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Abstract: In this review, we compiled convolutional neural network (CNN) methods which have the
potential to automate the manual, costly and error-prone processing of medical images. We attempted
to provide a thorough survey of improved architectures, popular frameworks, activation functions,
ensemble techniques, hyperparameter optimizations, performance metrics, relevant datasets and
data preprocessing strategies that can be used to design robust CNN models. We also used machine
learning algorithms for the statistical modeling of the current literature to uncover latent topics,
method gaps, prevalent themes and potential future advancements. The statistical modeling results
indicate a temporal shift in favor of improved CNN designs, such as a shift from the use of a CNN
architecture to a CNN-transformer hybrid. The insights from statistical modeling point that the
surge of CNN practitioners into the medical imaging field, partly driven by the COVID-19 challenge,
catalyzed the use of CNN methods for detecting and diagnosing pathological conditions. This
phenomenon likely contributed to the sharp increase in the number of publications on the use of
CNNs for medical imaging, both during and after the pandemic. Overall, the existing literature
has certain gaps in scope with respect to the design and optimization of CNN architectures and
methods specifically for medical imaging. Additionally, there is a lack of post hoc explainability of
CNN models and slow progress in adopting CNNs for low-resource medical imaging. This review
ends with a list of open research questions that have been identified through statistical modeling and
recommendations that can potentially help set up more robust, improved and reproducible CNN
experiments for medical imaging.

Keywords: medical imaging; convolutional neural network models; classification; hyperparameter
tuning; frameworks; preprocessing; performance metrics; ensemble; activation function

1. Introduction

Traditionally, medical images are manually annotated by domain experts with special
skills which makes the overall process labor intensive, expensive, slow and error-prone [1].
Automated faster and more accurate methods are critical for near real-time diagnosis
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and better patient outcomes. This review focuses on the application of convolutional
neural networks for medical image classifications, emphasizing recent improvements in
algorithms and approaches. We covered key CNN methodologies as applied in research
and clinical settings with respect to medical image localization, detection, preprocessing,
segmentations and classifications. Machine learning algorithms were also applied for
statistical modeling of the current literature to uncover latent topics, prevalent themes,
method gaps and possible future advancements.

1.1. Background and Context

Healthcare is a high priority sector due to its importance for wellness, healthspan and
lifespan. Higher levels of healthcare and services entail direct, fast and reliable diagnostic
approaches, such as using medical imaging. However, the interpretations of medical images
by medical experts are quite limited due to subjectivity of experts and the complexity of
the images [1]. In addition, extensive variations exist among experts partly attributable to
human fatigue as a result of the heavy workloads of medical professionals [1].

Following the success of CNN in image processing in other real-world applications, it
is also being explored as a key and robust method for applications in clinical settings [2,3].
In this review, we compiled recently improved components of deep CNN architectures,
popular frameworks, activation functions, preprocessing approaches, publicly available
datasets, ensemble methods and optimization techniques that are being applied for medical
image understanding. Additionally, we used machine learning-based statistical modeling
of the current literature to identify patterns, trends, method gaps and future advancements
that were not obvious from the individual studies. This review ends with a discussion on
methodological challenges and open research issues with regard to applications of CNNs
for medical imaging.

1.2. Importance of CNN for Medical Image Classification

Imaging techniques are used to capture anomalies or pathological parts of the hu-
man body [4]. The captured images must be understood for the diagnosis, prognosis and
treatment planning of the anomalies [4]. Analyzing images generated in clinical practice
by extracting information in an efficient manner is critical for improved clinical diagnosis.
However, the effectiveness of image understanding performed by skilled medical profes-
sionals is limited (and the process is slow and error-prone) due to the scarce availability
of human experts and the fatigue and rough estimate procedures involved. CNNs are
being widely accepted and practiced as effective tools for image understanding due to their
ability to learn and extract features automatically.

There is a growing interest among researchers and clinicians in applying CNN meth-
ods for segmentation, abnormality detection, disease classification and diagnosis [5–8].
Different variations of CNN methods use different approaches to improve their perfor-
mance in wide ranges of image classification tasks [9,10]. The robustness and automatability
of CNNs in addition to reports of CNN techniques outperforming human experts seem to
be the driving forces for the enthusiastic surge of their use in medical image understand-
ing [11–13].

1.3. Objectives of the Study

This study is designed to organize and present CNN algorithms (including improved
architectures), activation functions, popular frame works, optimization approaches, rele-
vant datasets, data preprocessing techniques and model ensemble methods in one place
and make them available for researchers and clinicians who are interested in setting up
their own CNN experiments (Figure 1).
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Figure 1. Application of CNN methods for medical image understanding, and machine learning-
assisted statistical modeling of the current literature.

Another important objective of this study is to use machine learning algorithms for
the statistical modeling of the literature (to identify current practices and future trends that
are relevant to CNN application for medical image understanding) (Figure 1).

1.4. What Distinguishes the Current Study from Previously Published Review Papers?

There are great reviews focusing on the application of deep learning and CNN for
medical image understanding. Many of these reviews focus on findings of the individual
papers (result reviews), on specific method, on specific medical imaging or on a particular
disease. But this review is both an image type and disease agnostic method review, and
at the same time, it includes the machine learning-assisted statistical modeling of the
current literature on the application of CNN for medical image understanding. Indeed,
there are other reviews which have surveyed broader areas of the literature. And yet, the
coverage of alternative CNN components in previously published review papers are less
comprehensive than what is compiled in this study.

2. Review of CNN Algorithms and Methods

In this review, we compiled and summarized the recent advances in CNN-based med-
ical image understanding and highlighted methodological challenges and opportunities.
We began by providing an overview of the key components of CNN architectures, design
improvements and activation function that are used for medical image understanding.
Then, we discussed popular frameworks, ensemble techniques, widely used hyperparam-
eters, optimizations and tuning approaches, performance metrics, databases of relevant
medical images and input data preprocessing that are essential for developing more robust
and transferable models. This study attempted to provide a comprehensive overview of
the current state of CNN-based methods as applied for medical image understanding.
Additionally, statistical modeling was used to identify some of the open CNN-related
method gaps and to suggest potential future advancements.

2.1. Basic Architectures of CNNs

CNNs have become the mainstream algorithms for image classification due to their
remarkable performance for object detection, action recognition, image classification, seg-
mentation and disease diagnosis [7,14–22]. CNNs have the advantage of being able to
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distinguish complex shapes of images [23] due to their ability to learn and extract features
without the need for prior knowledge or human intervention [24].

Architectures of CNNs are designed to automatically learn and extract features from
images through a series of convolutional, pooling and fully connected layers (Figure 2) [10,16].

Figure 2. Basic architecture of convolutional neural network showing the main components and steps
involved in medical image classifications.

Each layer, in a typical CNN architecture (Figure 2), has a specific purpose:

• The input layer is the first layer which receives the input image.
• The convolutional layer is the core layer of the CNN architecture, where the convolu-

tion operation is performed using a set of learnable kernels or filters to detect edges,
corners and textures (to extract features from the input data) [25]. Feature extraction
may involve strides and paddings along with kernels (1).

WO =
Wi − F + 2P

S
+ 1 (1)

where Wo is the output size, Wi is the input size, F is the kernel size, P is the padding size
and S is the size of the stride.

• The activation function introduces non-linearity to capture complex relationships in
the data, and it is applied element-wise to the output of the convolutional layer.

• The pooling layer is applied to reduce the spatial dimensions (width and height) of the
feature maps obtained from the convolution layer [16] by performing down-sampling.

• The fully connected layer is used to learn high-level representations by combining
features learned from the previous layers.

• The output layer is the last layer which produces the desired output based on the task
at hand.

CNN architectures can have additional components like dropout and normalization
layers, depending on the specific application and network design.

2.2. Improvements in Architectural Designs of CNNs

Improved or hybrid structures of CNNs with other algorithms such as transformers
(Figure 3a), recurrent neural networks (RNNs), generative adversarial networks (GANs)
and shallow methods have shown better performances in medical image segmentations
and classifications [26].
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Figure 3. (a) Hybrid structure of convolutional neural networks with transformer (applied for
diagnosis of brain tumor). (b) Consecutive Swin transformer block. Copyright notice: (a,b) were
redrawn from Figures 1 and 2 from Wang et al. [27] (published with open access under the Creative
Commons License).

Each Swin transformer block consists of residual connection, and two-layer perceptron
(MLP) with Gaussian error linear units, a LayerNorm layer (LNL) and a multi-head self-
attention module (Figure 3b).

