
Citation: Li, H.; He, Y.; Zheng, S.;

Zhou, F.; Yang, H. Dual-Driven

Learning-Based Multiple-Input

Multiple-Output Signal Detection for

Unmanned Aerial Vehicle Air-to-

Ground Communications. Drones

2024, 8, 180. https://doi.org/

10.3390/drones8050180

Academic Editors: Liuguo Yin and

Shu Fu

Received: 16 March 2024

Revised: 26 April 2024

Accepted: 30 April 2024

Published: 2 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Dual-Driven Learning-Based Multiple-Input Multiple-Output
Signal Detection for Unmanned Aerial Vehicle Air-to-Ground
Communications
Haihan Li 1,* , Yongming He 2,*, Shuntian Zheng 1 , Fan Zhou 3 and Hongwen Yang 1

1 School of Information and Communication Engineering, Beijing University of Posts and Telecommunications,
Beijing 100876, China; shuntianzh@bupt.edu.cn (S.Z.); yanghong@bupt.edu.cn (H.Y.)

2 China Fire and Rescue Institute, Beijing 102202, China
3 School of Information Science and Engineering, Shenyang Ligong University, Shenyang 110158, China;

zhoufan@sylu.edu.cn
* Correspondence: lihh@bupt.edu.cn (H.L.); heyongming@cfri.edu.cn (Y.H.)

Abstract: Unmanned aerial vehicle (UAV) air-to-ground (AG) communication plays a critical role
in the evolving space–air–ground integrated network of the upcoming sixth-generation cellular
network (6G). The integration of massive multiple-input multiple-output (MIMO) systems has
become essential for ensuring optimal performing communication technologies. This article presents
a novel dual-driven learning-based network for millimeter-wave (mm-wave) massive MIMO symbol
detection of UAV AG communications. Our main contribution is that the proposed approach
combines a data-driven symbol-correction network with a model-driven orthogonal approximate
message passing network (OAMP-Net). Through joint training, the dual-driven network reduces
symbol detection errors propagated through each iteration of the model-driven OAMP-Net. The
numerical results demonstrate the superiority of the dual-driven detector over the conventional
minimum mean square error (MMSE), orthogonal approximate message passing (OAMP), and
OAMP-Net detectors at various noise powers and channel estimation errors. The dual-driven MIMO
detector exhibits a 2–3 dB lower signal-to-noise ratio (SNR) requirement compared to the MMSE
and OAMP-Net detectors to achieve a bit error rate (BER) of 1 × 10−2 when the channel estimation
error is −30 dB. Moreover, the dual-driven MIMO detector exhibits an increased tolerance to channel
estimation errors by 2–3 dB to achieve a BER of 1 × 10−3.

Keywords: UAV AG communications; MIMO detection; dual driven; neural networks

1. Introduction

Unmanned aerial vehicles (UAVs) have attracted significant attention in both military
and industrial applications, ranging from reconnaissance and attacks to communications,
delivery, and search operations, due to their affordability, versatility, and accessibility [1–6].
Space–air–ground integrated networks (SAGINs) have emerged as a prominent research
topic in the development of the sixth-generation cellular network (6G) [7], where UAVs and
millimeter-wave (mm-wave) massive multiple-input–multiple-output (MIMO) systems
are expected to play crucial roles [8,9]. The unique characteristics of UAVs, such as their
high maneuverability and potential for unmanned operations, necessitate advancements in
communication technologies, leading to an increased interest from researchers, companies,
and organizations [10–13]. Recognizing the importance of UAVs, the third-generation part-
nership project (3GPP) has proposed the new radio (NR) support for UAVs as a specialized
category of user equipment (UE) [14,15], highlighting the urgent need for research on UAV
communication systems [16].

UAV communications encompass various modes, including air-to-ground (AG) com-
munications, air-to-air (AA) communications, and UAV-assisted communications. In the
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context of UAV AG communication, researchers such as Lin et al. [17] and Luo et al. [18]
have explored tensor-based joint channel estimation and symbol detection in UAV-assisted
communication systems. Khawaja et al. have summarized channel models for UAV AG
communications [19], while Khuwaja et al. have provided a comprehensive survey on
channel modeling for UAV communications [20]. As MIMO technology is expected to be
employed in UAV communication systems, MIMO symbol detection has become crucial;
although, limited research has been conducted in this area.

MIMO detection is a crucial process in wireless communication systems that employ
multiple antennas at both the transmitter and receiver. In MIMO systems, multiple spatial
streams are transmitted simultaneously using different antenna configurations, allowing
for increased data rates, improved reliability, and enhanced spectral efficiency. The goal of
MIMO detection is to estimate the transmitted symbols or bits at the receiver by efficiently
recovering the original data from the received signals affected by noise, interference,
and channel impairments. This process involves solving the detection problem, where
the receiver must determine the transmitted symbols based on the received signals and
knowledge of the channel. Thus, the application of MIMO detection is necessary in any
scenario where multiple antennas are employed at both the transmitter and receiver in
UAV AG communications.

Regarding MIMO detection, maximum likelihood (ML) detection exhibits an optimal
performance but suffers from a prohibitively high complexity [21]. Linear minimum mean
square error (LMMSE) detectors can reduce the complexity to an acceptable level but fail
to match the performance of ML detection [22]. Donoho et al. introduced the iterative ap-
proximate message passing (AMP) algorithm for MIMO detection, which has been proven
to be Bayes-optimal for independent and identically distributed (i.i.d.) sub-Gaussian
channels [23]. Ma and Ping proposed orthogonal AMP (OAMP) for channel estimation,
which outperforms AMP, particularly for ill-conditioned matrices [24]. By unfolding the
structure of the OAMP algorithm and adding some trainable parameters, He et al. intro-
duced OAMP-Net [25] and OAMP-Net2 [26] for MIMO detection. Zhou et al. proposed
conjugate gradient OAMP-Net (CG-OAMP-Net) for MIMO detection to reduce the complex-
ity of OAMP [27]. Khani et al. introduced MMNnet for channel estimation, which exhibits
superior performance and has a lower computational complexity for realistic channels [28].
These approaches represent model-driven channel estimators or MIMO detectors, which
learn through traditional iterative structures, but the propagation of detection errors over
the iterations may lead to divergence. Deep learning techniques, such as neural networks
(NNs), have also been proposed for MIMO detection [29–31]. However, these data-driven
models are highly dependent on the size and quality of the training dataset and are often
treated as black boxes due to their end-to-end training approach.

