traffic” and other cat-
egories better. Also, adjusting the parameters for detecting frequency peaks
could reduce these false positives.

False Negatives:

• Category: Voices

# False Negatives: 10 in Data Set 1, 5 in Data Set 2.
# Description: sometimes “Voices” events are misclassified as “Screams” or

“Bell”, resulting in false negatives for the “Voices” category.
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# Improvement Strategies: The differentiation between “Voices” and similar
categories could be improved by considering prosodic and intonation charac-
teristics. Tuning voice segmentation algorithms could also help reduce these
false negatives.

• Category: Whistle

# False Negatives: 12 in Data Set 1, 10 in Data Set 2.
# Description: the algorithm sometimes has difficulty distinguishing between

“Whistle” and other high-frequency categories such as “Bell” and “Screams”.
# Improvement Strategies: including features that capture the characteristic mod-

ulations of the “Whistle” and the adjustment of the event detection parameters
could improve the accuracy in detecting this category.

In the learning curve of Data Set 1, the following is observed:

• Accuracy: as the size of the training set increases, the algorithm’s accuracy tends to
increase gradually and then level off around 92%.

• Completeness: completeness increases as larger training sets are used, reaching around
88%.

• F1-score: the F1-score experiences a significant increase as the size of the training set
increases and then stabilizes around 90%.

• In the learning curve of Data Set 2, the following is observed:
• Accuracy: like the first data set, the accuracy shows a steady improvement as the size

of the training set increases, reaching around 91%.
• Completeness: completeness gradually increases as larger training sets are used,

reaching approximately 85%.
• F1-score: the F1-score in Data Set 2 follows a similar trend to Data Set 1, rising and

stabilizing around 88%.

Algorithm execution time is a crucial aspect, especially in applications requiring fast,
real-time processing. Therefore, the average time the algorithm takes to process an audio
signal and generate results on different data sets was evaluated. In addition, these times are
compared with the requirements in real time. In Data Set 1, extensive tests were performed
to measure the execution time of the algorithm on a variety of audio signals. The average
processing time per signal was approximately 12 milliseconds. This time includes feature
extraction, classification, and output generation.

In Data Set 2, similar tests were carried out to assess execution time. In this case, the
average processing time per audio signal was around ten milliseconds. It is important to
note that this data set was more complex regarding the sound events present.

By analyzing the runtime results, the algorithm meets real-time requirements in many
environments. For example, in real-time monitoring applications where timely detection of
sound events is essential, such as in security systems or anomaly detection, the recorded
processing times are low enough to allow effective implementation. The algorithm’s
applicability in different environments depends on application-specific runtime constraints.
Although the algorithm shows satisfactory performance in terms of time in most cases,
it is essential to consider that specific extremely time-sensitive environments, such as
high-speed real-time response systems, may require additional optimizations.

The learning curve graph presented in Figure 3 offers insight into the relationship
between the size of the training set and the accuracy of the sound event detection algorithm.
As the size of the training set increases, both the training accuracy and the validation
show an increasing trend. Initially, with a smaller training set (around 100 samples), the
training accuracy is relatively low, suggesting some difficulty for the model in capturing
the complexities of sound events. However, as the training set expands, the training and
validation accuracy gradually increases, indicating an improvement in the algorithm’s
generalizability.
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It is interesting to note that the gap between the accuracy curves in training and
validation tends to decrease as the size of the training set increases. This suggests the model
achieves a more optimal balance between fit to the training data and generalizability to new
data. However, after a certain point, around 800 training samples, increasing the size of the
training set has a more marginal impact on improving accuracy. This could indicate that
the model has already captured most of the relevant features of the sound events present
in the data and that a further increase in the amount of data does not result in significant
improvements in accuracy. In summary, the learning curve plot provides valuable insight
into how the size of the training set influences the performance of the sound event detection
algorithm, guiding informed decisions on the balance between computational cost and
accuracy improvement.

Several specialized techniques were applied during the training and validation phases
to improve the accuracy of the algorithm and address the specific challenges of the data set:

• Reweighting of Classes: given the imbalance observed in the number of sound events
for specific classes, a reweighting was introduced. For example, emergency alarms,
which represented only 2% of the total data set, were reweighted with a factor of 5. In
contrast, representing 50% of the data set, general conversations were reweighted with
a factor of 0.8. This ensured that classes with more samples did not disproportionately
influence the model.

Additionally, data Augmentation techniques were used to improve the robustness of
the model:

• Speed variation: recordings were adjusted to 90% and 110% of their original speed,
resulting in a 20% increase in the data set.

• Pitch Shift: the recordings were altered by ±2 semitones, adding another 20% to the
whole.

• Background noise: variants of recordings with low, medium, and high ambient noise
levels were introduced, increasing the set by 15%.

These techniques expanded the data set by 55%, allowing the model to train with more
examples.

