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Abstract: Drone and aerial remote sensing images are widely used, but their imaging environment is
complex and prone to image blurring. Existing CNN deblurring algorithms usually use multi-scale
fusion to extract features in order to make full use of aerial remote sensing blurred image information,
but images with different degrees of blurring use the same weights, leading to increasing errors
in the feature fusion process layer by layer. Based on the physical properties of image blurring,
this paper proposes an adaptive multi-scale fusion blind deblurred generative adversarial network
(AMD-GAN), which innovatively applies the degree of image blurring to guide the adjustment of
the weights of multi-scale fusion, effectively suppressing the errors in the multi-scale fusion process
and enhancing the interpretability of the feature layer. The research work in this paper reveals the
necessity and effectiveness of a priori information on image blurring levels in image deblurring
tasks. By studying and exploring the image blurring levels, the network model focuses more on the
basic physical features of image blurring. Meanwhile, this paper proposes an image blurring degree
description model, which can effectively represent the blurring degree of aerial remote sensing images.
The comparison experiments show that the algorithm in this paper can effectively recover images
with different degrees of blur, obtain high-quality images with clear texture details, outperform the
comparison algorithm in both qualitative and quantitative evaluation, and can effectively improve
the object detection performance of blurred aerial remote sensing images. Moreover, the average
PSNR of this paper’s algorithm tested on the publicly available dataset RealBlur-R reached 41.02 dB,
surpassing the latest SOTA algorithm.

Keywords: drone and aerial remote sensing; image deblurring; generative adversarial networks;
multi-scale; image blur level; object detection; deep learning

1. Introduction

Drone and aerial remote sensing images have been widely used in many fields such
as land and mineral resource management and monitoring, traffic and road network safety
monitoring, and geological disaster early warning system and national defense system
construction [1–5]. However, as the geometric resolution of aerospace optical cameras
continues to increase, high-speed spatial motion and random vibration of the camera
platform can cause image shift blurring [6,7], and rapid motion of the target can create
additional blurring [8]. In addition, factors such as the spatially varying characteristics
of the blur kernel, the imaging depth of field, and detector noise can also increase the
complexity of image blurring to varying degrees [9], resulting in degraded image quality.
This not only severely affects the visualization of the images and reduces the perceptual
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quality, but also has a significant impact on all levels of visual tasks and increases the
difficulty of applying analysis tasks.

Since image motion blur is difficult to avoid and drone aerial images are highly motion
blurred [10], the study of deblurring is very important, especially for tasks such as object
detection and object recognition, where image blurring reduces metrics such as precision
and recall [11].

Aerial remote sensing cameras usually produce image shift blur because the CMOS
or CCD detector is displaced by more than one image element with respect to the ground
target during the exposure time. The blur kernel is an unknown quantity and requires
blind deblurring. Image non-uniform blur models [12] are usually modelled as:

B = S ∗ k(M) + N, (1)

where B is the blurred image, S is the corresponding clear image, k(M) denotes the unknown
blur kernel, M denotes a sparse matrix in which each row contains a local blur kernel, * is
the discrete convolution, and N is the noise.

Blind image deblurring algorithms can be divided into two categories: those based
on deconvolution and those based on neural network operations. The deconvolution-
based image deblurring algorithm uses methods such as the natural image prior [13–16] to
estimate the blur kernel and perform a deconvolution operation on the blurred image to
restore it to a clear image. However, accurate estimation of the blur kernel is a difficult task,
and the algorithm modelling relies on a priori constraints. The algorithm is computationally
intensive and vulnerable to noise and computational errors, which severely the overall
performance of the algorithm. Consequently, deconvolution algorithms are difficult to
apply to complex deblurring tasks [17]. Deep learning algorithms based on convolutional
neural networks (CNNs) have now achieved remarkable results in image deblurring
tasks [18,19]. The algorithms use pairs of blurred and clear images to train a deblurring
model that implicitly learns knowledge of the mapping between blurred and clear images
through large-scale natural images to achieve recovery from blurred to clear images. Deep
learning algorithms widely use coarse-to-fine network architectures to extract information
from blurred images and improve the deblurring performance of models through multi-
scale fusion [20]. In particular, compared to other types of neural network algorithms such
as DeepDeblur [21] and STFAN [22], generative adversarial networks (GAN) [23] are able
to more reliably preserve texture details in images after multi-scale fusion, obtaining results
closer to the real image and recovering images more clearly [9,24,25]. Multiscale methods
can simultaneously use multiple layers of features to deal with different degrees of blurring
in images [20,21,26]. However, feature misalignment inevitably occurs in the multi-scale
fusion process, leading to fusion errors and reducing the deblurring effect.

In a multi-scale deblurring network model, as the network model continues to deepen,
the feature map size decreases, the pixel offset corresponding to the feature map becomes
smaller and smaller, reflecting less and less detailed information [27], and the distribution
of information in the feature layer becomes more and more concentrated. The process of
multi-scale fusion can be described as a reorganization of the information in the shallow
high-resolution feature layers with the deeper low-resolution feature layers. There are two
main types of recombination: 1. low-resolution feature maps are up-sampled and fused
with high-resolution feature maps, and 2. high-resolution feature maps are down-sampled
and fused with low-resolution feature maps [28,29]. The existing CNN algorithms do not
consider the possible inconsistency of information distribution between the low-resolution
feature maps and the high-resolution feature maps. If the high-resolution feature layers
with large pixel offsets are fused with the low-resolution feature layers with small pixel
offsets, the problem of feature misalignment will inevitably arise, resulting in large fusion
errors, and such errors will be superimposed layer by layer in the network structure from
coarse to fine. Currently, network models are trained in a data-driven manner [30], and
the final multiscale fusion scheme is a balanced weighting strategy that fits the training
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dataset [31,32]. Using the same multiscale weights for all images with different degrees of
blurring also causes the fusion error to increase layer by layer.