Inspired by the aforementioned approaches, Zheng et al. investigated hybrid-driven
channel estimation in intelligent reflecting-surface-aided millimeter-wave communications
with infinite-bit analog-to-digital converters (ADCs) [32]. Li et al. proposed a dual-driven
learning-based channel estimator for massive MIMO systems with one-bit ADCs [33].
In summary, model-driven networks can learn from traditional iterative structures, which
are sensitive to MIMO detection errors, while data-driven networks can operate as black
boxes. This motivates us to explore a combination of model-driven and data-driven
networks to reduce detection errors and ensure a good MIMO detection performance.

In this article, we propose a dual-driven learning-based MIMO detector designed for
use in mm-wave massive MIMO systems for UAV AG communications. We unfold the
architecture of the model-driven OAMP-Net network and insert a data-driven symbol
correction network. This data-driven network corrects detection errors, while in the model-
driven network, the propagation of errors is reduced during each iteration due to the
corrected symbols, ensuring the convergence and good performance of the OAMP-Net
network. The key contributions of this article are as follows:

1. We introduce a dual-driven learning-based network for massive MIMO symbol detec-
tion in UAV AG communications. The use of a data-driven network reduces detection
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errors, and the model-driven component is an OAMP-Net network. We design an
iterative algorithm for the dual-driven network to enable joint parameter updates in
both the data-driven and model-driven modules during each iteration.

2. We develop the structure of the symbol correction network, which contains fully
connected layers with nonlinear activation functions to minimize detection errors.

To sum up, the main contribution of this article is a dual-driven MIMO detector
created by inserting a data-driven neural network into the model-driven OAMP-Net
network. Our main hypothesis is that the proposed dual-driven MIMO detector will
outperform the model-driven OAMP-Net and some other traditional MIMO detectors as it
has the advantages of both the data-driven and model-driven networks. This hypothesis
is verified in this article, which is organized as follows: Section 2 introduces the system
model, the MIMO detection problem, and the proposed dual-driven MIMO detector.
The simulation settings of the test experiments, the results of the chosen tests to verify
the detector’s performance, and discussions on whether the hypothesis is verified are
presented in Section 3. Section 4 concludes this article.

2. Methods

In this section, we provide a detailed description of the proposed dual-driven learning-
based MIMO symbol detection method. We begin by presenting a brief overview of the UAV
AG communication scenario in urban areas. Subsequently, we introduce the mathematical
formulation of the communication system. Building upon this mathematical expression,
we outline the MIMO symbol detection problem. Finally, we provide a comprehensive
explanation of the proposed dual-driven learning-based MIMO symbol detection method.

UAV AG Communication Scenario: We start by providing an overview of the UAV
AG communication scenario, specifically focusing on an urban area. This setting involves
UAVs acting as communication nodes, transmitting and receiving signals from ground
base stations. UAVs’ high maneuverability enables them to establish wireless links with
ground stations (GSs), facilitating efficient communication in urban environments.

Expression of the Communication System: We present a mathematical formula-
tion that characterizes this UAV AG communication system, which includes wireless
channel modeling.

MIMO Symbol Detection Problem: Based on the mathematical formulation, we iden-
tify the MIMO symbol detection problem.

Proposed Dual-Driven Learning-Based MIMO Symbol Detection Method: Here, we
provide a comprehensive description of the proposed dual-driven learning-based MIMO
symbol detection technique. This approach combines both model-driven and data-driven
networks to enhance the detection accuracy. We delve into the architecture and working
principles of the dual-driven network, highlighting the integration of the model-driven
OAMP-Net and the data-driven symbol correction network. We elaborate on how the algo-
rithm updates the parameters of both modules simultaneously in each iteration, ensuring
effective collaboration between the model-driven and data-driven components.

By following this structure, we aim to provide a detailed understanding of the pro-
posed dual-driven learning-based MIMO symbol detection method, contextualizing them
within the UAV AG communication scenario.

2.1. System Model

As shown in Figure 1, we consider a millimeter-wave massive MIMO system designed
for UAV AG communications. In this system, the GS acts as the receiver and is equipped
with Nr receiving (Rx) antennas. Nt UAVs are considered as transmitters, and each UAV is
equipped with a single transmitting (Tx) antenna.

As depicted in Figure 2, the uncoded bits bn for the n-th transmitter (n = 1, 2, . . . , Nt)
are individually modulated into transmitted symbols, denoted as sn,k for the n-th trans-
mitter (n = 1, 2, . . . , Nt) and the k-th subcarrier (k = 1, 2, . . . , Nc). Here, Nc represents
the total number of subcarriers for each UAV. The symbols sn,k belong to the finite set



Drones 2024, 8, 180 4 of 18

of constellation points denoted as χ, which can be defined using quadrature amplitude
modulation (QAM) or phase shift keying (PSK) schemes, following standard practices. All
UAVs share the same χ, and sn,k is randomly selected from χ. For simplicity, we assume that
sn,k represents the symbol transmitted to the antenna of each UAV, without considering the
specific processes of the inverse fast Fourier transform (IFFT) or cyclic prefix (CP) insertion
in the time domain. The transmitted symbols propagate through the wireless channel Hn,k.
The received signal vector yk for the k-th subcarrier is given as

yk = Hksk + nk, (1)

where sk = [s1,k, . . . , sNt,k]
T ∈ CNt×1, Hk ∈ CNr×Nt , yk ∈ CNr×1 and

nk ∈ CNr×1 ∼ NC
(
0, σ2

nINr

)
is the complex Gaussian noise vector with σ2

n as the noise variance.

