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Abstract: We report for the first time the successful synthesis of ZnO/WS2 hybrid material using
a combination of aerosol-assisted chemical vapor deposition (AA-CVD) and atmospheric pressure
CVD techniques. The morphology and the composition of the grown films were investigated and
the results confirm the co-existence of both materials. Moreover, gas-sensing results against 500 ppb
of NO2 revealed the influence of WS2 material on the ZnO gas-sensing performance. The operating
temperature shifted towards lower values, from 300 ◦C to 150 ◦C. Furthermore, at room temperature,
the ZnO/WS2 sensor was able to detect NO2 at ppb level.
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1. Introduction

Zinc oxide (ZnO) is an n-type semiconductor with a wide band gap of 3.3 eV and
high chemical and thermal stability [1]. It has been extensively studied and employed
in gas sensing applications due to its low cost, non-toxicity and excellent gas sensing
response. However, ZnO-based gas sensors operate at high temperatures (300 ◦C to
500 ◦C) and suffer from lack of selectivity, which are issues that hinder their use in a
range of real-time applications. In a quest to overcome these shortcomings, researchers
have been drawn towards the synthesis of hybrid nanocomposites of metal oxides with
two-dimensional (2D) nanomaterial, to create heterojunctions through the nanocomposite
and achieve outstanding gas-sensing performance. In this context, tungsten disulfide
(WS2) is one of the most studied 2D transition metal-dichalcogenides materials (TMDs).
It is characterized by its high sensitivity, stability and low operating temperature. The
co-deposition of these new materials (TMDs) with metal oxides is very challenging, due to
the problems that face their synthesis, for instance: low production yield and difficulties
around their integration in standard transducing substrates. Here, we report, for the first
time, the successful synthesis of ZnO/WS2 nanocomposite for NO2 detection, using the
combination of AACVD and APCVD.

2. Materials and Methods

WS2 synthesis: WS2 synthesis was performed by using two deposition steps: the first
is the AACVD of tungsten hexacarbonyl (W(CO)6; 50 mg) dissolved in a mixture of acetone
and methanol (20 mL) to form tungsten oxide nanoneedles. In the second step, the obtained
nanoneedles were subjected to an ambient-pressure CVD sulfurization using a sulfur
powder and argon as a carrier gas, which resulted in a homogenous film composed of WS2
nanotriangles, directly grown on alumina sensor transducer (Pt interdigitated electrode
from one side and a resistive Pt heater at the back side). More details can be found in
our previous reports [2]. ZnO/WS2 synthesis: herein, ZnO nanorods were directly grown
on the top of WS2-based alumina substrate using AACVD of ZnCl2 dissolved in ethanol
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at 400 ◦C. Nitrogen was used as carrier gas and the deposition time was approximately
30 min.

3. Discussion

Figure 1a and b illustrates the morphology of bare ZnO nanorods and WS2 nanotri-
angles, respectively. Figure 1c and d shows the morphology of the obtained ZnO/WS2
nanocomposite. As we can observe, ZnO nanorods were successfully grown on top of WS2
nanotriangles, using a simple combination of AACVD and APCVD techniques. To confirm
the structure and the composition, we analyzed our samples (ZnO and ZnO/WS2) with
Raman (Figure 1e,f) and energy-dispersive spectroscopy (EDX) techniques (Figure 1g). The
results confirm the simultaneous presence of multilayers of WS2 and ZnO materials.
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showed no response below 200 °C and its optimal working temperature was considered 
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peratures, especially at 150 °C where it shows stable and reproducible responses with 
good sensitivity (Figure 2c). This shift in the optimal working temperature demonstrates 
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Figure 1. FESEM images of (a) ZnO, (b) WS2, (c,d) ZnO/WS2, (e,f) Raman spectra and (g) EDX
anaysis of ZnO/WS2.

Furthermore, we have tested bare ZnO and ZnO/WS2 gas sensors against 500 ppb of
NO2 at different working temperatures. According to the results (Figure 2a,b), bare ZnO
showed no response below 200 ◦C and its optimal working temperature was considered
at 300 ◦C. In contrast, the hybrid ZnO/WS2 sensor was quite responsive at very low
temperatures, especially at 150 ◦C where it shows stable and reproducible responses with
good sensitivity (Figure 2c). This shift in the optimal working temperature demonstrates
the effect of the addition of TMDs nanomaterials to the ZnO host matrix.
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Figure 2. Sensor response as a function of temperature (a) ZnO, (b) ZnO/WS2 and (c) example of
ZnO/WS2 resistance change in response to 500 ppb of NO2.
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