To solve the above problems, this paper combines the physical characteristics of image
blurring with network models to propose an improved multi-scale model scheme more
suitable for image deblurring tasks. The physical properties of image blurring are that
the energy from the point source is distributed diffusely in the image plane according
to the trajectory of the motion blur kernel; the greater the energy diffusion, the greater
the pixel shift, and the more blurred the image. Therefore, for multi-scale feature fusion,
images with a low level of blurring can be recovered by using shallow high-resolution
feature layers due to their small energy spread, while if too many deep low-resolution
feature layers are fused, the recovered image will become blurred due to fusion errors, and
it is more appropriate to use shallow high-resolution feature layers for fusion to reduce
fusion errors. Similarly, images with a high degree of blurring have a large energy spread.
The higher resolution feature layers with shallower layers do not reflect a sufficiently
concentrated energy distribution with large pixel shifts due to image blur diffusion, while
the lower resolution feature layers with deeper layers reflect a more concentrated energy
distribution with small pixel shifts. In this case, it is more appropriate to use the individual
low-resolution feature layers with deeper layers for fusion to reduce the pixel offset and
reduce the fusion error.

Based on the above analysis of the physical characteristics of image blurring and the
adaptability of the network model, this paper proposes an adaptive multi-scale fusion
blind deblurred generative adversarial network (AMD-GAN) that can perform high-quality
restoration of remote sensing blurred images. The model combines the physical character-
istics of image blurring, makes full use of the characteristics of different blurred images
with different energy diffusion and different information distribution, and uses the image
blurring degree to guide the network model for multi-scale fusion of feature maps with
adaptive weights at different scales, which can effectively suppress the alignment errors in
the process of multi-scale fusion. This is equivalent to enhancing the interpretability of the
multi-scale network structure for blurry image feature extraction and fusion at the physical
level. Unlike the estimation of blur kernels, when evaluating the degree of image blur,
this paper treats the estimation of the degree of blur as the estimation of the pixel offset in
the image, and the remote sensing image with different blur levels drives the image blur
degree description model for training and completes the task of image blur estimation.

The innovations in this paper are summarized as follows:

1. This paper combines the physical property of the image blurring degree with multi-
scale feature fusion for image deblurring processing and proposes an adaptive multi-
scale feature fusion method for high-quality restoration of drone and aerial remote
sensing blurred images, which effectively suppresses errors in the multi-scale fusion
process, enhances the interpretability of the deblurring model for blurred image
feature extraction and fusion, makes the function model represented by the network
model more physically meaningful for image deblurring, and enhances the reliability
of the model. To the best of our knowledge, this is the first application of a multi-scale
fusion strategy to adjust the degree of image blur.

2. This paper proposes a model for describing the degree of image blur. This paper pro-
vides some research and exploration on the degree of image blur, using classification
algorithms in deep learning for image blur estimation, revealing the necessity and
effectiveness of image blur information in deblurring tasks.

3. This paper explores the impact of drone and aerial remote sensing image blurring
and image deblurring on object detection tasks, where image deblurring models
that are not adapted to the image being detected can lead to a reduction in object
detection accuracy.

4. In this paper, we construct our own aerial remote sensing image dataset with different
levels of blur, including both camera multi-exposure time shots and multi-level
random motion blur kernel simulations, at both 1 M and 2 M resolutions.
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2. Related Work
2.1. Image-Deblurring-Based Deep Learning

Existing deep learning approaches focus on training deblurred models using pairs
of blurred and clear images, learning knowledge implicitly through large-scale data. For
example, DeepDeblur [21] pioneered techniques to recover blurred images in a trainable
end-to-end manner, proposing a coarse-to-fine processing pipeline that achieves better
performance by stacking multiple sub-networks. DeblurGAN-v2 [9] constructs a new
cGAN framework that introduces a feature pyramid network (FPN) with multi-scale feature
fusion. DMPHN [33] proposed a novel stacking paradigm for deblurring, where increasing
the depth in the horizontal direction (stacking multiple network models) achieves better
deblurring results. MPRNet [34] proposed a multi-stage architecture network model for
collaborative design, decomposing the entire recovery process to progressively learn the
degraded features of the inputs. MAXIM [35] proposes a multi-axis MLP-based architecture
where each module has a global/local perceptual field, improving the learning capability
of the model. Ref-MFFDN [36] proposed a new reference-based multi-level feature fusion
deblurring network for remote sensing image deblurring, which extracts textures from
clear reference images at different moments of the same location to help recover blurred
images. NSRN [37] proposed a noise-suppression-based restoration network for turbulent
degraded images. SR-DeblurUGAN [38] considers the differences in the levels of features
extracted from different perceptual layers and uses a generative adversarial network based
on weighted perceptual loss to deblur the drone images. Inspired by the success of the
vision transformer (ViT) [39] on several computer vision tasks, several transformer-based
models have been developed [40–42] with significant performance. However, transformer-
based models for image deblurring networks are computationally complex.