The query (Q), key (K) and value (V) of the self-attention can be given as (2):

attention(Q, K, V) = SoftMax(
QKT
√

Qd
+ B)V (2)

where Qd is the query dimension and B is the bias matrix
High-precision medical image segmentation is a challenging task due to the existence

of inherent distortion and magnification in medical images as well as the presence of lesions
with similar density to normal tissues. Recently, hybrid structures of transformers with
CNN along with attention blocks have been designed and progressively improved to tackle
the problem of medical segmentation. Many of the hybrid and/or improved structures are
also designed for medical image classifications in addition to segmentation tasks (Table 1).

Table 1. Improved or hybrid CNN architectures that are applied for medical image understanding.

CNN Design Description Specific Application

U-net [28] U-net++ [29] U-shaped network design or a nested U-net
architecture.

For the segmentation of medical images
[30–32].

attention U-net [33] Attention gate (AG) model. Automatically learns to focus on structures of
varying sizes and shapes.

ResNet [34–36]
A deep residual learning network (a shortcut
connection model to significantly reduce the difficulty
of training very deep CNNs).

Aims to simplify very deep networks by
introducing a residual block that sums two
input signals.



Mach. Learn. Knowl. Extr. 2024, 6 704

Table 1. Cont.

CNN Design Description Specific Application

FC-DenseNet [37,38]

Fully convolutional DenseNet developed by the
composition of dense blocks and pooling operations in
which the up-sampling path was
introduced to restore the input resolution.

For semantic image segmentation.

ViT [39,40] Vision transformer. For image segmentation.

Swin Transformer [41]
Hierarchical vision transformer using shifted
windows (uses a sliding window to limit self-attention
calculations to non-overlapping partial windows).

Serves as a general-purpose backbone for
medical image segmentation and
classification.

Swin UNETR [42]
UNETR [43]

Shifted windows UNet transformers (Swin UNet
Transformers): pretrained, large-scale and
self-supervised 3D models for data annotation
(tailored for 3D segmentation and directly use
volumetric data).

Pretrained framework tailored for
self-supervised tasks in 3D medical image
analysis.

ResViT [44] Residual vision transformers. Generative adversarial network for
multi-modal medical image synthesis.

TransUNet [45]
This has an embedded transformers in the
down-sampling process to extract the information in
the original image.

To solve a lack of high-level detail.

TFCNs [46] Transformers for fully convolutional
DenseNet.

To tackle the problem of high-precision
medical image segmentation by introducing
a ResLinear-transformer
and convolutional linear attention block to
FC-DenseNet

SETR [47] Segmentation transformer.
A pure transformer (without convolution
and resolution reduction) to encode an image
as a sequence of patches.

Deformable DETR [48]
Fully end-to-end object detector using a simple
architecture by combining CNNs and transformer
encoder–decoders architecture.

Mitigates the slow convergence and high
complexity issues of DETR.

Medical Transformer
[49] Gated axial attention for medical image segmentation. Operates on the whole image and patches to

learn global and local features.

O-Net [27] Framework with deep fusion of CNN and transformer. For simultaneous segmentation and
classification.

TransMed
[50]

Combines CNN and transformer to efficiently extract
low-level features of images. Multi-modal medical image classification.

SMESwin Unet [51]

Superpixel and MCCT-based channel-wise
cross-fusion transformer (CCT) coupled with
multi-scale semantic features and attention maps
(Swin UNet).

For medical image segmentation.

CNN-SVM hybrid [52] Threshold segmentation approach. For tumor detection and classification of MRI
brain images.

SegTransVAE [53] Hybrid CNN–transformer with regularization. For medical image segmentation.

autoencoder-hybrid
CNN-LSTM model [54] Hybrid of CNN with RNN. For COVID-19 severity prediction from lung

ultrasounds.

HCT-Net [55] Hybrid CNN–transformer model based on a neural
architecture search network.

A neural architecture search network for
medical image segmentation.

HybridCTrm [56] Bridging CNNs and transformers. For multimodal image segmentation.
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Table 1. Cont.

CNN Design Description Specific Application

MFDNN [57]

MFDNN (multimodal fusion deep neural network)
integrates different modalities (medical imaging,
genomics, clinical data) to enhance lung cancer
diagnostic accuracy.

Used for lung cancer classification
by integrating clinical data, electronic health
records and multimodal approaches (to
improve the accuracy and reliability of lung
cancer diagnosis).

M3BTCNet [58]
This architecture uses metaheuristic deep neural
network features optimization. For a multi model brain tumor classification.

NeuroNet19 [59]

Uses VGG19 as its backbone and incorporates inverted
pyramid pooling module (iPPM) to capture
multi-scale feature maps (to extract both local and
global image contexts). Local interpretable
model-agnostic explanations (LIME), is used to
highlight the features or areas focused on while
predicting individual images.

An explainable deep neural network model
for the classification of brain tumors (using
MRI data).

sparse deep neural
network features [60]

Designed based on dense neural network (VGG-16
and Resnet-50) and sparse neural networks (inception
v3).

For detection and classification of non-small
cell lung cancer types.

3D CNN Multimodal
Framework
[61]

The framework comprises a 3D CNN for each
modality, whose predictions are then combined using
a late fusion strategy based on Dempster–Shafer
theory.

Classification of MRI images with
multimodal fusion. This multimodal
framework processes all the available MRI
data in order to reach a diagnosis.

Feature fusion-based
ensemble CNN learning
optimization [62]

An ensemble CNN framework incorporates optimal
feature fusion: multiple CNN models with different
architectures are trained on the dataset using
fine-tuning and transfer learning techniques.

For the automated detection of pneumonia.
Learning optimizations achieved by
iteratively eliminating irrelevant features
from the fully connected layer of each CNN
model using chi-square and mRMR methods.
Optimal feature sets are then concatenated to
enhance feature vector diversity for
classification.

External validation of a
deep learning model [63]

This model is based on ResNet-18 to automatically
assess the mammographic breast density (for each
mammogram), providing a quantitative measure of
the breast tissue composition.

For breast density classification.

Weakly Supervised Deep
Multiple Instance
Learning [64]

This is a two-stage framework based on deep multiple
instance learning. It requires only global labels (weak
supervision).

For diagnosis and detection of breast cancer.
This approach provides classification of the
whole volume and of each slice and the 3D
localization of lesions through heatmaps.

DM-CNN [65]

Dynamic multi-scale CNN contains four sub-modules:
dynamic multi-scale feature fusion module (DMFF),
hierarchical dynamic uncertainty quantifies attention
(HDUQ-Attention), multi-scale fusion pooling method
(MF Pooling) and multi-objective loss (MO loss)

For medical image classification with
uncertainty quantification. DMFF selects
convolution kernels according to the feature
maps of each level for information fusion.
HDUQ-Attention has a tuning block to adjust
the attention weight according to the
information of each layer. The Monte Carlo
(MC) dropout structure is for quantifying
uncertainty. The MF pooling is to speed up
the computation and prevent overfitting.
And the MO loss is for a fast optimization
speed and good classification effect.
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Table 1. Cont.

CNN Design Description Specific Application

lightweight
multi-modality UNeXt
and Wave-MLP semantic
segmentation network
[66]

The wave block module in Wave-MLP replaces the
Tok-MLP module in UNeXt. The phase term in wave
block can dynamically aggregate token to improve
segmentation accuracy. An AG attention gate module
at the skip connection suppresses irrelevant feature
representations. Then, the focal Tversky loss is added
to handle both binary and multiple classification tasks.

For multi-modality medical image semantic
segmentation.

MobileNets [67]
Efficient CNN based on a streamlined architecture that
uses depth-wise separable convolutions to build
light-weight deep neural networks.

For mobile and embedded vision
applications. Use cases include object
detection, fine-grain classification, face
attributes and largescale geo-localization.

UL-BTD [68]

an automated ultra-light brain tumor detection
(UL-BTD) system based on ultra-light deep learning
architecture (UL-DLA) for deep features, integrated
with highly distinctive textural features, extracted by
gray level co-occurrence matrix.

For multiclass brain tumor detection. It
forms a hybrid feature space for tumor
detection using support vector machine,
leading to high prediction accuracy and
optimum false negatives with limited
network size to fit within the average GPU
resources of a modern PC system.

2.3. Activation Functions Used in CNNs

The use of an optimal activation function along with a robust CNN structure is
important for medical image analysis. Having a suitable nonlinear activation function can
significantly improve the performance of the network. It is important to note that there is
no single or “best” activation function that works universally for all CNN architectures.
The choice of activation function should be based on empirical evaluation and specific task
requirements (Table 2).

