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Abstract: This study presents the fabrication and characterization of chemoresistive sensors based on
a nanocomposite of WO3-Pt and graphene for methane detection. The graphene was prepared using
a liquid-phase exfoliation technique, and the nanocomposite was deposited onto interdigitated gold
electrodes using drop-casting. The response of the sensors was analyzed by measuring changes in
electrical resistance at methane concentrations of 7, 5, 3, and 1 ppm.
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1. Introduction

Methane is a significant greenhouse gas and a crucial component of natural gas, widely
used as a fuel source [1]. Hence, developing efficient sensors for its detection is essential
for environmental monitoring. Nanotechnology-based materials have shown promise for
such sensing applications. Graphene is a desirable material due to its high responsiveness
to conductivity changes when exposed to variations in the density of states and external
gases [2]. However, its pristine state cannot differentiate between gas species and tune
sensitivity due to the absence of a definite band-gap [3]. To enhance gas sensing capabilities,
the use of hybrid structures made by combining metal or metal- oxide nanoparticles with
graphene has been explored. This study focuses on the fabrication and characterization of
chemoresistive sensors based on a nanocomposite of WO3-Pt and graphene for methane
detection, which have shown great potential in terms of sensitivity, selectivity, and stability.

2. Materials and Methods

The synthesis of nanocomposites of graphene with WO3-Pt was performed using
nanoparticles of WO3 (<100 nm), nanoparticles of Pt (~5 nm), and pristine graphene in
a hydroalcoholic solution. The graphene solution was generated using a liquid-phase
exfoliation technique, as described in [4], which involved dispersing graphite flakes (Sigma-
Aldrich, St. Louis, MO, USA) in a mixture of IPA and H2O (1:7, v:v), followed by sonication
at low power (~30 W) for approximately 48 h. The mixture was then centrifuged for 45 min
at 500 rpm to remove the non-exfoliated graphite crystals. The Pt nanoparticles were mixed
with the WO3 nanoparticles in a mass ratio of 1%. Then they were combined with the
graphene solution in a mass ratio of 0.7%, followed by sonication for one hour to promote
intimate contact between the components. The material was deposited onto interdigitated
gold electrodes (10/10 µm, electrode/gap) with a radial design using the drop-casting
technique and then subjected to thermal treatment at 250 ◦C for one hour.
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The chemoresistive sensor response was analyzed by placing it in an airtight chamber
and measuring changes in electrical resistance at methane concentrations of 0 and 7, 5, 3 and
1 ppm (three repetitions for each concentration). Methane was generated using calibrated
cylinders with a constant flow rate of 100 mL/min, at 30% RH, and the measurements were
obtained using a digital multimeter (Keithley, Cleveland, OH, USA). The adsorption and
desorption cycles were conducted for 10 min each. The sensor was UV irradiated during
the methane flow.

3. Discussion

Figure 1 shows the resistive behavior of the material to changes in methane concen-
tration (0–7 ppm), where the response appears to be reversible. The characteristic values
(mean resistance to methane—mean resistance to clean gas) are also shown. Methane can
be detected even at concentrations of 1 ppm, although the response drops significantly.
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Figure 1. Resistive behavior of the material to changes in methane concentration (a) dynamic re-
sponse to 7 ppm steps; (b) difference in the characteristic values for each measurement and the 
characteristic value at 0 ppm concentration. 
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Figure 1. Resistive behavior of the material to changes in methane concentration (a) dynamic response
to 7 ppm steps; (b) difference in the characteristic values for each measurement and the characteristic
value at 0 ppm concentration.
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