UAV

UAV

UAV

GS
Scatterer

Scatterer

Channel
Channel

Figure 1. A typical UAV AG propagation scenario in an urban area. UAVs transmit signals which
the GS then receives. Some scatterers are present in the propagation environment. There may be
line-of-sight (LOS) paths or non-light-of-sight (NLOS) paths for UAVs in different locations.
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Figure 2. A block diagram illustrating a MIMO system for UAV AG communications. The detector
relies on the estimated channel state information (CSI) to operate.
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To enhance understanding, the definitions of key notations used in this article are
shown in Table 1.

Table 1. Definitions of key notations in this article.

Notation Definition

Nt the number of transmitting antennas (also the number of UAVs)
Nr the number of receiving antennas
yk received signal vector at the k-th subcarrier
Hk channel for the k-th subcarrier
sk symbols for the k-th subcarrier
nk complex Gaussian noise vector at the k-th subcarrier
ŝk detected symbols at the k-th subcarrier
y received signal vector
H channel
s symbols
n complex Gaussian noise vector
rt output of the linear estimator at the t-th iteration
ŝt output of the nonlinear estimator at the t-th iteration

Wt decorrelated matrix in the t-th iteration
ηt(·) nonlinear divergence-free estimator

σ2
n noise variance of n

pt linear estimation error vector at the t-th iteration
qt nonlinear estimation error vector at the t-th iteration
τ2

t error variance estimators τ2
t of pt

υ2
t error variance estimators υ2

t of qt
ζt decorrelated coefficient at the t-th iteration

Ŵt LMMSE matrix
ΘON = {γt, θt, ϕt, ξt} four trainable variables in OAMP-Net

r̂t noise-cleaned output of the linear estimator at the t-th iteration
FNN(·) the function expression of the symbol correction network

Ld the number of layers in the symbol correction network
z[l] output vector of the l-th layer in the symbol correction network
W[l] weights matrix of the l-th layer in the symbol correction network
x[l] the input vector of the l-th layer in the symbol correction network
b[l] the bias term of the l-th layer in the symbol correction network

ΘNN symbol correction network parameters
ϵ = 1 × 10−10 constant

nc
k complex Gaussian noise vector with σ2

c as the noise variance

2.2. The MIMO Signal Detection Problem

The MIMO signal detection problem involves estimating the transmitted symbol ŝk of
sk in relation to the known received signal vector yk and channel matrix Hk. This detection
is formulated as

ŝk = argmin
ŝk∈χNt

∥yk − Hksk∥2. (2)

However, solving the optimization problem in Equation (2) using the optimal ML
detector is computationally challenging due to the finite alphabet constraint sk ∈ χNt . The
ML detector exhibits a prohibitively high complexity, and thus various other detectors with
different complexities and characteristics have been explored.

In the MIMO signal detection problem, it is typically assumed that the wireless channel
Hk for the k-th subcarrier (k = 1, 2, . . . , Nc) is known through perfect channel estimation.
The impact of imperfect channel estimation will also be discussed in the following Results
and Discussion section.

2.3. Dual-Driven Learning-Based MIMO Signal Detection

Our proposed approach is a dual-driven learning framework for MIMO signal detec-
tion. This framework leverages the architecture of the model-driven OAMP-Net network
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and incorporates a data-driven symbol correction network. By integrating this component,
we aim to enhance the performance and convergence of the OAMP-Net network.

As shown in Figure 3, we unfold the architecture of the model-driven OAMP-Net
network and introduce a data-driven symbol correction network within the framework.
The data-driven symbol correction network is trained extensively to reduce the errors
associated with the estimated symbols passed through each iteration of the OAMP-Net
network. This correction mechanism ensures an improved performance and convergence
of the OAMP-Net network.

tr −

Fully Connected Leaky ReLU

2ŝ

Data-Driven

Dual-Driven

Tŝ T 1ˆ +s

Symbol Correction Network

t̂r

Model-Driven

( )2
1 ˆ ;ˆ , ,t t t t t tη τ φ ξ+ =s r

ˆts

y

H

2σn

2
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−

rN
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tW
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tW trtγ

Data-driven

t̂r2
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,t tφ ξ
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2, ,, ,N Nσy H n t r

tN

Figure 3. Structure of the proposed dual-driven learning-based MIMO symbol detection network.

By combining the strengths of both the model-driven and data-driven approaches,
our dual-driven learning framework provides a novel solution for MIMO signal detection.
This allows for the efficient utilization of the OAMP-Net network while leveraging the
capabilities of the data-driven symbol correction network to refine the estimated symbols
in each iteration.

