
Citation: Zambrano-Gutierrez, D.F.;

Valencia-Rivera, G.H.; Avina-

Cervantes, J.G.; Amaya, I.;

Cruz-Duarte, J.M. Designing

Heuristic-Based Tuners for

Fractional-Order PID Controllers in

Automatic Voltage Regulator Systems

Using a Hyper-Heuristic Approach.

Fractal Fract. 2024, 8, 223. https://

doi.org/10.3390/fractalfract8040223

Academic Editor: Norbert Herencsar

Received: 12 March 2024

Revised: 7 April 2024

Accepted: 10 April 2024

Published: 12 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Designing Heuristic-Based Tuners for Fractional-Order PID
Controllers in Automatic Voltage Regulator Systems Using a
Hyper-Heuristic Approach
Daniel Fernando Zambrano-Gutierrez 1 , Gerardo Humberto Valencia-Rivera 1 , Juan Gabriel Avina-Cervantes 2 ,
Ivan Amaya 1 and Jorge Mario Cruz-Duarte 1,*

1 Advanced Artificial Intelligence Research Group, School of Engineering and Sciences, Tecnologico de
Monterrey, Monterrey 64700, Mexico; a00836756@tec.mx (D.F.Z.-G.); a00834075@tec.mx (G.H.V.-R.);
iamaya2@tec.mx (I.A.)

2 Telematics Group, Department of Electronics Engineering, University of Guanajuato,
Salamanca 36885, Mexico; avina@ugto.mx

* Correspondence: jorge.cruz@tec.mx

Abstract: This work introduces an alternative approach for developing a customized Metaheuristic
(MH) tailored for tuning a Fractional-Order Proportional-Integral-Derivative (FOPID) controller
within an Automatic Voltage Regulator (AVR) system. Leveraging an Automated Algorithm Design
(AAD) methodology, our strategy generates MHs by utilizing a population-based Search Operator
(SO) domain, thus minimizing human-induced bias. This approach eliminates the need for manual
coding or the daunting task of selecting an optimal algorithm from a vast collection of the current
literature. The devised MH consists of two distinct SOs: a dynamic swarm perturbator succeeded
by a Metropolis-type selector and a genetic crossover perturbator, followed by another Metropolis-
type selector. This MH fine-tunes the FOPID controller’s parameters, aiming to enhance control
performance by reducing overshoot, rise time, and settling time. Our research includes a comparative
analysis with similar studies, revealing that our tailored MH significantly improves the FOPID
controller’s speed by 1.69 times while virtually eliminating overshoot. Plus, we assess the tuned
FOPID controller’s resilience against internal disturbances within AVR subsystems. The study
also explores two facets of control performance: the impact of fractional orders on conventional
PID controller efficiency and the delineating of a confidence region for stable and satisfactory AVR
operation. This work’s main contributions are introducing an innovative method for deriving efficient
MHs in electrical engineering and control systems and demonstrating the substantial benefits of
precise controller tuning, as evidenced by the superior performance of our customized MH compared
to existing solutions.

Keywords: Automated Algorithm Design; Hyper-Heuristics; metaheuristics; Automatic Voltage
Regulator; fractional-order controller

1. Introduction

Today’s demand for a high-quality power supply presents a significant challenge
as consumers require a stable and reliable source. Specifically, maintaining two critical
parameters, frequency and voltage, at their established reference values is essential for
system stability and reliability [1,2]. The frequency changes in electrical systems are
linked to the dynamics of active power flow, whereas voltage fluctuations are closely
associated with reactive power flow [3]. This highlights the importance of the relationship
between power quality and stability, emphasizing the need for devices that can effectively
compensate for these fluctuations in current electrical systems. Several devices are designed
to address this issue, such as the bank of capacitors [4], synchronous compensators [5],

Fractal Fract. 2024, 8, 223. https://doi.org/10.3390/fractalfract8040223 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract8040223
https://doi.org/10.3390/fractalfract8040223
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0002-8632-4342
https://orcid.org/0000-0002-5470-2441
https://orcid.org/0000-0003-1730-3748
https://orcid.org/0000-0002-8821-7137
https://orcid.org/0000-0003-4494-7864
https://doi.org/10.3390/fractalfract8040223
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract8040223?type=check_update&version=1


Fractal Fract. 2024, 8, 223 2 of 21

Static Voltage Compensators (SVCs) [6], and Automatic Voltage Regulators (AVRs) [7,8],
each playing a vital role in enhancing system performance and stability.