Table 2. Activation functions frequently used in CNN applications for medical image processing. The
middle solid line separates the ReLU families and derivates from other classes of activation functions.

Activation
Function Equation Graphical Representation * Short Description

Rectified Linear
Unit (ReLU)

ReLU(x) = max(0, x)
i.e.,
ReLU(x) = {0, if x ≤ 0,
x, if x > 0}
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alpha = 0.1

Addresses the issue of “dead
neurons” by allowing small
negative values instead of setting
them to zero; provides some
gradient flow for negative inputs
during backpropagation.

Parametric ReLU
(PReLU)

PReLU(x) = {x, if x > 0, alpha × x, if
x ≤ 0}; Alpha is a parameter that can
be learned during the training
process (controls the slope for
negative input values).

Similar to leaky ReLU
(although alpha here is a
parameter to be learned and
optimized).

During training, the alpha
parameter is updated through
backpropagation, enabling the
network to learn the optimal value
for each neuron. Adjusting the
slope for negative inputs can lead to
improved performance and better
representation learning.
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Table 2. Cont.

Activation
Function Equation Graphical Representation * Short Description

Randomized
Leaky ReLU
(RRELU)

The slope is fixed to a predefined
value during testing. This introduces
a form of regularization and can help
prevent overfitting.

Similar to leaky ReLU.

A variation of Leaky ReLU that
randomly samples the slope from a
uniform distribution during
training.

Exponential
Linear Unit
(ELU)

ELU(x) = {x, if x > 0,
alpha × (exp(x) − 1), if x ≤ 0}
Alpha is a hyperparameter (controls
the behavior of the function); ELU
captures more nuanced information
from negative inputs and alleviate the
vanishing gradient problem.
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alpha = 1.0

Smooths negative inputs by using
an exponential function; the
exponential smoothing helps
reduce the impact of noisy
activations.

Scaled
Exponential
Linear Unit
(SELU)

SELU = λ

{
a(ex − 1)

x
f or x < 0
f or x ≥ 0

with predefined value for lambda λ

or in general SELU(x) = {scale × (x if
x > 0 else (alpha × exp(x) − alpha)), if
training; scale × x, if testing}
x is input to the activation function,
alpha is a hyperparameter that
controls the slope for negative inputs
and scale is a scaling factor to
maintain the mean and variance of
the inputs close to 0 and 1,
respectively. SELU has the property
of self-normalization, which can lead
to improved performance and
stability in deep neural networks.
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SELU, by adjusting the mean
and variance, takes care of
internal normalization.
Gradients can be used to
adjust the variance (needs a
region with a gradient > 1 to
increase it).

During training, SELU applies a
modified ELU function (negative
inputs are transformed with a
negative slope). The scale factor
stabilizes the activations and
ensures self-normalization. The
mean and standard deviation of the
outputs are enforced to be
approximately 0 and 1, respectively
(helps address the
vanishing/exploding gradient
problem). During testing, SELU
behaves as a scaled identity
function (inputs are multiplied by
the scale factor to preserve the
output magnitude).

Swish

SWISH (x) = x × sigmoid(beta × x)
Beta is a hyperparameter that controls
the behavior of the function. Higher
values of beta can lead to more
pronounced non-linearity, while
lower values can make it closer to the
identity function.
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beta = 0.5

Combines the linearity of the
identity function (x) with the
non-linearity of the sigmoid
function (for positive inputs: retains
the linearity; for negative inputs,
the output towards zero is
dampened due to the sigmoid
function). It performs well in
CNNs.

SWISH-RELU

SWISH-RELU(x) = x × sigmoid(beta
× x) if x > 0
SWISH-RELU(x) = x if x ≤ 0
The advantage of SWISH-RELU is
that it retains the desirable properties
of Swish, such as the smoothness and
non-monotonic behavior, while also
providing a fallback to ReLU for
negative inputs. This fallback
mitigates the problem of dead
neurons and vanishing gradients
associated with the standard Swish
activation function.
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The Swish activation function with
a ReLU fallback is a Swish and
ReLU hybrid. The sigmoid
introduces a smooth non-linearity,
while the ReLU fallback ensures
that the activation does not
completely vanish for negative
inputs. SWISH-RELU performs
well in CNNs for image
classification.
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Table 2. Cont.

Activation
Function Equation Graphical Representation * Short Description

Gaussian Error
Linear Unit
(GELU)

GELU(x) = 0.5x × (1 + erf(x/sqrt(2)))
This is smooth and non-monotonic.
x is the input and
erf is the error function used to model
cumulative distribution.
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A non-linear function that squeezes the 

input value into a range between 0 and 1. 
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erf = 0.3

GELU has a smooth and non-linear
behavior that can help capture
complex patterns and gradients; it
performs well in NLP and CNNs. It
is computationally more expensive
than ReLU due to the involvement
of erf but improves the performance
in certain scenarios.

Softmax

Softmax(xi) =
exp(xi)

∑j exp(xj)
Given an input vector of x = [x1, x2,
. . ., xn], the Softmax function
computes the probability pi for each
element xi as:
Softmax(xi) = exp(xi)/sum(exp(xj))
for j = 1 to n
The highest probability class is
selected as the predicted class label.

Boundaries vary based on the
xi and xj values.

Used as the final activation function
in the output layer for multi-class
classification tasks (takes a vector of
real numbers inputs and outputs a
vector of probabilities between 0
and 1 that sum up to 1). Enables the
network to assign probabilities to
each class, indicating the model’s
confidence for each class prediction.

Hyperbolic
Tangent (Tanh)

Tanh(x) =
(exp(x)− exp(−x))/(exp(x)+

exp(−x)) = (ex−e−x)
(ex+e−x)

Non-linear symmetric function
around the origin (squeezes the input
value into a range between −1 and 1).
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introduces non-linearity to the network, 

Useful for tasks that require outputs
in the range of −1 to 1 or for
modeling symmetric patterns.
Suffers from the “vanishing
gradient” problem, where the
gradient becomes extremely small
for inputs with very high absolute
values.

Sigmoid (logistic)

sigmoid(x) = 1/(1 + exp(−x))
A non-linear function that squeezes
the input value into a range between
0 and 1. Suffers from the “vanishing
gradient” problem, where the
gradient becomes extremely small for
inputs with very high or very low
absolute values.
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positive inputs are passed through 

unchanged, while negative inputs are 

mapped to small positive values. It 

introduces non-linearity to the network, 

Maps any real-valued number to a
value between 0 and 1, with values
close to 0 representing the lower
end of the range and values close to
1 representing the upper end
(suitable for binary classification
tasks or probabilistic outputs).

Softplus

Softplus(x) = log(1 + exp(x))
Designed to be a smooth and
differentiable approximation of the
ReLU function, which is
non-differentiable at x = 0.
Commonly used in variational
autoencoders (VAEs) and some
recurrent neural networks (RNNs).
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positive inputs are passed through 

unchanged, while negative inputs are 

mapped to small positive values. It 

introduces non-linearity to the network, 

Has similar properties to ReLU,
where positive inputs are passed
through unchanged, while negative
inputs are mapped to small positive
values. It introduces non-linearity
to the network, allows for the
modeling of complex patterns, and
provides smoother gradients than
ReLU (facilitates better training and
convergence).

Mish

Mish(x) = x × tanh(softplus(x))
Mish does not have a closed-form
derivative and is often approximated
or numerically computed during
backpropagation. It introduces
non-linear behavior, captures
complex patterns and alleviates the
vanishing gradient problem.
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Activation
Function Equation Graphical Representation * Short Description

Inverse Square
Root Unit (ISRU)

ISRU(x, alpha) = x/sqrt(1 + alpha ×
x2)
Alpha is a positive constant that
determines the steepness and shape
of the ISRU function; a larger alpha
value results in a steeper curve, while
a smaller alpha value leads to a more
gradual curve. The square root and
normalization ensure that the output
remains within a reasonable range.
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ISRU is used as an alternative to
sigmoid or tanh in situations where
a more gradual transition from low
to high activations is desired. But it
is not widely used in deep learning
models.

* Graphs of activation functions were generated using ggplot2 package of R or an online graphing method called
desmos (https://www.desmos.com, accessed: 14 June 2023). Many of the activation functions (Table 2) are smooth
and non-monotonic, meaning that they do not strictly increase or decrease for all input values.