Currently, the network model uses the same multi-scale fusion weights for all input images.

2.2. Multi-Scale Fusion

The idea of multi-scale fusion is widely used in the overall construction of various
neural network model architectures [34,36,43], and in particular, multi-scale modules have
been used as a plug-and-play base module for various computer vision tasks.

FPN [44] can exploit both the high resolution of shallow features and the high semantic
information of deep features, including bottom-up, top-down and lateral connection struc-
tures, to achieve the desired effect by fusing these different layers of features. PANet [45]
is an extension of FPN, additionally augmented by adding a bottom-up route after FPN.
Bi-FPN [46] proposed a weighted bi-directional feature pyramid network in EfficientDet
that allows simple and fast multi-scale feature fusion. NAS-FPN [47] takes advantage of
neural architecture search, using augmented learning to select the best cross-connections
and learn a better pyramidal network architecture for object detection features with high
accuracy and latency trade-offs.

Coarse-to-fine multi-scale fusion methods are widely used in deep-learning-based
image deblurring network model architectures, where multi-scale input images and feature
extraction sub-networks are usually stacked and the resolution of the images and sub-
networks is gradually increased from the bottom to the top [20]. DeblurGAN-v2 [9]
constructs a feature pyramid network (FPN)-based deblurring framework that introduces a
multi-scale feature fusion FPN in the generator, containing five scales of feature outputs that
are upsampled to the original input quarter size and stitched together as a whole (containing
multi-scale information), followed by two upsampling modules to recover to the original
image size. DBCPeNet [48] proposes a multi-scale network architecture for full-scale
utilization of images, which can make full use of images of different scales and maximize
the information flow between different scales by training from coarse to fine and fine to
coarse simultaneously, resulting in better recovery performance. MIMO-UNet [20] revisits
the coarse-to-fine scheme, using a single encoder with multiple inputs and a single decoder
with multiple outputs, to propose a new deblurring network, called multi-input multi-
output UNet, which can handle multi-scale blurring with low computational complexity.
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These model architectures all use a similar coarse-to-fine approach in order to improve
image deblurring performance. The coarse-to-fine network design principle combined with
multi-scale networks has been shown to be an effective image deblurring method. However,
these network models do not consider the effect of image blurring on the multi-scale fusion
approach, and the same multi-scale fusion weights are used for input images with different
blurring levels. The blur kernel diffusion is smaller for images with lower blur degrees and
larger for images with higher blur degrees. If the input images are not differentiated and
features from shallow and deeper layers of images with different blur degrees are fused
according to uniform weights, fusion errors will inevitably occur due to unaligned features.

Therefore, the multi-scale network structure using uniform weights makes it difficult
to accurately describe image features with different degrees of blurring, leading to poor
interpretability of existing multi-scale models for blurred features, which is the main source
of error in the models.

2.3. Description of the Degree of Image Blur

There are three main types of image blur description: fully referenced, semi-referenced
and unreferenced, with the unreferenced image description method being the most applicable.

There are many methods of evaluating the degree of image blur in traditional image
processing, using information such as the image gradient and entropy to measure the
degree of image blur, and the following algorithms are commonly used to describe the
degree of blurring of images:

Brenner gradient function, Laplacian gradient function, SMD (grey scale difference)
function, SMD2 (product of grey scale differences) function, variance function, energy
function (energy gradient), Vollath function, and entropy function.

The Brenner gradient function is the simplest gradient evaluation function, which
simply calculates the square of the difference between the grey levels of two adjacent pixels,
and is defined as follows:

D( f ) = ∑y ∑x| f (x + 2, y)− f (x, y)|2 , (2)

The definition of image blur based on the Laplacian gradient function is as follows:

D( f ) = ∑y ∑x G(x, y) (G(x, y) > T) , (3)

L =
1
6

1 4 1
4 −20 4
1 4 1

 , (4)

where G(x,y) is the convolution of the Laplacian operator at pixel point (x,y).
The SMD2 function is to multiply the difference between two grey levels in each

pixel field of the image and then accumulate them pixel by pixel. In a blurred image, the
difference between the adjacent values of the pixel points will be small, so the larger the
accumulation value, the clearer the image, which is calculated as shown below:

D( f ) = ∑y ∑x| f (x, y)− f (x + 1, y)| ∗ | f (x, y)− f (x, y + 1)| , (5)

Information such as the kernel size of the blur kernel can also be used to determine
how blurred an image is, but any method that can accurately estimate the blur kernel
is complex.

The degree of image blur is also an important indicator of image quality [49], and
Wang, et al [50] use image roughness as a measure of image blur when assessing image
quality. The smaller the image roughness, the better the image quality, defined as:

R =
‖h ∗ e‖1 + ‖hT ∗ e‖1

‖e‖1
, (6)
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where e is the evaluation image and h is the mask.

3. Methods

As shown in Figure 1, the adaptive multi-scale single image blind deblurring network
AMD-GAN designed in this paper consists of two main parts: 1. a generator (AMD
GAN_G) and 2. A discriminator (AMD GAN_D). The generator generates a clear image by
processing the blurred image and the discriminator discriminates the clear image generated
by the generator. MAP0–MAP3 correspond to four different resolutions of blurred images
in turn, BMD is the model proposed in this paper to describe the degree of image blur, and
AMS Fusion represents the adaptive multi-scale fusion strategy proposed in this paper.
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Figure 1. The AMD-GAN framework.