This work studies the AVR system as a device that regulates voltage variations, pro-
viding a constant power supply. Thus, AVR stands out for ensuring that the power of
the generators and voltage supplied to end users are maintained within the specified
margins despite the fluctuations in the electrical grid. Its principal function is to control
the excitation of synchronous generators, the chief power production units of the entire
power system. This process adjusts the excitation current and changes in the reactive
power, fast controlling the voltage at the terminals. Still, the AVR system presents features
that can harm the electrical system, such as oscillations, high overshoot, and errors in
the steady state [8]. So, including reliable control in the system is essential to solving
these problems. Although there is a wide range of modern controllers, the traditional
Proportional-Integral-Derivative (PID) controller is the most widely used in industrial
processes due to its versatility and straightforward implementation [9,10]. Nonetheless, im-
plementing a classical PID controller could limit the transient performance in real systems.
For this reason, an improved variant that provides a transient response with better features
just appeared in the literature as a fractional-order PID controller (FOPID) [11–13]. How-
ever, an additional problem stems: fine-tuning an FOPID controller is more challenging
than a traditional PID controller. In an FOPID, two additional adjusting parameters are
added to the PID controller, corresponding to the fractional orders of the integral (λ) and
derivative (µ) actions. These parameters can provide greater flexibility and ensure greater
robustness [14]. Several traditional methods, such as “trial and error” and the Ziegler-
Nichols (ZN), have been adopted to tune the FOPID controllers [10,15]. On the one hand,
the “trial and error” method demands extensive designer experience, without mentioning
that it is also a time-consuming process that does not guarantee the proper controller
gains. On the other hand, ZN-based tuning requires exhaustive controller fine-tuning to
obtain the desired response [8,16]. As an alternative to these traditional strategies, modern
optimization methods like Metaheuristics (MHs) are implemented to efficiently search
within a feasible solution space for the best controller gains.

MHs, recognized for their effectiveness and widespread adoption, have been essential in
improving FOPID control performance in AVR systems [15]. Some examples include using
MHs such as Simulated Annealing, Cuckoo Search [17], Particle Swarm Optimization [18],
and Improved Marine Predators Algorithm [19] to optimize relevant control features such
as overshoot, steady-state error, peak, rise, and settling times. Similarly, other authors have
opted to improve these features by adding the Integral Time Absolute Error (ITAE) to the
fitness functions [7].

Despite considerable progress in this field, the No-Free-Lunch theorem is highly
relevant in optimization design. It implies that no MH, including those mentioned above,
is guaranteed to be the most suitable for this kind of application without deeper analysis.
Furthermore, the literature proliferates on analyzing this kind of solvers, some with a solid
mathematical formulation [20–22], but others considered as “novel” are based on nature
metaphors, leaving aside originality and losing sight of mathematical formalism. In fact,
most “novel” MHs are variations of already classical MHs [23–25]. Therefore, a systematic
and objective methodology is needed to tailor MHs for specific problems.

In response, the Automated Algorithm Design (AAD) approach offers promising
solution alternatives [26]. One of its main advantages is that it avoids the user having
to adapt algorithms to each problem manually. This manual process can be tedious and
requires considerable time to build and verify the algorithms. Several studies based on
AAD have proposed to obtain MHs [27,28]. The automated design of MHs is a relatively
new paradigm, along with the automated algorithm configuration and selection [29].
The approach comes with obtaining a customized MH from an optimization problem or a
family of problems. It consists of finding the combination of Search Operators (SOs) from
the design space that deliver the best performance when applied to the optimization process.
The best composition of custom MHs can be approached using Hyper-Heuristics (HH) [30].



Fractal Fract. 2024, 8, 223 3 of 21

In this context, an HH is a search strategy with or without learning capabilities for selecting
or generating heuristic-based algorithms to solve computational search problems [31].
Hence, solving this problem requires defining a search space, employing some optimization
algorithm to explore, and finding the operators that deliver the best performance for the
customized MH.