Other activation functions that are not commonly used, in comparison to the ones
listed in Table 2, include the ReLU family (Symmetric ReLU (SReLU), inverse square root
linear unit (ISRLU), leaky ReLU with arbitrary slope (LReLU), randomized leaky ReLU
(RReLU)), continuously differentiable exponential linear unit (CELU), Softsign, Maxout,
squeeze-and-excitation nonlinearity (SQNL), sine, cosine, ArcTan, hard sigmoid, hard tanh,
linearly scaled hyperbolic tangent (LiSHT), bent identity, the bent identity family (bent
identity parameterized, bent identity smooth, bent identity parametric) and the Ada family
(AdaBound, AdaBelief, AdaM, AdaMod, AdaShift, AdaSign, AdaBoundW, AdaBeliefW,
AdaMW, AdaModW, AdaShiftW, AdaSignW, AdaBoundT, AdaBeliefT, AdaMT, AdaModT
and AdaShiftT).

2.4. Popular Frameworks

There are a number of CNN frameworks widely used for medical image understandin
(Table 3). The popularity of frameworks is ranked based on the number of search-hits using
Google Scholar, PubMed and IEEE Xplore (Figure 4 and Table 3). The use of Keras as a
TensorFlow interface seems to be the most widely used framework across the three search
engines/databases (Figure 4).

Table 3. Frequently used CNN frameworks (the order of this list is arbitrary).

Framework *
(Repository)

Developed
(Maintained) Short Description Numbers of Hits for Each Search Engine

Google Scholar PubMed IEEE Xplore

TensorFlow Google Brain Team An end-to-end machine learning
platform. 231,000 364 2154

PyTorch Meta AI Based on the Torch library. 82,600 196 650

Theano
Montreal Institute
for Learning
Algorithms

Allows the definition, optimization,
and efficient evaluation of
mathematical expressions involving
multi-dimensional arrays.

29,600 23 69

Keras François Chollet Provides a Python interface for
ANNs, e.g., TensorFlow. 697,000 182 893

MXNet Apache Software
Foundation

Scalable, allows fast model training
and supports multiple programming
languages.

7930 5 59

Caffe/Caffe2
University of
California,
Berkeley

A lightweight, modular and scalable
deep learning framework. 7410 No results No result

https://www.desmos.com
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Table 3. Cont.

Framework *
(Repository)

Developed
(Maintained) Short Description Numbers of Hits for Each Search Engine

Google Scholar PubMed IEEE Xplore

Chainer
Preferred
Networks, Inc.,
Tokyo, Japan

A collection of tools to train and run
neural networks for computer vision
tasks.

5700 9 52

CNTK Microsoft
Describes neural networks as a series
of computational steps via a directed
graph.

19,800 8 28

Torchnet PyThorch TNT
An abstraction to train neural
networks (for logging and
visualizing, loading and training).

97 61 No results

JAX Google Provides interfaces to compute
convolutions across data. 143,000 2692 113

EfficientNet
ICML
2019·Mingxing
Tan, Quoc V. Le

A CNN architecture and scaling
method that uniformly scales all
dimensions of
depth/width/resolution using a
compound coefficient.

23,700 325 648

SRnet Niwhskal/SRNet

A twin discriminator GAN that can
edit text in any image while
maintaining context of the
background, font style and color.

2960 9 34

LFnet
Learning Local
Features from
Images

Deep architecture to learn local
features and can be trained
end-to-end with just a collection of
images, from scratch, without
hand-crafted priors.

1150 5 6

Horovod The Linux
Foundation

Distributed deep learning training
framework for TensorFlow, Keras,
PyTorch and Apache MXNet.

1840 No results 40

Attention
Factorization
Machine
(AFM)

Jun Xiao et al. [69] Learning the weight of feature
interactions via attention networks. 18,500 No results 3

Neural
Factorization
Machine
NFM-PT

Xiangnan He and
Tat-Seng Chua

For sparse predictive analytics (or
prediction under sparse settings). 4480 2 1

Deep
Factorization
Machine
(DeepFM)

Guo, H et al. [70]

Combines the power of factorization
machines for recommendation and
deep learning for feature learning
with no need of feature engineering
besides raw features.

2340 3 20

Deep Cross-
Network
(DCN)

Wang, R et al. [71]

Applies feature crossing networks at
each layer that do not require manual
feature engineering, and hence, it is
more efficient in learning certain
bounded-degree feature interactions.

581 1 4

Trax Google Brain Team
An end-to-end library for deep
learning that focuses on clear code
and speed.

20,800 156 38

Kaldi DNN in KALDI An open-source speech recognition
toolkit. 47,100 73 174

OpenSeq2Seq FazedAI/
OpenSeq2Seq

A TensorFlow-based toolkit for
sequence-to-sequence models. 127 No results No results
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Framework *
(Repository)

Developed
(Maintained) Short Description Numbers of Hits for Each Search Engine

Google Scholar PubMed IEEE Xplore

ESPNet/
ESPNet

Watanabe, S et al.
[72]

An end-to-end toolkit for speech
processing, recognition and
text-to-speech translation.

3270 140 30

wav2letter++ Pratap, V et al. [73] A fast open-source deep learning
speech recognition framework. 4 No results 3

Elephas Max Pumperla and
Daniel Cahall

An extension of Keras, which allows
the running of distributed deep
learning models at scale with Spark.

52,700 786 3

Tfaip/tfaip Python community

Research framework for developing,
organizing, and deploying deep
learning models powered by
TensorFlow.

26 5 No results

BigDL Dai, J et al. [74]
A distributed deep learning library
for Apache Spark (fast, distributed
and secure AI for big data).

455 1684 10

* Additional frameworks implementing graph neural networks (GNN) are available, such as PyTorch Geometric
(PyTorch), TensorFlow GNN (TensorFlow) and jraph (Google JAX). Relevant application domains for GNNs
include natural language processing, social networks, citation networks, molecular biology, physics and NP-hard
combinatorial optimization problems.

Figure 4. Overlap among the top 10 most popular CNN frameworks that were ranked based on the
search hits using Google Scholar, PubMed and IEEE Xplore.

2.5. Ensemble Approaches for CNN Models

There are several models that can be ensembled with CNN designs which can be
used for medical image analyses. Ensemble techniques aim to improve the robustness and
accuracy of CNNs [75–77]. Ensemble methods for CNN models include mixture ensemble
of CNNs [78] used for breast tumor classification [79], ensembles of pre-trained CNNs
(such as inception v3) [80] used for epilepsy classification [78], in-network ensembles for
obstructive sleep apnea detection [81,82], weighted average ensembles for pneumonia
detection [83], a self-ensemble framework [84] used for brain lesion segmentation, orthogo-
nal and attentive ensemble networks [85] used for COVID-19 diagnosis [86,87], 3D CNN
ensembles used for pulmonary nodule classification in lung cancer screening [88] and
ensembles of REFINED-CNN built under different choices of distance metrics and/or
projection schemes used for anti-cancer drug sensitivity prediction [89]. Ensembled designs
consisting of deep CNN and recurrent neural network architecture are applied for the
recognition of end-to-end arousal from ECG signals [90].

2.6. Hyperparameters of CNNs Used for Medical Image Analyses

Hyperparameters are settings that affect the performance of Neural nets. There are
more than 420 hyperparameters reported in the literature used for tuning up deep neural
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networks (Supplementary Table S1). Of the 420 plus, around 30 to 40 hyperparameters are
widely reported in relation with application of CNN for object recognition and medical
image understanding (Table 4).

Table 4. The most widely used hyperparameters for convolutional neural networks (CNNs).

Hyperparameter * Description

Learning rate Controls the step size at each iteration during training and influences how quickly the model learns.

Number of epochs Determines the number of times the entire dataset is passed through the network during training.

Batch size Specifies the number of training examples in each mini-batch used for updating the model’s parameters.

Batch normalization A normalization technique that helps stabilize the learning process by normalizing the inputs of each layer.

Optimizer type Selects the optimization algorithm used to update the model’s weights based on the computed gradients
(e.g., Adam, SGD).

Loss function Defines the objective function used to measure the difference between predicted and actual values (e.g.,
categorical cross-entropy, mean squared error).

Activation function Applies non-linearity to the output of a neuron and determines the range of values that can be produced
by the layer (e.g., ReLU, sigmoid).

Dropout rate Controls the probability of randomly setting a fraction of the input units to 0 during training, reducing
overfitting.

Weight initialization
strategy Determines how the initial weights of the model are set before training begins.

Number of layers Specifies the depth or the number of layers in the CNN architecture.

Filter/kernel size Defines the spatial extent of the filters (convolutional kernels) used to scan the input data.

Pooling type Determines the downsampling operation applied to reduce the spatial dimensions of the feature maps
(e.g., max pooling, average pooling).

Pooling size Specifies the size of the pooling window used for downsampling.

Stride Defines the step size at which the filter/kernel moves horizontally or vertically when performing
convolutions or pooling.