We can rewrite Equation (1) in a real-valued form, since both the OAMP-Net and the
symbol correction network operate in the real-valued domain:[

Re(yk)
Im(yk)

]
=

[
Re(Hk) −Im(Hk)
Im(Hk) Re(Hk)

][
Re(sk)
Im(sk)

]
+

[
Re(nk)
Im(nk)

]
. (3)

We can drop the subscript k in Equation (3) for brevity since the dual-driven learning-
based MIMO detector operates equally across all subcarriers. Equation (3) can be expressed as

y = Hs + n. (4)

To detect symbols s with a known H, y, and noise variance σ2
n , the OAMP algorithm

iteratively passes information between a linear estimator (LE) and a nonlinear estimator
(NLE) [24]:

rt = ŝt + Wt
(
y − Hŝt

)
, (5)

ŝt+1 = ηt(rt). (6)

Equations (5) and (6) represent the LE and NLE in the OAMP algorithm. rt and ŝt+1
are the LE and NLE’s outputs, representing the information exchanged in each iteration; t
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and t + 1 are the iteration indexes; Wt is the decorrelated matrix; and ηt(·) is the nonlinear
divergence-free estimator [24]. The LE and NLE error vectors, pt and qt, are defined as
pt = rt − s and qt = ŝt − s. The error variance estimators τ2

t and υ2
t of pt and qt are defined

as τ2
t = 1

2Nt
E
[
∥pt∥2

2

]
and υ2

t = 1
2Nt

E
[
∥qt∥2

2

]
, respectively [24]. E[·] and ∥·∥2 denote the

expectation function and the ℓ2 norm, respectively. According to the OAMP algorithm [24],
υ2

t can be calculated as follows:

υ2
t =

∥∥y − Hŝt
∥∥2

2 − Nrσ
2
n

tr
(

HTH
) , (7)

where tr
(

HTH
)

denotes the trace of matrix HTH. In our implementation, we incorporate a

smoothing technique to update υ2
t+1 by using a convex combination of the previous estimate

υ2
t and the newly calculated estimate υ2

t+1 based on Equation (7):
υ2

t+1 = 1
2
(
υ2

t+1 + υ2
t
)
. Additionally, to prevent stability issues, we set the final value

υ2
t+1 for each iteration to υ2

t+1 = max
(
υ2

t+1, ϵ
)
, where max(·) returns the maximum value

and ϵ is set to ϵ = 1 × 10−10. This ensures that the value of υ2
t+1 does not become too small,

maintaining calculation stability.
As mentioned earlier, the matrix Wt is the decorrelated matrix, which satisfies

tr
(
I − WtH

)
= 0 to ensure that pt and s are uncorrelated. Here, I denotes the iden-

tity matrix. In the OAMP algorithm, Wt = ζtŴt, where ζt is the decorrelated coefficient

given by ζt= 2Nt

tr(ŴtH)
and Ŵt is the LMMSE matrix defined as Ŵt =

HT(
HHT

+ σ2
n

2υ2
t

I
) [24].

The error variance estimator τ2
t can be calculated as follows [24]:

τ2
t = υ2

t (ζt − 1). (8)

In OAMP-Net, there are four trainable variables denoted as ΘON = {γt, θt, ϕt, ξt},
which are optimized to enhance the detection performance in each LE and NLE iteration [26].
The calculation of υ2

t in Equation (7) remains the same in both the OAMP algorithm and
the OAMP-Net network. Equation (5) in the OAMP-Net network can be rewritten as
follows [25,26]:

rt = ŝt + γt
2Nt

tr

 HTH(
HHT

+ σ2
n

2υ2
t

I
)


HT(
HHT

+ σ2
n

2υ2
t
I
)(y − Hŝt

)
. (9)

The error variance estimator τ2
t of pt in the OAMP-Net network is calculated as [25,26]

τ2
t = υ2

t


θ2

t
2Nt

tr

 HTH(
HHT

+ σ2
n

2υ2
t

I
)
 − 2θt + 1


. (10)

The NLE estimator in the OAMP-Net network, denoted as ŝt+1 = ηt
(
rt, τ2

t ; ϕt, ξt
)
, can

be represented by [25,26]

ηt

(
rt, τ2

t ; ϕt, ξt

)
= ϕt(E[s | rt, τt]− ξtrt). (11)
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Equations (9)–(11) represent key processes in each iteration of the model-driven OAMP-
Net. Now, let us introduce the data-driven symbol correction network.

The calculations of rt in Equation (9) and τ2
t in Equation (10) are modified versions

of Equations (5) and (8), respectively, where trainable variables {γt, θt} are introduced.
Notably, when γt = 1 and θt = 1, the calculations remain the same as in the OAMP
algorithm and the OAMP-Net network. These trainable variables, γt and θt, control the
update step sizes of rt and τ2

t . Consequently, they can influence the convergence of the
LE estimator and the overall detection performance. In Equation (11), we observe that rt
and τ2

t serve as the prior mean and variance of s, respectively. To ensure the convergence
and optimal performance of the OAMP-Net detector, it is necessary to minimize estimation
errors in the LE estimator, which are essentially calculations of rt. Therefore, prior to passing
rt to the NLE estimator, we insert a data-driven neural network to correct the values of rt.
This data-driven symbol correction network maps the estimated rt to a corrected version,
r̂t, which is closer to the true value.

In the symbol correction network, we treat the errors of the LE estimator outputs as
residual noise. By training the symbol correction network, it can reconstruct the residual
noise. The input vector of the symbol correction network is rt from each iteration, and the
output is the reconstructed residual noise of the same size as rt. Our implementation
employs an Ld-layer symbol correction network [34]. The first Ld − 1 layers are fully
connected layers with the leaky rectified linear unit (ReLU) function, which helps to extract
noise characteristics. The final layer is a fully connected layer without the leaky ReLU
function, serving as the output layer to reconstruct the residual noise. Finally, the noise-
cleaned r̂t is obtained by subtracting the reconstructed noise from the input rt:

r̂t = rt −FNN(rt; ΘNN), (12)

where FNN(·) represents the function expression of the symbol correction network with
network parameters ΘNN. Table 2 presents the hyperparameters of the data-driven symbol
correction network.

Table 2. Hyperparameters of the data-driven symbol correction network.