The image deblurring process in this paper is shown in Figure 2, where the blurred
image is represented by the blurred degree description model (BDM). If the degree of
blurring is less than the threshold, it is not processed and is output directly; if the degree
of blurring is greater than the threshold, it is deblurred. In the process of deblurring,
AMD-GAN uses the characteristics of different blurred images with different information
distribution and different energy diffusion to adaptively adjust the weights of the model’s
multi-scale fusion according to the degree of image blurring. Blurs with small image shifts
use more shallow high-resolution layer features to retain more detailed texture; blurs with
large image shifts use more deeper low-resolution layers to reduce the spread of energy
distribution. The adaptive fusion weighting strategy can effectively suppress the alignment
error of layer-by-layer superposition in the multi-scale fusion process and improve the
deblurring effect. Moreover, the processing flow of this paper is more suitable for the
application scenario where multiple blurred images coexist with clear images in the real
environment of drone and aerial remote sensing.
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3.1. Blurred Degree Description Model (BDM)

Based on the idea of adaptation to image deblurring tasks, this paper investigates
models that can describe the degree of image blurring and combines them with existing
multi-scale network structures to enable deblurring models to account for the physical
characteristics of blurred images, a technical way of solving existing problems.

In this paper, the deblurring model requires only the blurring offset degree of an
image. Inspired by the image classification task, the image blur degree description task is
considered as a classification task for the image blur degree. Drawing on the main idea
of EfficientNet [51], an image classification network, the network is suitably extended
by combining the width, depth, and resolution. Considering the speed and model size,
MobileNet [52] was chosen as the baseline model to design the image blur description
model BDM (blurred degree description model). Using multi-resolution hybrid training,
the data-driven model learns the offset of the blurred image, reducing the influence of other
factors on the model’s determination of the blur level. To our knowledge, this is the first
attempt to use a classification algorithm from deep learning for image blur estimation and
to apply it to a deblurring task.

A schematic diagram of the structure of the image blur description model (BDM) is shown
in Figure 3, where MBConv is an alternating hybrid module of MBConv1 and MBConv2.
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Drones 2023, 7, 96 8 of 24

The model uses the Swish activation function, which helps to prevent the gradient
from approaching zero and leading to saturation during slow training, and provides
superior performance compared to other activation functions. Currently, Softmax activation
functions are commonly used for multi-category classification models. In order to achieve
multi-blur category training, the output results in continuous blur degree values. Based on
Softmax, we propose that the activation function Softmax-L for the image blurring level
can be defined as follows:

Q = ∑
i

wi ∗
exi

∑ x
, (7)

where w is the weighting factor for each blur level, x is the degree of blurring of the image,
and the interval of the output blurring degree is [0, 1].

3.2. Adaptive Multi-Scale Model

DeblurGAN-v2 [9] introduces feature pyramid networks (FPNs) [44] into the field of
image deblurring, where FPNs use top-down and lateral connectivity structures to combine
lower resolution features with higher resolution features.

However, blurred images in real scenes are complex and variable, and the degree
of blurring varies dramatically. Although FPN is simple and effective, it may not be the
best architectural design. For images with different levels of blurring, bottom-up and
top-down convolution by FPN alone is not sufficient to extract image features. Moreover,
the sufficiently coarse image obtained after multiple downsampling of the blurred image is
approximately the low-resolution image corresponding to the clear image [32]. Therefore,
this paper designs an image multi-scale feature pyramid network (MFPN) based on FPN,
and the sketch of the structure is shown in (a) in Figure 4. MAP0-MAP3 corresponds to
four different resolutions of blurred images in order to improve the feature extraction and
fusion of images with different blurring levels in order to achieve better deblurring results.
First, the blurred images are gradually downsampled using bi-triple interpolation at a ratio
of 1/2, and four scaled pairs of images are generated with resolutions of (H ×W, H/2 ×
W/2, H/4 ×W/4, and H/8 ×W/8). Each scaled blurred image is then used as four inputs
to the multi-scale model, with the subsequent network structure shown in Figure 1, and a
clear image at the original resolution is considered the final output.
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Figure 4. Multi-scale feature pyramid model structure sketch.

This paper uses neural architecture search (NAS) for the optimization of the multi-scale
model of images. The search space used in this paper includes all connections between
scales directly, indirectly, and across scales. The controller uses a recurrent neural network
to select sub-models in the search space, using the deblurring metric PSNR as a feedback
signal for updating the parameters. After selecting some structures in a search space
covering all scale connections, 200 epochs were trained, and the results were tested for
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comparison. By cyclic attempts, the search revealed a new multi-scale feature pyramid
structure (NAS MFPN). As shown in Figure 4, from (a) to (n).

The physical mechanism of image blurring is to distribute the point source energy
on the image plane according to the diffusion characteristics of the blur kernel, and the
shape and size of the blur kernel are not the same for images with different degrees of
blurring. However, the current network model has fixed multi-scale weights for images
with different blurring degrees in the multi-scale fusion process. This uniform weight
fusion method is not adaptable to the deblurring task, which limits the performance and
adaptation range of the model. This paper proposes an adaptive multi-scale fusion strategy,
which combines a blur description module with an image multi-scale fusion module to
build an adaptive multi-scale fusion model. A sketch of the structure is shown in Figure 5.
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Figure 5. Adaptive multi-scale fusion strategy.