Padding Determines whether and how extra border pixels are added to the input data before performing
convolutions or pooling.

Learning rate decay Reduces the learning rate over time to allow for finer adjustments during training.

Weight decay Adds a penalty term to the loss function to discourage large weights, reducing overfitting.

Data augmentation Applies random transformations to the training data, such as rotation, flipping or zooming, to increase the
diversity of examples and improve generalization.

Transfer learning Uses pre-trained models on large-scale datasets as a starting point for training on a specific task, saving
training time and potentially improving performance.

Early stopping Stops the training process if the validation loss does not improve over a certain number of epochs,
preventing overfitting and saving computational resources.

Learning rate
schedule

Specifies how the learning rate is adjusted during training, such as by reducing it after a certain number of
epochs or based on a predefined schedule.

Initialization of
biases Determines how the biases of the model’s layers are initialized.

Learning rate
warm-up Gradually increases the learning rate at the beginning of training to stabilize the optimization process.

Image normalization Specifies how the input images are normalized (e.g., mean subtraction, scaling to a certain range).

Network architecture Defines the overall structure of the CNN model, including the arrangement and types of layers (e.g., VGG,
ResNet, Inception).

Number of filters per
layer Determines the depth of the feature maps produced by each convolutional layer.
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Table 4. Cont.

Hyperparameter * Description

Dilated convolutions Allows the network to have a larger receptive field without increasing the number of parameters.

Weight sharing Shares weights across different parts of the network to reduce the number of parameters and improve
generalization.

Learning rate
annealing Gradually decreases the learning rate during training to fine-tune the model’s parameters.

Input image size Specifies the size of the input images to the CNN model.

Number of
convolutional layers

Determines the depth or capacity of the CNN; the appropriate number depends on the task, the size and
diversity of the dataset and the computational resources.

Number of fully
connected layers

Used to map the high-level features to the desired output. The number of neurons or units in each fully
connected layer is another hyperparameter.

Momentum Used in optimization algorithms (e.g., SGD) and can improve the convergence speed and stability of CNN
training by accumulating momentum from past gradients.

Inverse dropout Makes inference faster during test time.

L2 regularization For the sparse representation of features.

* These hyperparameters offer a wide range of options for configuring and optimizing CNN models for various
tasks, including medical image classification. The optimal values for these hyperparameters depend on the
specific task and dataset being used and can be determined through hyperparameter tuning.

2.6.1. Hyperparameter Tuning and Optimization Methods

The tuning of deep learning architectures helps to improve the ease of data encoding,
integrative layering, multivariate classification and predictive model performance. Particu-
larly, the hyperparameter tuning of CNN models are important steps for training, iterative
tuning and benchmarking (to make classifications).

The following important and widely used CNN hyperparameter tuning methods can
be used to improve the reproducibility of model outputs or performances:

• Automatic hyperparameter optimization tools (like Amazon’s HyperparameterTuner
or Google Vizier) [91,92]

• Optimization algorithms, such as particle swarm [93], black-box and gradient or
Bayesian-based algorithms (such as the surrogate-based [94,95] or asymmetric ker-
nel function [96]) or genetic or custom genetic algorithms [97], artificial bee colony
algorithm [98], the firefly algorithm [99] and the Broyden–Fletcher–Goldfarb–Shanno
algorithm (for iteratively solving unconstrained nonlinear optimization)

• Search methods, such as grid search [100,101], random search, random grid coarse-to-
fine search [102], weighted random search [102], tabu search and elastic search/BM25
similarity search.

• Metaheuristic optimization techniques [103] or SHO metaheuristic optimization for
fine-tuning the weights, biases and hyperparameters [104]

• The orthogonal array tuning method [2], the adaptive hyperparameter tuning and the
covariance matrix adaptation evolution strategy.

• Simulated annealing, the KNN approach, per-parameter regularization and the EVO
technique (used to obtain the accurate optimized value in terms of hybridized exploita-
tion and exploration).

Some tuning methods may be more computationally expensive than others, so it is
important to consider the trade-offs between accuracy and efficiency when selecting a
hyperparameter tuning method.

2.6.2. Tuning of Parameters

CNN model parameters such as weights and biases can be randomly initialized and
iteratively updated (using backpropagations) guided by the markers of model performance
(described under model performance). Applying factorizations to the weight metrics in
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the networks can help to significantly reduce the total number of parameters to be trained.
Different gradient descents, including the stochastic gradient descent and exponentiated
gradient algorithms can be used to update parameters [105].

2.6.3. Benchmarking of Model Performances

Model performances can be benchmarked by calculating model convergence, cost, and
training set and validation set errors. The quantitative values of the training and validation
set errors will be evaluated in reference to the base error on datasets that are from the same
distribution. If the training set error is high, the model has a high bias (underfitting) toward
the training set. To address the high training set error (high model bias or underfitting),
it is recommended to use deeper neural nets, longer training, and/or different CNN
architecture. On the other hand, if the development set error is high while training set error
is low, the model has high variance (overfitting) toward the training set. To address the
high validation set error (high model variance or overfitting), it is recommended to use
more datasets of the same distribution (e.g., publicly available databases), regularization, a
different neural network architecture and/or inverse dropout.

Performance Metrics Used in Evaluating CNN Models

The performance of classifier models can be evaluated using the diagnostic (confu-
sion) matrix and derivatives of the main diagnostic parameters: such as sensitivity (recall),
specificity (true negative rate), F1-score, positive and negative predictive values, accuracy,
precision, positive and negative likelihood ratios, diagnostic odds ratio, Matthew’s correla-
tion coefficient and the area under the receiver operating characteristic curve (both on the
validation and test datasets).

Confusion matrix: True class (columns) and Predicted class (rows)

True Positives (TP) False Positives (FP)
False Negatives (FN) True Negatives (TN)

• Classification accuracy is the percentage of correctly classified instances out of the
total number of instances in the dataset (3).

accuracy =
TP + TN

TP + FP + TN + FN
(3)

Accuracy is used to evaluate the performance of CNNs in image classification
tasks [106,107].

• Sensitivity and specificity are measures of the true positive rate and true negative rate,
respectively. Sensitivity measures the proportion of correctly identified actual-positives
(4), and specificity measures the proportion of correctly identified actual-negatives (5).

sensitivity =
TP

TP + FN
(4)

specificity =
TN

TN + FP
(5)

These metrics are commonly used in medical image analysis tasks [108].

• The F1 score is a measure of the balance between precision and recall, which are metrics
that evaluate the accuracy and completeness of the model’s predictions, respectively.
That is, the F1 score (6) is the harmonic mean of precision and recall and is used to
evaluate the performance of CNNs in binary classification tasks.

F1 score =
2TP

2TP + FP + FN
(6)
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• Mean squared error (MSE): measures the average squared difference between the
predicted and actual values (7). MSE is particularly important to evaluate quantitative
or regression tasks.

MSE =
1
n∑n

k=0(yi − ŷi) (7)

where n is the number of observations, yi is the observed values and ŷi is the predicted
values.

• Receiver operating characteristic (ROC) is a graphical representation of the trade-off
between sensitivity and specificity for different classification thresholds. It is used to
evaluate the performance of CNNs in binary classification tasks [2,5].

• Area under the curve (AUC) is a summary measure of the ROC curve representing
the probability that a randomly chosen negative instance will be ranked lower than
a randomly chosen positive instance. It is commonly used to evaluate the overall
performance of CNNs in binary classification tasks.

The generalizability of classifier models can be further evaluated on totally indepen-
dent datasets of similar distribution.

2.7. Data Pre-Processing Methods

• Data distillation methods: uniform experiment design method, highlighting, back-
ground filling, resizing, noise reduction, the Gabor filter model, image defect detection
and implicit differentiation;

• Optical flow image processing;
• Sliding window data-level approach [109];
• Flattening and normalizing data in a task-specific manner;
• One-hot vector encoding method;
• Frequency-based tokenization [110];
• Training-validation-testing splits.

These pre-processing techniques are used to prepare the image dataset for CNN
modeling. In addition to pre-processing, some studies also use segmentation via CNN to
further analyze the images.

2.8. Image Datasets Relevant for Medical Themes

The use of CNN techniques in medical image analysis and disease classification
necessitates the availability of comprehensive and diverse datasets [111–113]. The suc-
cess of these techniques relies on the richness and representativeness of the datasets, as
they enable the extraction of salient information and features from medical images and
records [112,114,115].