Input: rt

Layers Operations Output Size

Denoising Fully Connected+Nonlinear (Leaky ReLU) R4Nt×1

Denoising Fully Connected+Nonlinear (Leaky ReLU) R4Nt×1

Reconstruction Fully Connected R2Nt×1

Output: FNN(rt; ΘNN)

In our method, we use a symbol correction network with Ld = 3, indicating that there
are two fully connected layers with the leaky ReLU function and an fully connected output
layer without the leaky ReLU function. The slope of the leak in every leaky ReLU function
is set to 0.3.

For the l-th layer (l = 1, 2, 3) in the symbol correction network, the output vector z[l]

is computed as follows: z[l] = W[l]x[l−1] + b[l]. Here, W[l], x[l−1], and b[l] represent the
weight matrix, the input vector, and the bias term of the l-th layer, respectively.

In the first layer, the input vector is x[0] = rt ∈ R2Nt×1, which has the same size as s.
We set W[1] ∈ R4Nt×2Nt and b[1] ∈ R2Nt×1, resulting in z[1] ∈ R4Nt×1.

In the second layer, the input vector is x[1] ∈ R4Nt×1, and we set W[2] ∈ R4Nt×4Nt and
b[2] ∈ R4Nt×1, resulting in z[2] ∈ R4Nt×1.

In the final layer, the input vector is x[2] ∈ R4Nt×1, and we set W[3] ∈ R2Nt×4Nt and
b[3] ∈ R2Nt×1, resulting in z[3] ∈ R2Nt×1.

The element in the p-th row and the q-th column of W[l] is denoted as w[l]
p,q ∈ R,

and the j-th element of b[l] is denoted as b[l]j ∈ R. Therefore, the set of parameters in the
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symbol correction network is denoted as ΘNN =
{

W[1], b[1]; W[2], b[2]; W[3], b[3]
}

. During

initialization, we set w[l]
p,q ∈ R ∼ NR

(
0, 1

7×2Nt

)
and b[l]j ∈ R ∼ NR

(
0, 1

4×10−6

)
.

After inserting the data-driven symbol correction network, the LE and NLE in our
dual-driven MIMO detector can be expressed as follows:

LE :rt = ŝt + γt
2Nt

tr

 HTH(
HHT

+ σ2
n

2υ2
t

I
)


HT(
HHT

+ σ2
n

2υ2
t
I
)(y − Hŝt

)

r̂t = rt −FNN(rt; ΘNN), (13)

NLE :ŝt+1 = ηt

(
r̂t, τ2

t ; ϕt, ξt

)
. (14)

In this formulation, the data-driven symbol correction network is inserted into the
OAMP-Net network. The trainable variables of both the OAMP-Net ΘON and the symbol
correction network ΘNN are updated simultaneously in each iteration. Here, T denotes
the total number of iterations. The normalized mean square error (NMSE) of ŝT+1 and s is
used as the loss function:

L{ΘON, ΘNN} =
1

Ntrain

Ntrain

∑
j=1

∥∥∥ŝ(j)
T+1 − s(j)

∥∥∥2

2∥∥∥s(j)
∥∥∥2

2

. (15)

Here, ŝ(j)
T+1 and s(j) represent the jth samples in the training set, respectively, and Ntrain

denotes the batch size.

3. Numerical Results and Discussion

This section presents our experimental results and the corresponding discussions.
We begin by providing a comprehensive introduction to the simulation settings,

including the methodology for setting the experiment parameters and generating the
experimental data. Subsequently, we present and analyze the experimental results.

To verify the hypothesis that the proposed dual-driven MIMO detector outperforms
the OAMP-Net and some other detectors, we chose the bit error rate (BER) as the evaluation
metric to assess performance. The reason why BER was chosen as the evaluation metric
instead of the symbol error rate (SER) is that we considered the role of demodulation; the
symbol estimation error does not completely lead to the bit estimation error, while the bits
truly determine the quality of the communications, as stated in [25–27,29,30].

According to Equation (4), we find that the MIMO detection process is affected by
channel H and noise n. Thus, we compare the BERs of the dual-driven MIMO detector
and other detectors under different noise powers and channel estimation errors. To test the
convergence of the proposed dual-driven detector, we compare the BERs of the dual-driven
detector and the OAMP-Net with different layers with different learning rates.

3.1. Simulation Settings

We conducted several simulation experiments to validate the proposed dual-driven
learning-based MIMO symbol detection method. The simulation settings used in these
experiments are presented in Table 3.

In our setup, there are Nt = 16 UAVs, each equipped with a single transmitting
antenna. The GS has Nr = 64 receiving antennas. The receiving antennas are dual-
polarized and arranged in a uniform planar array (UPA) with an antenna spacing of λ/2
between adjacent elements.

For the propagation scenario, we consider an urban environment where the main
scatterers are buildings, trees, and moving vehicles. The GS is located at a height of 25 m,
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while the heights of the UAVs are randomly and uniformly distributed between 1 m and
100 m. We assume that all UAVs are moving in a straight line at a speed of 30 km/h.

The UAV communication system operates in the millimeter-wave frequency band
with a center frequency of 73 GHz. The frequency band has a width of 100 MHz. We use a
total of 1024 subcarriers, with a spacing of 60 kHz between adjacent subcarriers.

The channel matrix Hn,k for (n = 1, 2, . . . , Nt) and (k = 1, 2, . . . , Nc) is generated
based on the 3GPP TR 38.901 V16.1.0 [14] and 3GPP TR 36.777 V15.0.0 [15] specifications.
We employ a 4QAM modulation scheme. Although the constellation set χ contains only
four constellation points, we can generate any number of training sample combinations{

s(j), y(j), H(j)
}

with complex Gaussian noise vector nk. Here, the superscript j denotes
the j-th sample combination in the dataset. The dataset consists of 16,000 training samples,
2000 validation samples, and 2000 testing samples. We use a mini-batch size of 100.