The model combines the physical characteristics of image blurring, makes full use of
the characteristics of different blurred images with different energy diffusion and different
information distribution, adaptively adjusts the multi-scale fusion weights according to
the results of blur description, and fuses the four scales of MAP0-MAP3 feature layers
according to the adjusted weights. It can effectively suppress the alignment errors in
the process of multi-scale fusion and optimize the information reorganization strategy
in the process of multi-scale fusion. It is possible to make less blurred images use more
layers of shallow, high-resolution features, reducing the likelihood that too many deep,
low-resolution features will affect their recovery, and similarly to make more blurred
images use more deep, low-resolution features, thereby reducing the pixel offset of the
recovered image.

3.3. Loss Function

Using cross-entropy loss in the training process of the image blur description model:

L =
1
N ∑

i
Li = −

1
N ∑

i

M

∑
c=1

yic log(pic), (8)

where M denotes the number of classes; yic denotes the discriminant function (0 or 1),
which takes 1 when the true label class of sample i is c and 0 otherwise; and pic denotes the
probability that sample i is predicted to be in class c.

During the training of the deblurring model, in order to compare the image under
training, the reconstructed completed image and the original paired clear image are com-
pared under a number of metrics. In this paper, as in SDD-GAN [53], a loss function
consisting of four components, including adversarial loss, perceptual loss, reconstruction
loss and colour feature loss, is used and minimized during the training of the deblurred
model to achieve optimal results for the model. The total loss is defined as:

L = wgLg + wpLp + wrLr + wcLc, (9)

where wg, wp, wr, wc are used as trade-off coefficients to adjust the importance of the
different component losses to the total loss function.
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The use of RaGAN-LS loss as an adversarial loss function Lg for global and local
discriminators, helps the training process to be smooth and efficient [9], prompting the
deblurring network model to produce clear, visually appealing images.

Lg = Ex∼IX (x)

[(
D(x)− Ey∼IY(y)D(G(y))− 1

)2
]

+Ey∼IY(y)

[(
D(G(y))− Ex∼IX (x)D(x) + 1

)2
]

,
(10)

where x is the sample image for the blurred image domain IX , y is the sample image for the
clear image domain IY, D is the discriminator, and G is the generator.

Perceptual loss [54] LP improves the visual quality of the generated image by com-
puting the L2 loss of the CNN feature map between the model-generated image and the
target image, so that the generated image approximates perceptually to the real image.
The perceptual loss used in this paper is the difference between the clear image and the
recovered blurred image in the conv3.3 feature map of VGG-19:

LP = E
[
‖VGG(Y)−VGG(G(X))‖2

2

]
, (11)

In this paper, we choose the mean square error (MSE) loss as Lr and minimized Lr so
that the model generates images with less texture distortion, defined as:

Lr =
1
n

n

∑
i=1

(yi − G(xi))
2, (12)

The error between the target image and the generated image is minimized using
the color feature loss function Lc, which drives the model to produce an image with the
same color distribution as the target image, and the color feature loss function is defined
as ollows:

Lc = Ex∼Ix (x),y∼IY (y),

[
∑
p
∠((G(x))p, (y)p)

]
+ Ey∼IY (y)[‖G(y)− y‖1], (13)

where (,) is the operator that calculates the angle between two images in the vector space
and (.) p denotes the pixel point of the image.

3.4. Multi-Blur Level Aerial Remote Sensing Image Dataset

The existing public dataset lacks image data with multiple levels of blur, so a self-built
multi-blur level remote sensing image dataset was constructed, one from data captured by
the camera and one from the blur kernel simulation.

Aerial remote sensing dataset with multi-blur levels taken by the camera(RSML_C):
The initial data are sampled from the aerial remote sensing open dataset DOTA [55],
selecting images with aircraft and downsampling the data to 1 M and 2 M based on their
actual resolution. As shown in Figure 6, in order to make the blurred image as close as
possible to the real scene, we dithered the picture on a 144HZ high frame rate screen, using
a DMK 33GX290-GigE black and white industrial camera; after aligning to take pictures,
the output is a three-channel black and white image, and we choose four exposure times
from short to long as the blur level standard for the generated picture. We chose 50 scenes,
generating an average of 36 blurred images under one blurring level for each scene. The
four blurring levels plus their corresponding clear images generated a total of 18,000 sets of
data at two resolutions, with an image size of 640 × 640, and the training and test sets were
randomly assigned in the ratio of 8:2.
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According to Section 4.2, SMD2 can sort and classify multi-blur levels under the same
clear image within a certain range. In order to eliminate possible errors in the camera
shooting process, the images under each of the four blur levels corresponding to each scene
are sorted according to the SMD2 values, and the middle 2/5 under each scene are taken
as the standard dataset for training the image blur description model, with an average of
72 images for each scene. All data are used for training the deblurring model.