Our research addresses two approaches. The former encompasses an AAD methodol-
ogy for the automatic generation of a customized MH to optimize FOPID controllers for
AVR systems. The latter consists of an in-depth influence analysis of the fractional orders
over control features such as settling time and overshoot. To do so, this work uses CUS-
TOMHyS as a reliable and effective framework for obtaining custom MHs automatically.
The reason is the proven success in practical engineering applications [32]. Furthermore,
our study provides two landscapes for explaining in detail the dynamics of FOPID con-
trollers. We also conduct a comparative study against works conceived under similar
operational conditions, i.e., FOPID controllers designed through MHs for AVR systems.
The results demonstrated the feasibility of this high-level strategy, providing high repeata-
bility and performance to obtain an MH automatically to solve low-level problems (e.g.,
FOPID controller tuning). Using AAD-based methodologies, users can leverage automatic
customizing and selecting MHs, thus focusing only on posing the low-level problem and
fine-tuning the MH.

The main contributions of this work are described below:

1. This study demonstrates the advantages, reliability, and high performance of
automatically designed tuners (i.e., MHs) for FOPID controllers in AVR systems.

2. It identifies and validates the optimal gain settings of the FOPID controller, ensuring
it effectively compensates for the AVR system’s dynamics.

3. This work develops performance tests of the proposed FOPID controller, utilizing
benchmark analysis that incorporates system disturbances, providing a comprehen-
sive evaluation of its effectiveness.

4. Lastly, it presents a landscape analysis, focusing on the overshoot and settling time
characteristics as the controller’s fractional components are varied. This analysis confirms
the controller’s optimal configuration, enhancing system stability and performance.

The remainder of this document is organized as follows: Section 2 describes the
key concepts that support this research. Then, Section 3 delves into the experiments’
methodology. Section 4 discusses the experiments’ outcomes. Finally, Section 5 summarizes
the most relevant contributions and highlights future research directions of this work.

2. Foundations

This section overviews the Automatic Voltage Regulator system, followed by an intro-
duction to fractional calculus, fractional-order PID controllers, metaheuristic optimization,
and the automated algorithm design paradigm.

2.1. Automatic Voltage Regulator System

The Automatic Voltage Regulator (AVR) system is a vital technology solution for
electrical systems’ generation and distribution stages [33]. It is an electrical device that
automatically adjusts the voltage of one or more phases from the grid in response to
changes in input voltage, load fluctuations, and other external factors. The main objective is
maintaining a synchronous generator’s terminal voltage at a reference level. This regulation
avoids damaging voltage fluctuations in connected devices that can reduce their lifetime
and efficiency.

A basic AVR system consists of four components: amplifier, exciter, generator, and
sensor, as shown in Figure 1a.



Fractal Fract. 2024, 8, 223 4 of 21

+

-

Vdc +
-

Power 

transformer

Power Utility 

Exciter Amplifer

Sensor

Voltage
setpoint

Electric 
Generator

+

−

(a) (b)

Figure 1. Automatic Voltage Regulation (AVR) system: (a) Schematic of the AVR components,
showing the exciter (Ge), amplifier (Ga), sensor (Gs), electric generator (Gg), and power transformer.
(b) Uncontrolled model displaying the transfer functions for the exciter Ge(s), amplifier Ga(s), and
sensor Gs(s) in relation to the output voltage Vo.

In the first stage, the sensing block (Gs) is critical in the regulator operation since it
establishes the basis for all subsequent corrective actions. Its primary purpose is accurately
measuring the present voltage at the load or the power system’s output. Next, it is necessary
to quantify the signal error (e [V]), i.e., the difference between the actual voltage (Vo [V])
and the desired voltage (Vref [V]) is measured as follows,

e(t) = Vref(t)−Vo(t). (1)

This stage determines the voltage level to be adjusted and is, in practice, the input to the
control stages. Following Figure 1a, the amplifier (Ga) serves to amplify the error signal to
regulate the power of the exciter (Ge). This last component receives the amplified signal
and acts on the generator to modify the magnetic field in a coil, adjusting the generated
voltage in response. Notably, the generator (Gg) converts the mechanical energy into
electrical energy.