To optimize the entire dual-driven network and minimize the loss function, we employ
the adaptive moment estimation (Adam) optimizer. The Adam optimizer utilizes a variable
learning rate of 1 × 10−3, 5 × 10−4, and 1 × 10−5.

Table 3. Simulation settings.

Parameter Value

Nt 16
Nr 64

GS Height 25 m
UAV Height 1–100 m

Carrier Center Frequency 73 GHz
Bandwidth 100 MHz

Subcarrier spacing 60 kHz
FFT/IFFT size 1024

Modulation 4QAM
UAV Mobility 30 km/h

Batch Size 100
Learning Rate 1 × 10−3/5 × 10−4/1 × 10−5

3.2. Baselines

To evaluate the performance of the proposed dual-driven MIMO detector, we se-
lected several commonly used methods as baselines. These baselines include a linear
detector known as the MMSE detector and model-driven detectors such as the OAMP
algorithm and the OAMP-Net network. Descriptions of these baselines are presented in
the following section.

Linear detector: MMSE detector [22]. The MMSE detector estimates the transmitted
signal, denoted as ŝ, using the following equation:

ŝ =

(
HTH +

σ2
n

2I2Nt

)−1

HTy, (16)

where ŝ represents the estimated result of s.
Model-driven detectors: The OAMP algorithm and the OAMP-Net network. The detec-

tion processes of the OAMP algorithm and the OAMP-Net network can be found in (5), (6)
and (9), (11), respectively.

3.3. Channel Estimation Errors

In order to detect symbols, all detectors require knowledge of the channel informa-
tion. In the proposed dual-driven MIMO detection algorithm presented in Algorithm 1,
the channel matrix H is crucial prior information. While some MIMO symbol detection
methods assume perfect channel estimation with known channel state information (CSI),
it is important to acknowledge that channel estimation errors are inevitable in practical
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scenarios. To evaluate the robustness of the proposed dual-driven MIMO detector against
channel estimation errors, we include channel estimation errors by adding complex Gaus-
sian noise to the accurate channel matrix. Specifically, we modify the accurate channel
matrix Hk by introducing the estimated channel matrix Ĥk as follows:

Ĥk = Hk + nc
k , (17)

where nc
k ∈ CNr×Nt ∼ NC

(
0, σ2

c INr×Nt

)
represents the complex Gaussian noise vector with

σ2
c as the noise variance. In our numerical simulations, Ĥk in (17) will replace Hk in (1). To

quantify the channel estimation error, we utilize the mean squared error (MSE) between
Ĥk and Hk. In our implementation, all data sample combinations in the training dataset
are generated under the condition of a signal-to-noise ratio (SNR) of 20 dB and an MSE of
−30 dB.

Algorithm 1 The proposed dual-driven learning-based MIMO symbol detection algorithm

Input: The received y, the channel matrix H, the noise variance σ2
n , the number of itera-

tions T, the number of UAVs Nt, and the number of Rx antennas Nr .
1: Initialize: Initialize the parameters ΘON and ΘNN. According to the distributions

w[l]
p,q ∈ R ∼ NR

(
0, 1

7×2Nt

)
and b[l]j ∈ R ∼ NR

(
0, 1

4×10−6

)
, w[l]

p,q and b[l]j are generated

randomly. γ1 = 1, θ1 = 1, ϕ = 1, and ξ1 = 0. ŝ1 = 0 and υ2
0 = 1. ϵ = 1 × 10−10.

2: for t = 1, . . . ,T do

3: υ2
t =

∥y−Hŝt∥2
2−Nrσ

2
n

tr
(

HTH
) ;

4: υ2
t = 1

2
(
υ2

t + υ2
t−1

)
;

5: υ2
t = max

(
υ2

t , ϵ
)
;

6: Ŵt =
HT(

HHT
+ σ2

n
2υ2

t
I
) ;

7: ζt =
2Nt

tr(ŴtH)
;

8: rt = ŝt + γ1ζtŴt
(
y − Hŝt

)
;

9: r̂t = rt −FNN(rt; ΘNN); //data-driven
10: τ2

t = υ2
t
(
θ2

t ζt − 2θt + 1
)
;

11: ŝt+1 = ηt
(
r̂t, τ2

t ; ϕt, ξt
)
= ϕt(E[s | r̂t, τt]− ξt r̂t);

12: end for
Output: ŝT+1.

3.4. BER versus SNR

To verify whether the proposed dual-driven MIMO detector will outperform the
baselines at different noise powers, we conducted the following test by setting the SNR to
between 0 dB and 25 dB using a channel estimation MSE of −30 dB and seven layers in
the dual-driven network. Figure 4 presents the results of the dual-driven MIMO detector,
MMSE MIMO detector, OAMP detector, and OAMP-Net detector using testing data samples
generated at various SNRs, with a channel estimation MSE of −30 dB. From the figure, it is
evident that the proposed dual-driven learning-based MIMO symbol detection method
outperforms the other three MIMO detectors at all SNRs from high-SNR to low-SNR
regions. In particular, the dual-driven detector exhibits significant performance advantages
over the other three detectors at higher SNRs. The MMSE and OAMP-Net detectors’
performances appear to be similar.

Since the only difference between the dual-driven MIMO detector and the OAMP-Net
detector is the inserted data-driven symbol correction network, as shown in Figure 3,
we can conclude that the increased performance of the proposed dual-driven MIMO
detector is completely caused by detection error correction in the symbol correction network.
For example, when the SNR is 20 dB and the channel estimation MSE is −30 dB, the dual-
driven MIMO detector can achieve a BER of 4 × 10−4, while OAMP-Net can only achieve a
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BER of 2.48 × 10−3. To achieve the target BER of 1 × 10−2, the dual-driven MIMO detector
requires a BNR of 15.1 dB, while the MMSE and OAMP-Net detectors require SNRs of
17.7 dB and 17.6 dB, respectively. This implies that the dual-driven MIMO detector achieves
the same BER, with an SNR reduction of 2–3 dB compared to the other two detectors.
Moreover, the proposed dual-driven detector achieves a BER of 1 × 10−3 at a BNR of
around 22.5 dB, while the other three detectors fail to reach this level. Notably, the OAMP
detector exhibits a poor performance and is highly sensitive to the channel matrix structure
and noise, leading to performance degradations.