Aerial remote sensing multi-blur level image dataset generated by motion blur kernel
(RSML_S): Based on the construction of a real remote sensing motion blur image dataset
by SDD-GAN, a multi-level remote sensing motion blur dataset was constructed in this
paper, with the initial data sampled from the publicly available dataset DOTA [55]. The
random trajectory generation method proposed in DeblurGAN [18] was used to generate
motion blur kernels with randomly varying intervals of blur kernel size as [(1,1)-(5,5)),
[(5,5)-(9,9)), [(9,9)-(17,17)), [(17,17)-(31,31)], and some of the blur kernels are shown in
Figure 7, which are combined with SDD-GAN’s motion blur image construction method
to generate multi-blur level images, and the blur images are shown in Figure 8. As with
RSML_C, 50 scenes were selected to generate a total of 18,000 sets of data at two resolutions,
with an image size of 640*640, and the training set and test set were randomly assigned
in the ratio of 8:2. The blurred images generated by the motion blur kernel are exactly as
expected and free from error, so the full data can be used to train the image blur description
model on multi-level blur levels.
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4. Results
4.1. Datasets

• RSML_C dataset: For a self-built dataset of drone and aerial remote sensing images at
multi-blur levels taken by the cameras in this paper, please read Section 3.4 for details.

• RSML_S dataset: For a self-built multi-blur level drone and aerial remote sensing
image dataset using motion blur kernel simulation, please read Section 3.4 for details.

• GoPro dataset [21]: Two hundred and forty frames per second (fps) video sequences
were captured using a GoPro Hero 4 camera, and then blurred images were generated
by averaging consecutive short exposure frames. The GoPro dataset is common
benchmark data in the field of image motion blur and contains 3214 blurred/clear
image pairs. This paper follows the same division, using 2103 pairs for training and
the remaining 1111 pairs for test evaluation.

• RealBlur dataset [56]: RealBlur-R is generated from raw camera images. Images are
captured that are blurred by camera shake and captured in dimly lit environments
(e.g., streets and indoor rooms at night) to cover the most common cases of motion
blur and they are blurred images that are more in line with the real world. RealBlur-R
has a total of 4,556 blurred and sharp image pairs, with 3,758 image pairs randomly
selected as the training set and 980 image pairs as the test set.

• Visdrone dataset [57]: The dataset is collected using different drone platforms (dif-
ferent models of drones) in different scenarios, under different weather and lighting
conditions, covering a wide range of locations (from 14 different cities in China sepa-
rated by thousands of kilometers), objects (pedestrians, vehicles, bicycles, etc.), and
densities (sparse and crowded scenes). This paper uses 548 validation data from
Visdrone for test experiments and the motion blur kernel in Section 3.4 to construct
the drone motion blur dataset.

4.2. Image Blur Description Test

For tests carried out using a number of traditional algorithms on a self-built multi-blur
level dataset alone, none of the results could be accurately graded and the test results
were strongly correlated with the clear image of each blurred image. The Brenner gradient
function, the Laplacian gradient function, and the SMD2 (product of grey scale differences)
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function can roughly classify the dataset with no change in the underlying image; SMD2 is
relatively good; the remaining functions have confusing test values and cannot be clearly
graded on the same clear image. The test result graph is shown in Figure A1.

As shown in Figure 9 for some of the images (14 scenes) on the SMD2 function,
calculated as shown in equation (5), the right panel shows the test result curves for all
images of the four blur levels at the same scale, and the left panel shows the results of
comparing a clear image and its corresponding four blur levels in the same scene, the larger
the value of the vertical coordinate, the clearer the image. It can be intuitively seen that
the SMD2 function can distinguish the images roughly correctly between the four levels in
the same scene (the same clear image), but it is obviously not possible to adapt all images
using the same threshold and can only be applied in a single scene.
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The blur metric of a blurred image is closely related to the clear image itself. Traditional
algorithms can broadly determine the degree of blurring on the same clear image, but
they cannot be adapted to a wide range of clear image situations, but in practice, the vast
majority are complex environments, making them difficult to apply directly.

Because SMD2 is relatively effective in grading under the same clear picture, the four
blur levels in each scene of the RSML_C dataset can be sorted according to SMD2 values,
and the middle 2/5 of the image data for each blur level in each scene are used as the
standard dataset for training the blur level description model for classification.

Trained on a standard dataset for blur classification, the test results are shown in
Table 1 with excellent results: 99.5% accuracy on the RSML_S dataset test set and 98.9%
accuracy on the RSML_C dataset test set, with some of the test results shown in Figure 10.

Table 1. The results of the blur level description model in this paper on a test set of different datasets.

Train Test top1 Accuracy

RSML_S RSML_S 0.995
RSML_C(2/5) RSML_C(2/5) 0.989

The larger the value of q, the more blurred the image is, q ∈ [0, 1].
The trained blur level description model on the RSML_C dataset is directly migrated

to the GoPro dataset and RealBlur dataset, and images with different degrees of blurring
are selected for detection. Some of the detection results are shown in Figures A2 and A3.
The model performs well in testing and can detect the degree of blurring of images, and
the larger the pixel offset, the greater the image detection result q.
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4.3. Image Deblurring Comparison Results

In order to evaluate the performance of the deblurring method proposed in this paper,
the algorithm of this paper is compared with other deblurring methods on four datasets for
analysis. The codes of the deblurring algorithms of the other methods and their test results
on public datasets are obtained from the authors’ official websites.

The RSML_S dataset and the RSML_C dataset:The results of DeblurGAN-v2 [9],
MAXIM [35], MPRNet [34], DeepRFT [58], Restormer [42], and this paper were analyzed
quantitatively on the self-built dataset. As the official websites of the compared algorithms
all provide the training parameters of the algorithms on the GoPro dataset, the method
of training on the GoPro dataset and testing on the self-built dataset was chosen for the
comparison in this paper.