The list of salient datasets important for medical themes (Table 5) encompasses a wide
array of medical images for diverse pathological conditions. The quality, representativeness,
and diversity of these datasets make them valuable for practicing and for setting up CNN
experiments as well as for CNN-based medical image understanding. Supplementary
Tables S3–S5 also show lists of comparisons of performances of CNN methods applied to
other popular public datasets.
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Table 5. List of salient image datasets (that are important for medical themes).

Dataset Name (Hyperlinked URL as of
21 January 2024) Theme Description

Medical Information Mart for Intensive
Care III (MIMIC-III) Critical care

Electronic health records (EHR) of ICU patients,
including clinical notes, demographics, lab results
and imaging reports

The Cancer Genome Atlas (TCGA) Cancer genomics
Images and genomic and clinical data for various
cancer types, including gene expression, epigenetic
marks, mutations and clinical outcomes.

NIH Chest X-ray dataset Chest X-ray imaging

An open dataset of chest X-ray images labeled for
common thoracic diseases, including pneumonia
and lung cancer, often used for developing and
evaluating image classification models.

Alzheimer’s Disease Neuroimaging
Initiative (ADNI)

Neuroimaging (Alzheimer’s
disease)

Longitudinal MRI and PET imaging data for
Alzheimer’s disease research.

Diabetic Retinopathy Detection Ophthalmology
Fundus images for diabetic retinopathy
classification, used to develop algorithms for
automated disease detection.

PhysioNet Challenge Various cardiology and
physiological signals

Datasets from PhysioNet challenges cover a variety
of themes, including heart rate, blood pressure and
electrocardiogram (ECG) signals.

Multimodal Brain Tumor Segmentation
Challenge (BraTS) Neuroimaging (brain tumor)

MRI images for brain tumor segmentation,
challenging researchers to develop algorithms for
tumor detection and segmentation.

UCI Machine Learning
Repository-Health Datasets Various

A collection of health-related datasets covering
different topics, including diabetes, heart disease
and liver disorders.

PhysioNet/MIMIC-CXR Database Chest X-ray imaging
A dataset of chest X-ray images with associated
radiology reports, supporting research in chest
radiography.

Skin Cancer Classification-Refugee
Initiative (SCC-RI) Dermatology A dataset of skin lesion images for skin cancer

classification, focusing on refugee populations.
Federal interagency traumatic brain
injury research (FITBIR) Traumatic brain injury These datasets include images on traumatic brain

injury patients, clinical and molecular datasets.

2.9. Data Augmentation for Training a Robust CNN Diagnostic Model for Cases with Insufficient
Training Data

Data augmentation is a critical component in training robust convolutional neural
network (CNN) models when there are no sufficient training datasets. It involves gener-
ating additional data to enhance the training process, improve model performance and
generalization. Augmenting the training dataset involves applying various transforma-
tions to the original images, creating new variations such as rotation, flipping, zooming,
translation, brightness and contrast adjustment, Gaussian noise (adding a small amount of
Gaussian noise to the images to make the model more robust to noise), elastic deformations
(applying elastic deformations to the images to introduce distortions, making the model
more tolerant to deformations in the input data), color jittering (randomly change the
hue, saturation and brightness of the images to introduce variations in color), random
cropping (a portion of the image, forcing the model to focus on different regions) and
shearing (apply shearing transformations to the images, simulating changes in the viewing
angle) [116–118]. These processes help the model become more robust by exposing it to
different perspectives, orientations and conditions. Studies have demonstrated that data
augmentation, when combined with fine-tuning and transfer learning, can significantly
enhance model accuracy [119,120]. Additionally, data augmentation can be used to enhance
the robustness of CNN models to noise for improved training [121,122] and to mitigate
kernel saturation (to increase classification accuracy) [123]. Therefore, data augmentation
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techniques can be used to develop robust CNN diagnostic models by addressing limited
training data, noise and kernel saturation.

Data augmentation can be implemented using libraries such as TensorFlow’s Im-
ageDataGenerator or PyTorch’s transforms. These libraries provide convenient tools for
applying various transformations to the training data on-the-fly during the model training
process. When implementing data augmentation, it is essential to strike a balance. For
example, too much augmentation may result in the model memorizing augmented images
rather than learning useful features. Additionally, it is important to consider the nature
of the diagnostic task; for medical imaging, it is advisable to be cautious with certain
transformations to avoid introducing unrealistic artifacts.

Enhancing CNN-Based Image Classification for Rare Diseases through Data Augmentation

The scarcity of labeled data for images associated with rare diseases poses a significant
challenge for training accurate and robust models. The key challenges include (i) the limited
availability of annotated images not only hinders the training of CNNs but also poses a
risk of overfitting, where models may fail to generalize well to new and unseen instances;
(ii) the imbalanced class distribution inherent in many rare disease datasets exacerbates the
difficulty, as models may struggle to discern minority classes effectively.

By artificially expanding the training dataset, data augmentation enables CNNs to
learn invariant features and nuances, ultimately enhancing the model’s ability to generalize
and hence improving the model’s capability to recognize subtle patterns and features
indicative of rare diseases. It is advisable to also conduct comparative analyses between
the augmented and non-augmented models to assess the efficacy of data augmentation
in improving the robustness and generalization of the CNN model for rare disease im-
age classification.

3. Machine Learning-Assisted Statistical Modeling of the Literature (Pertaining to CCN
Application for Medical Image Understanding)

Scientific progress relies on the efficient assimilation of published knowledge in order
to choose the most promising way forward and to minimize reinvention. But, due to
the rapidly evolving nature of the research literature, determining the relevance of an
individual report, aggregating and synthesizing multiple reports to derive new insights
and finding latent knowledge cannot be efficiently carried out manually. Here, we used
machine learning-assisted statistical modeling to search, aggregate, analyze and synthesize
the literature on the application of CNN for medical imaging to identify latent and relevant
information spread across research articles, conference proceedings and book chapters.

The whole process started by gathering a comprehensive corpus of literature on ap-
plication of CNN for medical image understanding including journal articles, conference
proceedings and book chapters. The gathered large corpus of datasets were preprocessed
to handle specialized terminology, abbreviations and language patterns prevalent in the
medical imaging literature; to remove noise, ensure consistency and standardize the text,
and transform the raw text into a suitable input format. This involved removing irrelevant
metadata, handling special characters, standardizing text formatting, tokenizing the text
into phrases or words, text normalization, removing stopwords, stemming, lemmatiza-
tion and spelling corrections while preserving the contextual information and maintain
the integrity of the text during preprocessing. Feature mining techniques such as entity
recognition, keyword extraction, topic modeling and literature summarization were used
to identify trends, patterns and associations and to detect relationships between entities
within the existing literature. Language model-based statistical modeling were used to
generate coherent summaries, identify method gaps, predict future trends and propose
potential solutions based on the patterns and relationships identified during the text mining
and analyses stages.
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3.1. Literature Search Strategy

We used different literature search strategies in which multiple combinations of key
words and search engines along with stringent exclusion and inclusion criteria.

Frequently used ‘key words’:
Medical image/imaging, classification, segmentation, convolutional neural network,

optimization, architecture, design, hyperparameter tuning, performance metrics, frame-
works and data preprocessing.

Literature search engines:
We tested 26 different search engines/databases and 5 large language-based AI tools

(Supplementary Table S2). Based on coverage-overlap of the tested search engines and
specificity metrics, we chose Google Scholar, IEEE Xplore, PubMed and Dimensions as our
main search engines to access literatures pertaining to technical resources on the use of
CNN for medical imaging.

Inclusion and exclusion criteria:
The literature search using Google Scholar and PubMed were largely focused on

peer reviewed articles, whereas studies obtained using IEEE Xplore included conference
proceeding in addition to peer reviewed articles. All searches were restricted to CNN
methods and approaches, particularly focusing on recent developments and improvements
that are useful for medical image understanding.

Non-English materials were filtered out as the first exclusion criterion. The exclusion
of contents from retracted sources were carried out using RetractionWatch, a database for
checking retracted studies and papers. Also, we used Search Smart, a tool that allows
researchers to compare the capabilities of most of the conventional search tools, including
Google Scholar, IEEE Xplore and PubMed, as an additional exclusion criterion.