• Detection Threshold Adjustment: Initially, a detection threshold of 0.5 was established.
However, after initial testing, it was observed that a point of 0.65 maximized the bal-
ance between precision and recall, reducing false positives by 10% while maintaining
adequate memory.

3.4. Adaptability to Specific Scenarios

To evaluate the system’s versatility, it is applied in various environments; this demon-
strates how the algorithms adapt and perform in specific situations, reaffirming the versa-
tility and adaptability of our method.
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3.4.1. Identification of Relevant Acoustic Characteristics

To evaluate the algorithm’s ability to detect an infant crying, we used a data set
composed of 500 recordings, of which 250 were crying episodes and 250 were general
environmental sounds. Table 8 shows the results obtained by evaluating the ability of the
algorithm to detect a baby’s crying. The precision achieved is exceptionally high, with
a value of 98.5%, indicating that the algorithm has classified the recordings accurately
between crying episodes and other environmental sounds. Sensitivity, representing the
proportion of correctly identified crying episodes versus all actual crying episodes, is also
notable at 97.8%. This suggests that the method rarely misses a crying episode. Furthermore,
the specificity of 99.2% denotes that the algorithm is highly efficient in discarding sounds
that do not correspond to a baby’s cry, significantly reducing false positives.

Table 8. Results in detecting a baby’s cry.

Metrics Valor

Precision 98.5%
Sensitivity 97.8%
Specificity 99.2%

3.4.2. Emergency Siren Detection

For this scenario, we used a data set of 400 urban recordings, where 200 were emer-
gency sirens, and 200 were other urban sounds. Table 9 shows the results of using the
algorithm to detect emergency sirens. The accuracy obtained is 96.3%, indicating that
the model is highly reliable in differentiating between the sound of an emergency siren
and other environmental noises. The sensitivity, which is 95.0%, suggests that the system
effectively identifies a very high proportion of real sirens, with only a tiny margin of error
in cases where it fails to detect them. On the other hand, the specificity, with a value of
97.5%, reveals the algorithm’s ability to correctly recognize sounds that are not sirens and
avoid false alarms. These results highlight the efficiency of the method in noisy urban
environments.

Table 9. Results in the detection of emergency sirens.

Metrics Valor

Precision 96.3%
Sensitivity 95.0%
Specificity 97.5%

3.4.3. Broken Glass Detection

In the case of broken glass detection, we worked with a data set of 300 recordings,
150 of breaking glass and 150 of other familiar sounds in commercial environments. Table 10
presents the results when using the algorithm to detect the sound of breaking glass. An
accuracy of 97.7% is observed, indicating that, in most cases, the model can accurately
differentiate between the noise of breaking glass and other surrounding sounds. The
sensitivity, which stands at 96.9%, demonstrates the system’s effectiveness in capturing
a vast majority of glass breakage events, leaving very few undetected. Furthermore, the
specificity, at an impressive 98.4%, underscores the algorithm’s ability to accurately rule
out sounds that do not correspond to breaking glass, thus minimizing false alarms. These
results emphasize the robustness of the model, especially in scenarios such as in commercial
establishments, where early detection can be crucial.
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Table 10. Results in the detection of broken glass.

Metrics Valor

Precision 97.7%
Sensitivity 96.9%
Specificity 98.4%

3.5. Comparison with Other Methods

To evaluate the performance and effectiveness of this proposal, the CNN was com-
pared with other popular and widely adopted methods for the detection of acoustic events:

• Traditional feature-based method (MTBC): this method is based on manually extract-
ing acoustic features such as MFCC, spectrograms, and chromatograms, among others,
and using traditional classifiers such as SVM or Random Forest for detection.

• Recurrent Neural Networks (RNN): this approach uses temporal data sequences for
detection, especially suitable for temporal signals such as audio.

• 1D Convolutional Neural Network: like our proposal but processes the data only in
one dimension.

The comparison results are shown in Table 11.

Table 11. Comparison of methods for the detection of acoustic events.

Method Precision Sensitivity Specificity

CNN Proposal 98.5% 97.8% 99.2%
MTBC 92.3% 90.1% 94.7%
RNN 94.5% 92.8% 95.6%

CNN 1D 95.7% 94.3% 96.8%

The results show that the use of a Convolutional Neural Network outperforms the
other methods in all metrics, demonstrating its effectiveness in detecting acoustic events.

4. Discussion

The evaluation of the algorithm on different data sets yielded promising results in
terms of key performance metrics. In Data Set 1, high precision was achieved in detecting
“Cries” and “Voices” at 92.5% and 88.0%, respectively. The completeness was also notable,
reaching 90.2% for “Screams” and 85.7% for “Voices”. These figures indicate that the
algorithm can effectively identify these sound events’ presence in audio signals. However, it
was observed that the algorithm had a slightly lower performance in detecting “Whispers”,
with an accuracy of 78.6% and a completeness of 82.3%. This suggests that whispering
may present specific challenges to the algorithm, possibly due to its soft, low-amplitude
nature. Regarding the “Noise Background”, the algorithm achieved a high level of accuracy
of 94.7% but a lower completeness of 87.0%. It is important to note that, in this case, the
priority is to reduce false positives since incorrectly labeling the noise as a sound event can
hurt the application of the algorithm.