Considering that the training data samples were generated at an SNR of 20 dB and
the testing data samples were generated at different SNRs, the results demonstrate that the
data-driven component of the proposed dual-driven detector effectively corrects symbols
and exhibits robustness to noise.

To sum up, this test verifies the hypothesis that the proposed dual-driven MIMO detec-
tion outperforms the OAMP-Net, OAMP, and MMSE detectors at different noise powers.

0 5 10 15 20 25

SNR/dB

10
-4
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-3
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-2
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10
0

B
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R

MMSE

OAMP-Net

OAMP

Dual-Driven

Figure 4. BER versus SNR for the dual-driven MIMO detector and three other detectors when the
channel estimation MSE = −30 dB.

3.5. BER versus MSE

To verify whether the proposed dual-driven MIMO detector can outperform the
baselines at different channel estimation errors, we conducted a test, setting the channel
estimation MSE at between −40 dB and −26 dB at an SNR of 20 dB and with seven
layers in the dual-driven network. Figure 5 illustrates the results obtained from the dual-
driven MIMO, MMSE MIMO, OAMP, and OAMP-Net detectors using testing data samples
generated at various MSEs while maintaining an SNR of 20 dB. The findings presented in
Figure 5 align with those depicted in Figure 4.

The proposed dual-driven learning-based MIMO symbol detection method outper-
forms the other three MIMO detectors at a channel estimation MSE ranging from −40 dB to
−26 dB. Both the MMSE and the OAMP-Net detectors exhibit similar performances, while
the OAMP detector demonstrates the poorest performance among the four detectors.

We have demonstrated that the dual-driven detector’s performance improvement
can mainly be attributed to the symbol correction network in Section 3.4. When the SNR
is 20 dB and the channel estimation MSE is −28 dB, the dual-driven MIMO detector can
achieve a BER of 4.59 × 10−3, while the OAMP-Net can only achieve a BER of 1.34 × 10−2.
To achieve the target BER of 1 × 10−3, the dual-driven MIMO detector requires a channel
estimation MSE of −31.2 dB, whereas the MMSE and the OAMP-Net detectors necessitate
channel estimation MSEs of −34.2 dB and −34 dB, respectively. This indicates that the
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dual-driven MIMO detector requires a increased channel estimation MSE by 2–3 dB to
achieve the same BER as the other two detectors.

Considering that the training data samples were generated with a channel estimation
MSE of −30 dB and the testing data samples were generated with varying channel estima-
tion MSEs, the results demonstrate the effective performance of the proposed dual-driven
detector in mitigating the impact of channel estimation errors.

To sum up, this test verifies the hypothesis that the proposed dual-driven MIMO
detector outperforms the OAMP-Net, the OAMP, and the MMSE detectors at different
channel estimation errors.
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MSE/dB
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Figure 5. BER versus MSE for the dual-driven MIMO detector and the other three detectors when
SNR = 20 dB.

3.6. BER versus Layers

To verify whether the proposed dual-driven MIMO detector will outperform the
OAMP-Net detector with different network layers, we conducted the tests using a channel
estimation MSE of −30 dB and an SNR of 20 dB. In this context, the number of layers
corresponds to the number of iterations, denoted as T.

A performance comparison between the dual-driven detector and the OAMP-Net
detector is shown in Figure 6 as the number of layers ranges from 1 to 7. We can see that
the performance of OAMP-Net hardly improves, while the performance of the dual-driven
detector improves with increasing network layers, which means the detection error can
effectively be reduced iteratively in the dual-driven network.

Figure 7 depicts the results for the dual-driven MIMO detector with varying numbers
of layers and different learning rates for the Adam optimizer, maintaining an SNR of
20 dB and a channel estimation MSE of −30 dB. It is evident that as the number of layers
increases, the BER generally decreases across all three different learning rates. However,
when the learning rate is set to 0.00001, the BER with seven layers is actually higher than
that with six layers. This discrepancy could be attributed to overfitting. Consequently,
in our implementation, we choose to set T to seven as a suitable number of layers. Different
learning rates control the convergence speed. It is noticeable that the differences among the
three learning rates (0.01, 0.0005, and 0.00001) are not significant. Therefore, we opted for a
variable learning rate approach. Specifically, we set the learning rate to 0.001 initially until
convergence and then adjusted it to 0.005 or 0.0001 to prevent overfitting.

To sum up, this test verifies the hypothesis the that the proposed dual-driven MIMO de-
tector outperforms the OAMP-Net with different layers. With different layers and different
learning rates, the proposed dual-driven detector can converge well and maintain stability.



Drones 2024, 8, 180 14 of 18

1 2 3 4 5 6 7

Layers

10
-3

10
-2

10
-1

B
E

R

OAMP-Net

Dual-Driven

Figure 6. BER versus layers for the dual-driven MIMO detector and OAMP-Net when the
SNR = 20 dB and the MSE = −30 dB.
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Figure 7. BER versus layers using different learning rates for the dual-driven MIMO detector when
the SNR = 20 dB and the MSE = −30 dB.