3.2. Statistical Modeling and Visualization

Machine learning algorithms (implemented as open source, python library or R pack-
age) such as non-negative matrix factorization, automated content analysis, Cochrane
crowd platform, Rayyan, VOSviewer, Bibliometrix, litsearchr, revtools, wordcloud, word-
cloud2, tm and ggplot2 were used for the statistical modeling of the literature and the
visualization of the modeling outputs. These tools were used for topic modeling, word
frequency counting, network analyses, knowledge graph construction, visualization to
uncover latent topics, prevalent themes, method gaps and potential future directions. The
statistical modeling involves multiple steps and the functions of each of these packages. For
example, we used multiple functions of the “bibliometrix” package, such as “convert2df”
to convert the corpus of documents to data frames (as statistical modeling inputs); “biblio-
Analysis” for statistical scoring of the data frames; “summary” to see the overall picture
of the statistical analyses outputs; “biblioNetwork” to construct networks based on the
analyses results; and “plot” for visualization. Similarly, multiple steps were involved with
the other packages and tools during the statistical modeling and visualization processes.
The detailed steps and scripts for each of these tools and packages can be found at the
GitHub repository (the is link provided under the “Data Availability Statement”).

4. Results from Statistical Modeling

The findings of the statistical modeling, reported in this section, were based on search
hits identified using IEEE Xplore, PubMed, Google Scholar and Dimensions. A total of
4609 publications (accessed on 14 June 2023) consisting of 2278 research articles, 938 con-
ference proceedings, 903 book chapters, 470 preprints, 19 edited books and 1 monograph
were identified by searching for the keywords “convolutional neural networks” AND
“classification” AND (“medical image” OR “medical imaging”) in the “Title” AND “ab-
stracts” (which were published from 2006 to 2023). Networks and graphs were visualized
using VOSviewer [124,125] and ggplot2 [126]. Bibliometrix (R package) was used to assess
publication and citation trends.
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IEEE Xplore: The advanced search option of the IEEE Xplore, with the search key
words: “classification”, “medical image” and “convolutional neural network” (in the
“abstract”) identified 863 unique hits consisting of 687 conference proceedings, 164 journal
articles, 7 early access articles and 4 books. Of the 863, 617 citations were published between
2020–2023 (which comprised 484 conference proceedings, 123 journal articles, 7 early access
and 3 books) (Figures 4 and S1).

PubMed: Using the advanced search option ((classification [Title/Abstract]) AND
(medical image [Title/Abstract])) AND (convolutional neural network [Title/Abstract]),
231 citations were identified. The statistical modeling of the 231 (PubMed) hits were
visualized using VOSViewer (Figure 5).

Google Scholar: Using the advanced search option occurring only in the title of the
article (screenshot shown next), we identified 212 articles. The statistical modeling of the
212 citations was visualized using VOSViewer (Figure 6).

Transfer learning and segmentation along with the attention mechanisms and incorpo-
ration of the transformer seems to be dominant approaches within the combined search hits
obtained from IEEE Xplore, PubMed and Google Scholar (Supplementary Figure S2a,b).
Medical classification for the diagnostic purpose of COVID-19, brain pathology and breast
cancer seem to dominate the literature with regard to application of CNNs for medical
image analysis (Supplementary Figures S2 and S3). Widely mentioned metrics to access
classification performance include ROC curves and sensitivity and specificity (Supple-
mentary Figure S2). Additionally, the phrases convolutional neural networks, medical
image classification, diagnostic imaging, backpropagation, adaptive momentum methods,
nonconvex optimization and image interpretation were mentioned more frequently among
141 references cited within the text of this manuscript (Figures 5–7 and Supplementary
Figure S4).

Figure 5. Cont.
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Figure 5. Results from statistical modeling of 231 (PubMed) citations. X-ray tomograph (mainly in
relation to pulmonary nodules) and magnetic resonance imaging (Alzheimer’s disease and brain
neoplasm) seem to be widely analyzed using CNN methods in references indexed by PubMed. Color
palettes indicate (a) relationships of studies and (b) publication years. The pandemic does not seem
to have significantly changed the patterns of PubMed-indexed publications.

Figure 6. Cont.
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Figure 6. Statistical modeling of the 212 (Google Scholar indexed) citations. Color palettes represent
the year of publication. This result shows that image segmentation (using a hybrid of a transformer
and a CNN) and classification for (mainly COVID-19) diagnostic purposes appear to be dominant
tasks more frequently mentioned within the titles of the 212 references.

Figure 7. Results from statistical modeling of the 863 (IEEE Xplore) search hits visualized using
VOSviewer. This result shows that transfer learning and data augmentation including the use of
GANs seems to be a largely pre-COVID-19 method. It is probable that the pandemic and other
medical conditions during or post-COVID-19 led to generation of sufficient medical images (image
data sets) along with improved CNN approaches (making the use of data augmentations and/or
transfer learning less frequent).
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Dimensions: Using the advanced search options and keywords “convolutional neural
networks AND classification AND (medical image OR medical imaging)” searched for in
“Title AND abstracts”, a total of 4609 hits were found. The search hits include 2278 research
articles, 938 proceedings, 903 chapters, 470 preprint, 19 edited books and 1 monograph.

All the search hits obtained using IEEE Xplore, PubMed and Google Scholar were
also subsets of the 2278 research articles, 938 proceedings and 903 chapters identified
using Dimensions. Key word frequency and word cloud analyses of the 2278 articles
938 proceedings and 903 chapters used to rank popular diagnostic images used as CNN
inputs, corresponding diseases, CNN algorithms and evaluation metrics that are applied to
understand such medical images (Figures 8 and 9).

Figure 8. Pathological conditions, medical images and performance metrics are more frequently
mentioned within the 2278 research articles and the 938 proceeding papers.

The most frequently used medical imaging modalities seem to include X-ray, MRI,
radiography, ultrasonography, histopathological staining, CT, tomography and optical
endoscopy (Figure 8). These images are used for various medical imaging tasks such
as for the detection of COVID-19 [127], lesion detection, image segmentation and image
classification in specialties such as radiology, cardiology and gastroenterology (Figure 8).

Annual distribution of publications identified using search engines
The number of publications per year for the combined search hits showed a steep

increase since the start of the COVID-19 pandemic (Figures 10 and S5). This analysis was
based on the combined references collected using Google Scholar, PubMed and IEEE Xplore
(after excluding duplicates). The number of hits from Google Scholar were small because
we focused only on the titles of the articles.
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Figure 9. Ranking of more frequently used terms and phrases related to methods, diseases, images
and metrics that were mentioned in the 2278 research articles, 938 conference proceeding papers and
903 book chapters that are relevant to the application of CNN for medical image understanding.

Bibliometrix v4.1.4 (R package) analyses outputs (Figure 11): Bibliometrix supports
bibliographic database files from Dimensions, which also includes all the publication
obtained from Google Scholar, IEEE Xplore and PubMed. A steep increase in publications
took place after 2018 (probably more propelled by the wide use of CNN for COVID-19
diagnosis). On the other hand, the most cited papers are published around 2016 (Figure 12).
An analysis was performed on 2273 research articles published between 2006 and 2023. The
summary of the analysis showed that an annual growth rate of 40.6% with an average article
age of 2.01 years, 33.57 average citations per article and 7.056 average citations per year
per article (Figure 11a). Publications in the journals “Multimedia Tools and Applications”,
“IEEE Access”, “Diagnostics” and “Applied Sciences” are highly cited (Figure 13).
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Figure 10. Distribution of publications per year for (a) found using IEEE Xplore, PubMed, Google
Scholar and unique combinations of the search hits from the three search engines or databases;
(b) identified using Dimensions (which also includes the search hits obtained from IEEE Xplore,
PubMed and Google Scholar).
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Figure 11. Bibliometrix analyses results showing (a) summary information about 2273 peer reviewed
articles on the application of CNN for medical imaging and (b) the annual scientific production and
average total citations per year.

Figure 12. (a) Most of the CNN-related foundational works seem to have been published between
2015 and 2018, which helped for an explosive growth of the field during the pandemic (or it may be
that prior works on applying CNN for medical image classifications were not very numerous and
that most of the papers published from 2015 to 2019 were disproportionately cited by the flood of
papers during the pandemic and in the ensuing years). (b) Co-citation sources, i.e., the number of
papers published by the different journals. Node sizes are proportional to the number of papers or
proceedings published in that particular journal, and colors indicate either years of publications or
inter-citation clustering.

Figure 13. Network showing bibliographic coupling of sources (cross-journal citations). Node size
indicates the number of citations, and colors indicated inter-journal citations.
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Using Dimensions as a search tool, with the search criteria “Review AND CNN
AND MEDICAL AND (IMAGE OR IMAGING) AND CLASSIFICATION” in the titles
and abstracts (accessed on 30 July 2023), 115 articles were identified. One non-English
article was excluded. Of the 114 articles, 59 were reviews on results of studies focusing
on a specific disease, 23 were on single image or method, 12 were not review papers and
8 review papers were not specific to medical imaging (Figure 14). Of the 12 method review
papers considered (Figure 14), 8 were broad and shallow introductory or background
method reviews and the remaining 4 method review papers were comparable to this study
(Table 6).