The model shown in Figure 1b provided the transfer function to describe mathemati-
cally the AVR system. However, a linearization process must be performed to obtain the
mathematical model of each component of the AVR system, considering the relevant time
constants, ignoring saturation and nonlinearities [34]. The parameter values used in this
work were selected based on [8,34] to define the transfer functions of each stage in the
AVR system, as shown in Table 1. Lastly, the total transfer function of the AVR system is
defined as

GAVR(s) =
Vo(s)

Vref (s)
=

Ga(s)Ge(s)Gg(s)
1 + Gs(s)Ga(s)Ge(s)Gg(s)

=
0.1s + 10

0.0004 s4 + 0.045 s3 + 0.555 s2 + 1.51 s + 11
.

(2)

Table 1. Subsystems and their transfer functions of the Automatic Voltage Regulation (AVR) imple-
mented in this work.

AVR Subsystem Transfer
Function

Gain
Interval

Time Constant
Interval [s]

Used
Values

Amplifier Ga(s) =
Ka

1 + sτa
10<Ka <400 0.02<τa <0.1 Ka = 10

τa = 0.1

Exciter Ge(s) =
Ke

1 + sτe
1.0<Ke <400 0.5<τe <1.0 Ke = 1.0

τe = 0.4

Generator Gg(s) =
Kg

1 + sτg
0.7<Kg <1.0 1.0<τg <2.0 Kg = 1.0

τg = 1.0

Sensor Gs(s) =
Ks

1 + sτs
Ks = 1.0 0.001<τs <0.06 Ks = 1.0

τs = 0.01



Fractal Fract. 2024, 8, 223 5 of 21

Figure 2 shows the uncontrolled transient response of the AVR system.

Figure 2. Uncontrolled output voltage of the AVR system. It also details the overshoot (Mp [%]),
settling time (Ts [s]), rise time (Tr [s]), and steady-state error (Ess [p.u.]).

It is noteworthy that such a response presents undesired behaviors, including a high
overshoot (Mp = 67.42%), settling time (Ts = 6.971 s) and rise time (Tr = 0.754 s), as well as a
considerable steady-state error (Ess = 0.090 p.u.). Thus, selecting a suitable controller may
guide the system dynamics to improve the electrical output features.

2.2. Fractional Calculus

Fractional Calculus provides the theory to generalize the classical integro-differential
operator utility through a non-integer order integro-differential operator denoted by
t0D

µ
t [35,36]. In this context, the symbol µ corresponds to the fractional order that serves to

define fractional integrals and derivatives into a single expression as follows,

t0D
µ
t f (t) =


dµ

dtµ f (t), ℜ(µ) > 0,

f (t), ℜ(µ) = 0,∫ t

t0

f (τ)(dτ)−µ, ℜ(µ) < 0,

(3)

since µ ∈ R represents the operation’s order and can be any arbitrary real number in
practical applications, where t = t0 is the initial operating point and t is the working
variable. Without loss of generality, we assume that t is dimensionless.

Several definitions of fractional integration and differentiation exist, each with its
particular suitability for engineering modeling. Notably, the Grünwald-Letnikov (G-L) [37],
Riemann-Liouville (R-L) [38], and Caputo’s [39] definitions stand out for their relevance
and application in this field. A paramount work that provides a comprehensive framework
for understanding fractional signal processing, leveraging the Liouville approach to explore
various coherent formulations from suitable derivative definitions, can be read at [40].

The G-L fractional operator is often used in simulations because it can be directly
applied to the numerical evaluation of fractional order derivatives [41]. This operator is
given by

GL
t0
Dµ

t f (t) =
n

∑
k=0

(t− t0)
k−µ

Γ(k− µ + 1)
dk f
dtk

∣∣∣∣∣
t=t0

+
1

Γ(n− µ + 1)

∫ t

t0

(t− τ)n−µ dn+1 f
dtn+1

∣∣∣∣
t=τ

dτ (4)

where Γ(·) is the Gamma function and n = ⌊µ⌋ since µ ∈ R+ [35]. By its side, the R-L
definition for the µ-order fractional derivative of a function f (t) is given as follows [38],



Fractal Fract. 2024, 8, 223 6 of 21

RL
t0

Dµ
t f (t) =

1
Γ(n− µ)

dn

dtn

∫ t

t0

(t− τ)n−µ−1 f (τ)dτ, (5)

where µ ∈ R+ and n = ⌈µ⌉. Another important fractional derivative definition is Caputo’s
formula, which is a particular case of the R-L formula to incorporate initial conditions in
solving boundary value problems [40]. In the Caputo’s sense, the µ-order derivative of a
function f (t) is described as,