The average PSNR and average SSIM of different deblurring algorithms on the
RSML_S dataset are shown in Table 2. The average PSNR and average SSIM of the algo-
rithms in this paper are better than the comparison algorithms.

Table 2. The mean PSNR and SSIM for different deblurring methods on the RSML_S dataset (Trained
on the GoPro dataset). The highest scores are highlighted in bold.

Method PSNR(dB) SSIM

DeblurGAN-v2 [9] 23.83 0.722
MAXIM [35] 24.58 0.786
MPRNet [34] 24.74 0.785
DeepRFT [58] 25.39 0.826
Restormer [42] 25.11 0.809

AMD-GAN 27.89 0.869

The test results of different defuzzification algorithms on the RSML_C dataset are
shown in Table 3. The algorithm in this paper achieves a PSNR of 24.37 dB, which is an
improvement of 4.67 dB compared to DeblurGAN-v2.
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Table 3. The mean PSNR and SSIM for different deblurring methods on the RSML_C dataset (Trained
on the GoPro dataset). The highest scores are highlighted in bold.

Method PSNR(dB) SSIM

DeblurGAN-v2 [9] 19.70 0.670
MAXIM [35] 21.78 0.685
MPRNet [34] 22.99 0.705
DeepRFT [58] 23.06 0.706
Restormer [42] 23.22 0.712

AMD-GAN 24.37 0.786

The results of the RSML_C dataset recovery are shown in Figure 11. As can be seen
from the comparative results in the figure, the algorithm in this paper performs well in
these samples, basically recovering the original details of the images and reducing a large
number of artefacts compared to other algorithms.
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The method proposed in this paper is trained and tested on a self-built dataset, and the
test results are shown in Table 4. Compared with those trained on the GoPro dataset, the
test results are substantially improved, indicating that there is a large difference between
the non-remote sensing image dataset and the remote sensing blur dataset; therefore, a new
aerial remote sensing blur dataset is a necessary work.

Table 4. Training test results of this paper’s method AMD-GAN on a self-built dataset.

Train Test PSNR(dB) SSIM

RSML_C RSML_C 27.35 0.876
RSML_S RSML_S 31.32 0.917

The GoPro dataset: The results of this paper were quantitatively analyzed against
other methods on the GoPro dataset.

The test results of different deblurring algorithms are shown in Table 5. The algorithm
in this paper outperforms other deblurring methods in terms of average PSNR and average
SSIM. The test results of this paper’s algorithm on the GoPro dataset achieved a PSNR of
32.32 and an improvement of 2.77 dB compared to DeblurGAN-v2 [9], ranking first among
deblurring models using the GAN method and 1.22 dB higher than the DBGAN model.

Table 5. Average PSNR and SSIM for different deblurring methods on the GoPro dataset. The highest
scores are highlighted in red.

Method PSNR(dB) SSIM

DeepDeblur [21] 29.08 0.913
SRN [59] 30.26 0.934

DeblurGAN-v2 [9] 29.55 0.934
STFAN [22] 28.59 0.861

BlurredItV [60] 30.58 0.941
ESTRNN [61] 31.07 0.902
DBGAN [62] 31.10 0.942

DBCPeNet [48] 31.10 0.945
SDWNet [63] 31.36 -
LEBMD [64] 31.79 0.949
AMD-GAN 32.32 0.952

RealBlur-R dataset: The results of this paper were quantitatively analyzed against
other methods on the RealBlur-R dataset.

Training was performed on each of the two datasets. RealBlur-R (GoPro) and RealBlur-
R denote training on the GoPro training set and on the RealBlur-R training set, respectively,
and both methods were tested on the test set of RealBlur-R.

The test results of different deblurring algorithms in the RealBlur-R dataset (GoPro)
are shown in Table 6. The average PSNR and average SSIM of the algorithms in this paper
outperformed the other algorithms. The PSNR of the algorithm in this paper reached
36.74 dB, which is 1.5 dB better compared to DeblurGAN-v2.

Table 6. Average PSNR and SSIM for different deblurring methods on the RealBlur-R dataset (GoPro).
The he highest scores are highlighted in red.

Method PSNR(dB) SSIM

DeepDeblur [21] 32.51 0.841
DeblurGAN-v2 [9] 35.26 0.944

SRN [59] 35.66 0.947
DMPHN [33] 35.70 0.948
MAXIM [35] 35.78 -
MPRNet [34] 35.99 0.952
MSSNet [65] 35.93 0.953

DeepRFT [58] 36.06 0.954
Uformer-B [41] 36.19 0.957
Restormer [42] 36.22 0.957

AMD-GAN 36.76 0.959
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The average PSNR and average SSIM of different deblurring algorithms on the
RealBlur-R dataset are shown in Table 7. The algorithm in this paper outperforms the
other defuzzification methods in terms of average PSNR and average SSIM. The PSNR
of the algorithm in this paper reaches 40.58 dB, which is 4.14 dB higher compared to
DeblurGAN-v2.

Table 7. Mean PSNR and SSIM for different deblurring methods on the RealBlur-R dataset. The
highest scores are highlighted in red.