Figure 14. Distribution of the 114 articles identified using Dimensions and using the key words
“Review AND CNN AND MEDICAL AND (IMAGE OR IMAGING) AND CLASSIFICATION” in the
titles and abstracts.

Table 6. Comparison of the current study with other method review papers on medical image
understanding. x denotes yes, and xx denotes the comprehensive coverage of alterative and/or
improved CNN components or algorithms.

Review
Paper

Relevant
Datasets

Data Pre-
processing Architecture Activation

Functions
Frame
Works

Optimization
Methods

Ensemble
Techniques

Performance
Metrics

Statistical
Modeling

Munir et al.
[128] x x x x x xx

Salhi et al. [3] xx xx x x x xx
Abdou [129] x xx x x x x
Yao et al.
[130] x xx x x x x

This review x xx xx xx xx xx x xx xx

Summary of statistical modeling results
The majority of articles were published during the COVID-19 pandemic and after-

wards (Figures 8–11). It seems that more imaging data became available during COVID-19,
making transfer learning and GAN-based data augmentation less important compared to
papers published pre-COVID-19 (Figure 5). The analysis of chest X-rays, histopathology
and endoscopic images, diabetic retinopathy and neuroimaging, brain tumor/neoplasm
classification and detections utilizing CNNs was identified during and post-COVID-19
(Figures 5–7). Likewise, the use of transformers, image fusion schemes, genetic algorithms
and momentum trended more during and after the COVID- 19 pandemic (Figures 5–7).
Overall, the majority of the medical image classifications were applied for the recognition
of pathological conditions and the detection and diagnosis of diseases such as COVID-19
(including pneumonia detection) and lung and breast cancers, as predicted through chest
X-ray and CT images.

5. Discussion
5.1. Highlights of Current Practices

The use of CNNs in medical image understanding has shown significant improve-
ments. CNN models for medical image classifications can be trained from scratch, using
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off-the-shelf pretrained models (transfer learning) and/or conducting unsupervised CNN
pretraining with supervised fine-tuning [131,132]. Ensembles of different CNN models
and combinations of CNN algorithms with transformers, including global spatial attention
mechanisms [133], are being explored for the classification of multiple pathological images
such as X-ray, MRI, CT and histopathological stains.

5.2. Implications for Clinical Practice

Medical image understanding using CNN has shown promising results in various
medical domains, including disease classification, tumor segmentation, lesion detection,
identifying anatomical location [50,134–136] and diagnosing COVID-19 and metastatic
cancer with high classification accuracy [137]. Overall, the use of CNNs in medical image
classification has significant implications for clinical practice, including improving the ac-
curacy and speed of diagnosis, and for treatment planning. Ongoing research in these areas
aims to advance the field and improve the effectiveness, interpretability and applicability
of CNN models in clinical settings.

5.3. Gaps in the Current State of CNN Application for Medical Image Understanding

CNNs are being applied to a wide range of medical images [138] including X-ray,
MRI, CT, optical coherence tomography and histopathology stains. However, there are
still several open questions and challenges regarding the current state of CNN application
for medical image understanding. Such gaps include: (i) The problem of interpretability
(considering CNN models as black boxes), making it challenging to interpret their decisions
and understand the reasoning behind their predictions, which can be a significant barrier
to the adoption of CNNs in medical imaging. (ii) The limited availability of annotated
medical imaging datasets—the performance of CNNs is highly dependent on the quality
and quantity of the training data. (iii) Robustness to the diverse data and pathological
variations—medical images can exhibit significant variations due to factors such as different
imaging modalities, patient demographics, imaging protocols and disease presentations.
Ensuring CNN models’ robustness and generalizability across diverse data distributions
and pathological variations is an open question. (iv) Finding efficient methods for domain
adaptation and transfer learning to enhance the generalizability of CNN models across
different medical imaging domains is still challenging. (v) Addressing class imbalance and
rare diseases—medical image datasets often suffer from class imbalance, where certain
diseases or conditions are underrepresented. Developing techniques to handle class im-
balance and effectively train CNN models on rare diseases is an ongoing challenge. (vi)
Uncertainty estimation—determining how to effectively incorporate uncertainty estimation
into CNN models and providing an error margin for predictions is an ongoing research
challenge. (vii) Integration with clinical workflow—the successful integration of CNN
models into clinical practice requires addressing workflow-related challenges, including
seamless integration with existing medical systems, interpretability in a clinical context
and adapting CNN models to real-time decision support systems. (viii) Data privacy and
security—medical images contain sensitive patient information, and preserving patient
privacy is important. Exploring techniques like federated learning, differential privacy
or secure computation to enable CNN training on distributed medical image data while
preserving privacy is an open question.

5.4. Trends and Future Directions

CNNs are considered a significant technological breakthrough in the field of medical
image understanding and are increasingly gaining attention [139,140]. It is evident that
CNNs have been successfully employed in medical image recognition, segmentation and
classification. The use of class decomposition and transfer learning, synthetic data augmen-
tation, Bayesian and adaptive hyperparameter optimizations and specialized architectures
can be used to improve the robustness and performance of CNN models for the classi-
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fication of medical images [3,131,132,141–143], including the diagnosis and prognosis of
diseases such as COVID-19 [140].

While CNNs have shown promise in medical image understanding, further research
is needed to optimize their performance for efficient medical diagnosis and treatment
follow-up or evaluation. Some of the future trends and potential improvements of CNN
approaches in the field of medical image classification include:

• The development of specialized and efficient CNN architectures (including methods
for automatically designing CNN architectures), such as evolving arbitrary CNNs
with the goal of better discovering and understanding new effective architectures for
robust learning outcomes that are tailored towards learning specific representations.

• Design methods that can be readily used for automatic optimization of CNN architec-
tures for personalized medicine.

• Designing new domain agnostic CNN algorithms which can be used for transfer
learning or that can be used for reliable learning from small datasets or learn online,
e.g., by combining with reinforcement learning.

• Exploring new activation functions for efficient and robust learning, including on
small datasets (to mitigate the issue of labeled data scarcity).

• Aiming to improve feature extraction efficiency of CNNs using multilinear filters [144]
and designing accelerators for CNN inferences [145] to improve the speed and accuracy
of medical image analysis tasks.

• Designing more efficient 3D CNNs.
• The dynamic selection of misclassified negative samples during training to improve

performance and to speed up learning.
• The privacy, data security and prevention of adversarial data poisoning.

These recommendations can help set up more robust, improved, secure and reliable
CNN experiments for medical image understanding.

5.5. Limitations of the Review

This review focuses on the methodological aspect of CNN as applied for medical image
understanding, and hence, it does not include a summary of the findings and results of the
literature that are not directly related to developments or advancements of CNN methods.

Additionally, the current literature on the application of CNN for medical image
classification has some limitations in scope. First, most research efforts focus on adapting
existing CNN architectures with or without transfer learning, rather than designing and
optimizing CNNs architectures and approaches specific to medical image classification.
Second, there is a lack of research on the amount of data needed to train deep CNN models
to achieve high accuracy. Third, while CNNs have shown competitive performance in
medical image analysis tasks, such as disease classification, segmentation and detection,
there is a lack of post hoc explainability for CNN-based models [146] as well as a need for
more research on the use of CNNs for low resource medical image analysis [143]. Even
though there are advancements with regard to light-weight CNN architectures for economic
GPU-based systems [67,68,147], still more concerted efforts are needed to make automated
medical image analysis accessible in real time.

6. Conclusions

The focus of this review is on the methodological aspects of CNNs’ applications for
medical image understanding. It is organized to serve as a resource for practitioners by
compiling and presenting improved architectures, popular frameworks, activation func-
tions, model ensemble techniques, hyperparameter optimizations, performance metrics,
medical theme relevant datasets and input data preprocessing methods that are important
for better CNN designs and to learn robust models.

We also used machine learning (ML) algorithms for the statistical modeling of the lit-
erature to uncover latent topics, patterns and prevalent themes, method gaps and potential
future directions that were not obvious from individual studies. Our ML-assisted analyses
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showed that the COVID-19 pandemic probably stimulated the wide use of CNN for clinical
image classifications and disease diagnosis. The COVID-19 problem probably drove the
flow of CNN practitioners to the discipline of medical imaging, apparently creating an
atmosphere of collaboration with people in the biomedical field. This may be the reason
for the drastic increase in journal articles and conference proceedings pertaining to the
application of CNN for medical image recognition, analysis, classification and disease
detection and diagnosis.
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