3.7. Computational Complexity

The complexity of online deployment of the dual-driven MIMO detector is related to
two aspects: (i) Ld fully connected layers in the symbol correction network with a com-
putational complexity of O

(
T ∑Ld

l=1(ml−1ml)
)

and (ii) OAMP-Net with a computational

complexity of O(TN3
t ) [25]. ml−1 and ml are the input and output sizes in the lth layer,

respectively. According to Table 2, the computational complexity of the symbol correction
network is O(16T(Ld − 1)N2

t + TN3
t ). Nt can range from hundreds to thousands in the

massive access case or the ultra MIMO case. Since Ld is a constant when the dual-driven
network is stable, the overall complexity of the dual-driven MIMO detector is O(TN3

t ),
which is same as OAMP-Net.

3.8. Engineering Benefits

The use of a dual-driven MIMO detector in practical applications provides several
engineering benefits.

Enhanced Performance: The dual-driven MIMO detector leverages the power of
deep learning and neural networks to achieve improved performance compared to tra-
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ditional model-driven MIMO detectors or linear MIMO detectors. By capturing com-
plex nonlinear relationships between the correct symbols and the received symbols, dual-
driven MIMO detectors can achieve higher accuracy and robustness in MIMO detection.
This leads to enhanced system performance in terms of data rates, reliability, and overall
communication quality.

Adaptability to Various Channel Conditions: A dual-driven MIMO detector can adapt
to different channel conditions, including varying noise powers and channel estimation
errors. Through the training process, the dual-driven MIMO detector learns to extract
relevant features from the received signals and detect MIMO symbols effectively. This
adaptability makes the dual-driven MIMO detector applicable for a wide range of practical
wireless communication environments.

Flexibility and Scalability: The dual-driven MIMO detector offers flexibility and scal-
ability in terms of system configuration and deployment. It can be adapted to different
MIMO system setups, including varying numbers of antennas, spatial streams, and modu-
lation schemes. The neural network architecture of the dual-driven MIMO detector can
be customized and optimized to accommodate specific system requirements, making it
suitable for a wide range of practical MIMO communication scenarios.

Real-Time and Near-Real-Time Processing: The dual-driven MIMO detector can be
implemented efficiently to enable real-time or near-real-time processing, depending on the
hardware and computational resources available. By leveraging parallel computing, hard-
ware acceleration techniques, and optimization algorithms, dual-driven MIMO detectors
may be suitable for time-critical applications.

These engineering benefits make the dual-driven MIMO detector a better choice.
However, the limitation of the dual-driven MIMO detector is that the off-line training

process needs to accumulate data and be trained, which means the dual-driven MIMO
detector needs extra storage and computing resources.

4. Conclusions

In this article, we present a novel dual-driven learning-based network for massive
MIMO detection in UAV AG communications. The proposed network consists of two
components: a data-driven network with three fully connected layers that corrects symbol
estimation errors to minimize detection errors, and a model-driven OAMP-Net, which
performs MIMO detection through iterative processes. The main contribution of this paper
is that the proposed dual-driven MIMO detector is a novel combination of a data-driven
symbol correction network and the model-driven OAMP-Net. The entire dual-driven
network is trained simultaneously to optimize its performance. Our main hypothesis
was that the proposed dual-driven MIMO detector will outperform the model-driven
OAMP-Net and other traditional MIMO detectors since it has the advantages of both the
data-driven network and the model-driven network.

We analyze the network structure of the dual-driven network and the dual-driven
learning-based MIMO symbol detection algorithm in detail. To verify the hypothesis that
the proposed dual-driven MIMO detector will outperform OAMP-Net and some other
detectors at different noise powers and different channel estimation errors, we carry out
extensive test simulations. Through these simulations, we demonstrate that the dual-driven
learning detector exhibits significant performance improvements compared to the MMSE,
OAMP, and OAMP-Net detectors across a wide range of SNRs (0 dB to 25 dB) and MSEs
(−40 dB to −26 dB). When the SNR is 20 dB and the MSE is −30 dB, the dual-driven MIMO
detector can achieve a BER of 4 × 10−4, while the OAMP-Net can only achieve a BER of
2.48 × 10−3. Since the only difference between the dual-driven MIMO detector and the
OAMP-Net detector is the inserted data-driven symbol correction network, we can verify
our hypothesis. In addition, with different layers and different learning rates, the proposed
dual-driven detector converges well and maintains stability.
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The proposed dual-driven MIMO detector provides several engineering benefits:
enhanced performance, adaptability to various channel conditions, good flexibility and
scalability, and near-real-time processing ability.

This article lays a solid foundation for the advancement of UAV AG communications
in the future.
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Abbreviations
The following abbreviations are used in this manuscript:

MIMO Multiple-Input Multiple-Output
UAV Unmanned Aerial Vehicle
AG Air-to-Ground
6G Sixth-Generation Cellular Network
mm-wave millimeter-wave
OAMP-Net Orthogonal Approximate Message Passing Network
MMSE Minimum Mean Square Error
OAMP Orthogonal Approximate Message Passing
SNR Signal-to-Noise Ratio
SER Symbol Error Rate
SAGIN Space–Air–Ground Integrated Network
3GPP Third-Generation Partnership Project
NR New Radio
UE User Equipment
AA Air-to-Air
LMMSE Linear Minimum Mean Square Error
AMP Approximate Message Passing
CG-OAMP-Net Conjugate Gradient OAMP-Net
NN Neural Network
ADC Analog-to-Digital Converter
GS Ground Station
LOS Line Of Sight
NLOS Non-Line Of Sight
Rx Receiving
Tx Transmitting
CSI Channel State Information
QAM Quadrature Amplitude Modulation
PSK Phase Shift Keying
IFFT Inverse Fast Fourier Transform
CP Cyclic Prefix
LE Linear Estimator
NLE Nonlinear Estimater
NMSE Normalized Mean Square Error
BER Bit Error Rate
UPA Uniform Planar Array
Adam Adaptive Moment estimation
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