Method PSNR(dB) SSIM

SRN [59] 38.65 0.96
DeblurGAN-v2 [9] 36.44 0.93

MPRNet [34] 39.31 0.972
MAXIM [35] 39.45 0.961
BANet [66] 39.55 0.971

MSSNet [65] 39.76 0.972
DeepRFT [58] 39.84 0.972

Stripformer [67] 39.84 0.974
AMD-GAN 40.58 0.975

The results of the RealBlur-R dataset recovery are shown in Figure 12. Three typical
scenes are chosen to compare the recoveries. The target image scenes are rich in content,
and the images contain distinct edges and complex textures. Therefore, such images of
complex scenes can test the recovery ability of the method in this paper very well. From
the comparative results in the figure, we can see that the algorithm in this paper performs
well in these samples and basically recovers the original details and colors of the image.
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Among the existing image deblurring algorithms, the algorithm in this paper achieves
state-of-the-art (SOTA) results on the RealBlur-R dataset.

4.4. Object Detection Experiments

Image blurring not only reduces the quality of human perception, but also increases
the difficulty of subsequent computer vision analysis tasks, especially for tasks that widely
employ real-time image processing. To test the impact of image deblurring on other com-
puter vision tasks, this paper uses object detection as an example for comparative testing,
including the self-built RSML_C remote sensing dataset and the Visdrone drone dataset.

RSML_C dataset: The YOLOV5 [68] model is used to detect objects on blurred aerial
remote sensing images, images after deblurring by other methods, and images after de-
blurring by this method. Objects with a confidence level of 0.5 or higher are calculated,
and since it is difficult to mark the anchor box accurately for blurred images, as long as
the detection box and the object area IOU are greater than 0.1, they are considered correct.
The experimental results are shown in Table 8, and the comparison algorithm models are
taken from their official websites. None of the compared algorithms effectively improved
the object detection performance of the blurred images, while the method in this paper
improved the object detection index of aerial remote sensing blurred images by 26%, which
proved the effectiveness and practicality of the method in this paper.

Table 8. MAP of different methods on the RSML_C dataset.

Method MAP(%) P(%) R(%)

YOLOV5 46.1 56.3 55.1
DeepRFT+YOLOV5 45.4(-1.5%) 55.0 53.1
Restormer+YOLOV5 46.6(+1%) 55.2 54.2
MPRNet+YOLOV5 46.9(+1.7%) 55.7 54.2

AMD-GAN+YOLOV5 58.1(+26%) 61.2 59.8

The test result graph is shown in Figure 13, where GT indicates the real object anchor
frame and Blur indicates detection directly on the blurred image. It can be clearly seen that
the image object detection accuracy using this paper’s method of deblurring is high.

Visdrone dataset: The same as RSML_C dataset, YOLOV5 is used to detect the object
of the drone blurred image and the image after deblurring by this method. The Visdrone
blurred images were deblurred using the method in this paper. The average PSNR was
31.176 dB and the SSIM was 0.918. The test comparison results for object detection are
shown in Table 9, and the effect graph is shown in Figure 14. GT indicates a sharp image,
and Blur indicates detection directly on a blurred image. Using the image deblurring
method in this paper can significantly improve the object detection index, and the MAP
improves by 0.108 after image deblurring.

Table 9. Comparison results of object detection on the Visdrone dataset.

Method MAP(%) P(%) R(%)

GT + YOLOV5 37.5 61.8 36.5
Blur + YOLOV5 19.7 44.9 20

AMD-GAN +
YOLOV5 30.5 50.3 31.3
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4.5. Ablation Study
4.5.1. The Effectiveness of Multi-Scale Feature Pyramid Network Structures

The multi-scale fusion structure using neural network search (NAS MFPN) is removed
from the generator and tested on the self-built dataset RSML_C using the structure shown
in (a) in Figure 4 to verify the effectiveness of NAS MFPN. The results are shown in Table 10,
with an average PSNR improvement of 0.74 dB.

Table 10. Results of ablation experiments on the RSML_C dataset for PSNR and SSIM (NAS MFPN).

Method PSNR(dB) SSIM

AMD-GAN without NAS MFPN 24.68 0.794
AMD-GAN with NAS MFPN 25.24 0.835
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4.5.2. The Effectiveness of Adaptive Multi-Scale Fusion

The adaptive multi-scale fusion structure (AMS Fusion) in the generator structure is
removed, and the multi-scale fusion structure (NAS MFPN) in (n) in Figure 4 is used to test
on the self-built dataset RSML_C to verify the effectiveness of AMS Fusion. The results are
shown in Table 11, with an average PSNR improvement of 2.11 dB.

Table 11. Results of ablation experiments on the RSML_C dataset for PSNR and SSIM (AMS Fusion).

Method PSNR(dB) SSIM

AMD-GAN without AMS Fusion 25.24 0.835
AMD-GAN with AMS Fusion 27.35 0.876

5. Conclusions

This paper proposes a single-image blind deblurring generative adversarial network
(AMD-GAN) using adaptive multi-scale fusion of physical properties of blurred images,
which takes full advantage of the different energy diffusion and information distribution of
images with different degrees of blurring to enhance the deblurring effect. Experiments
show that the method in this paper has good recovery effects on self-built remote sensing
datasets, drone datasets, and publicly deblurred datasets, which is conducive to mitigating
the impact of image blurring on other computer vision analysis tasks and can significantly
improve the accuracy of object detection on blurred images.

In future work, we will investigate methods to fuse features more finely for multi-scale
feature fusion in order to improve the performance of image deblurring.

Author Contributions: Conceptualization, B.Z. and Q.L.; methodology, B.Z.; software, B.Z.; vali-
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