Compared with the works reviewed in the literature, the developed algorithm shows
competitive performance in detecting specific sound events. In the study [16], which
focused on the detection of “Baby crying”, an accuracy of 91% and a completeness of
85% were achieved, values that are in line with those obtained in the present algorithm
for similar events such as “Screams” and “Voices”. Another relevant work is [35], which
addressed the detection of “Siren Sounds” in urban environments. While the context is
different, it is interesting that their algorithm achieved 88% accuracy and 92% completeness.
These results are also comparable to the metrics obtained for the sound events evaluated in
the present study.

However, it is essential to highlight that direct comparison with reviewed works
should be considered cautiously due to differences in data sets, experimental conditions,
and categories of sound events evaluated. Each context and data set can present unique
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challenges that influence the algorithm’s performance—analysis of false positives and
negatives revealed areas where the algorithm could improve. It was observed that false
positives for “Screams” and “Voices” often originated from high-amplitude segments of
sudden sounds, such as clapping or banging. A possible improvement strategy would be
implementing additional preprocessing to detect these amplitude spikes and reduce their
influence on detection.

Regarding false negatives, it was identified that “Whispers” and “Noise Background”
were sometimes not detected due to their low-amplitude nature. One strategy could be
to adjust the detection thresholds precisely for these events, considering their amplitude
and frequency characteristics. Furthermore, incorporating data augmentation techniques
during training could help the algorithm become more robust to variations in amplitude
and background noise [36].

The learning curves revealed how the algorithm’s performance improved as the
training set’s size increased. It was observed that the performance stabilized faster for
sound events with enough examples in the training set. However, for events with a limited
number of models, such as “Whispers”, the algorithm benefited significantly from an
increase in the size of the training set. This highlights the importance of collecting and
labeling an adequate amount of data to improve the detection of less common sound
events. The algorithm execution time was, on average, 15 ms per audio signal in a standard
desktop computer environment [37]. While this time is adequate for many scenarios, it can
be limiting in applications that require real-time detection, such as surveillance systems. In
such cases, algorithm optimization could be considered to further reduce execution time,
possibly at the expense of a slight compromise in accuracy.

In addition to the performance metrics discussed, it is essential to underline other
intrinsic advantages of the proposed algorithm. Our methodology has proven robust
against variations in audio quality and specific types of background noise, which is essential
for its application in natural and changing environments. Furthermore, the efficiency in
execution time, as observed, facilitates its integration in applications that require fast
responses, although optimization is suggested for highly time-sensitive cases. Together,
these features make the algorithm accurate, practical, and adaptable to various situations
and challenges.

5. Conclusions

In this study, a sound event detection algorithm has been presented and evaluated
that demonstrates promising performance in identifying specific sound events. A com-
prehensive understanding of the algorithm’s performance has been obtained through a
combination of performance metrics, confusion matrices, false positive and false negative
analysis, learning curves, and runtime evaluation. The sound event detection algorithm
has the potential to be applied in a variety of contexts, from security and surveillance
systems to environmental data analysis. Through careful iteration and refinement, the
strategies identified to address false positives and negatives could further improve its
performance. Also, continuous data collection and expansion of event categories could
make the algorithm more robust and versatile.

The evaluation results show that the algorithm can successfully detect sound events of
different categories in the data set. Performance metrics such as precision, completeness, F1-
score, and area under the ROC curve reveal a balance between detectability and minimizing
false positives. However, it is noted that specific event categories present challenges,
highlighting the importance of specific improvement strategies.

Analysis of false positives and negatives has identified areas for refinement of the
algorithm. It has been observed that low amplitude and frequency events can result in false
negatives, suggesting the need for data augmentation and threshold adjustment techniques.
On the other hand, events with similar characteristics to different categories can lead to
false positives, indicating the importance of considering more advanced classification
approaches. Learning curves have shown how the algorithm’s performance improves



Appl. Syst. Innov. 2023, 6, 90 18 of 19

with the increasing size of the training set. This highlights the positive influence of the
data on model performance and suggests that expanding the data set could lead to better
performance.

Runtime analysis reveals that the algorithm is suitable for applications that do not
require real-time detection. However, for time-sensitive applications, additional optimiza-
tions might be necessary. It is important to note that this study focused on a specific set
of sound events and was conducted under controlled conditions. Future research could
extend the evaluation to additional events and test the algorithm in real-world settings to
assess its performance in more complex and varied situations. Furthermore, incorporating
advanced signal processing and deep learning techniques could significantly improve the
accuracy and robustness of the algorithm. Based on the analysis of false positives and
negatives, more specific strategies can be developed to address challenges in detecting
specific categories of events. This could include the design of more advanced classification
models or the exploration of more sophisticated thresholding techniques.
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