C
t0

Dµ
t f (t) =

1
Γ(n− µ)

∫ t

t0

(t− τ)n−µ−1 dn f
dtn

∣∣∣∣
t=τ

dτ, (6)

since µ ∈ R+ and n = ⌈µ⌉.
Furthermore, the Laplace transform is beneficial when considering Zero Initial Con-

dition (ZIC) and a causal system, i.e., t0 = 0+. Recall the Laplace transform of f , F(s),
given by

F(s) ≜ L{ f (t)}(s) = lim
τ→∞

∫ τ

t0

e−st f (t)dt, (7)

where s = σ + iω is the complex variable, with real numbers σ and ω. The Laplace
transform corresponding to the nth ordinary derivative, regarding the continuity conditions
on R+ [38], corresponds to

L
{

d f
dt

}
(s) = snF(s)−

n

∑
k=1

sn−k dk−1 f
dtk−1

∣∣∣∣∣
t=t0

. (8)

Therefore, the Laplace transforms of the fractional order derivatives described above,
according to [35], are

L
{

GL
t0

Dµ
t f (t)

}
(s) = sµF(s), (9)

L
{

RL
t0

Dµ
t f (t)

}
(s) = sµF(s)−

n−1

∑
k=0

sn−k−1 RL

t0
Dµ−k−1

t f (t)
∣∣∣∣
t=t0

, (10)

L
{

C
t0

Dµ
t f (t)

}
(s) = sµF(s)−

n−1

∑
k=0

sµ−k−1 dk f
dtk

∣∣∣∣∣
t=t0

. (11)

These transforms provide insight into the behavior of fractional-order systems and offer a
pathway to the analytical and numerical methods required for solving complex problems
in engineering and physics.

2.3. Fractional-Order Proportional-Integral-Derivative Controller

Traditional control structures, such as Proportional-Integral-Derivative (PID) con-
trollers and their variants, are widely used in engineering applications due to their straight-
forwardness, efficacy, and constant improvement in tuning methodologies [42]. Mathemat-
ically, a PID control action is defined as,

u(t) = Kp e(t) + Ki

∫ t

0
e(τ)dτ + Kd

d
dt

e(t), (12)

where e(t) is the error between the set-point Vref(t) and output voltage Vo(t), as well as
Kp, Ki, and Kd are the proportional, integral, and derivative gains. In addition, the corre-
sponding transfer function using the Laplace transform is determined as follows,

GPID(s) =
U(s)
E(s)

= Kp + s−1Ki + sKd. (13)



Fractal Fract. 2024, 8, 223 7 of 21

Nonetheless, these conventional structures may fall short in some operational conditions,
e.g., reduced overshoot and rapid settling times. In this context, fractional calculus is a
promising alternative to enhance the performance of such conventional approaches by
introducing fractional orders in the integral and derivative components to achieve more
robust control responses.

The Fractional-Order Proportional-Integral-Derivative (FOPID) controller is a gener-
alized version of the traditional PID controller, including two additional fractional order
parameters, which Podlubny first introduced in [35]. These two parameters add vari-
ous damping properties to the controller response over a more comprehensive frequency
range, allowing for better results in higher-order, non-linear, and non-minimum-phase
systems [43]. Another significant advantage of these controllers is their ability to decrease
overshoot in the system response using the fractional derivative parameter, as discussed by
Tejado et al. [44]. Finally, these controllers also improve other operational features such as
rise time and settling time [45].

The FOPID control action is formally described in the time domain as

u(t) = Kp e(t) + Ki 0D−λ
t e(t) + Kd 0D

µ
t e(t), (14)

since λ and µ are the fractional orders designated to the integral and derivative components.
In the frequency domain, assuming ZICs, the transfer function of the FOPID control in the
Laplace domain can be expressed as

GFOPID(s) =
U(s)
E(s)

= Kp + s−λKi + sµKd, (15)

where λ, µ ∈ R+ support the FOPID structure. Adding fractional variables to the PID con-
troller increases the design complexity. However, this action leads to significant flexibility
since it permits a wider variety of tuning parameters and system responses, enhancing the
response to disturbances [46].

2.4. Metaheuristics

Metaheuristics (MHs) are algorithmic strategies recognized by their flexibility and
excellent performance in solving optimization problems [47]. They also incorporate mecha-
nisms to circumvent premature convergence and detect satisfactory solutions within the
search space [48]. In general, MHs are inspired by various phenomena observed in nature,
a feature that often associates them with metaphors. Although these metaphors are fine in
some MHs because they reveal clear ideas about their actual computational process [49],
others are mere delusional stories. In this sense, we prefer to study MHs as linked func-
tional blocks [50]. Thus, an MH can be described using three components: an initializer
hi, one or more Search Operators (SOs) ho, and an finalizer h f . All these hk, ∀ k ∈ {i, o, f },
correspond to simple heuristics that interact directly or indirectly with the problem’s search
space to solve [51]. So, an MH can be constructed using the following definitions.

Definition 1 (Metaheuristic). Consider MH as an iterative method that finds an optimal solution,
denoted as x⃗∗, for the optimization problem at hand, which is guided by the fitness function f (x⃗).
So, a finite sequence of operators defines the algorithm applied iteratively until fulfilling the stopping
criterion, as detailed below:

MHo ≜ ⟨hi, ho, h f ⟩ = h f (ho) ◦ hi, (16)

where ◦ is the composition operator. Besides hi is an initializer, ho is the search operator, and h f is a
finalizer. These simple heuristics are described in the following remarks.

Remark 1 (Initializer). Consider hi: S 7→ X ⊆ S as an operator that creates a candidate solution
x⃗ ∈ X within the search space from scratch, where x⃗ = hi{X}, and S is the arbitrary domain.
Since this work focuses on a continuous optimization problem, the domain corresponds to S ∈ RD.



Fractal Fract. 2024, 8, 223 8 of 21

Remark 2 (Search Operator). Consider ho: S 7→ S as the search operator that alters a candidate
solution x⃗ ∈ X, such that x⃗ ← ho{x⃗}. To do so, the search operator encompasses two operations:
perturbation (hp) and selection (hs), i.e., ho ≜ hs ◦ hp. Note that the always perturbator precedes
the selector. Besides, a search operator can be composed of two or more search operators, such as
ho = ho,ϖ ◦ ho,ϖ−1 ◦ · · · ◦ ho,1 [50].

Remark 3 (Perturbators and Selectors). Consider hp, hs as simple heuristics that transform
y⃗ ← hp{x⃗} and update x⃗ ← hs{y⃗}, thus affecting the current solution x⃗ ∈ X. So, hp draws a
perturbated version y⃗ of a given candidate solution x⃗, and hs decides if this version y⃗ will replace
the original candidate solution x⃗.

Remark 4 (Finalizer). Consider h f as an operator that evaluates the quality of the current solution
to determine the appropriate search operator to utilize. This operator uses the information of the
solution state, i.e., fitness value, current iteration, and previous candidate solutions, among other
features, considering a criteria function c f : {X,R, . . .} 7→ Z2.

For example, according to the previous definitions, a metaheuristic can be explicitly
rewritten for an algorithm with two SOs via (16), as shown

MH ≜ ⟨hi, (hs,2 ◦ hp,2) ◦ (hs,1 ◦ hp,1), h f ⟩, (17)

which can describe many classical MHs, such as the well-known Genetic Algorithm (GA)
that consists of two search operators, i.e., two perturbators and two selectors [52,53]. The
first SO comprises a perturbator belonging to the Genetic Crossover (hp,1 = hGC) family
followed by a Direct Selector (hs,1 = hD). The second SO is a perturbator belonging to the
Genetic Mutation (hp,2 = hGM) family, followed by a Greedy Selector (hs,2 = hG).

Table 2 summarizes the SOs used in this work. It is a collection that considers different
variation parameters and hyper-parameters, which in our implementation were predefined
values, rendering 205 ready-to-use SOs. In addition, each operator has four selector
versions, except for Random Search, which only uses a greedy type selector. For further
details, please see [30].

Table 2. Search operators that comprise the heuristic space with their variants of perturbators,
selectors, and hyper-parameters.

Perturbator (hp) Variation Parameters Hyper-Parameters

Central Force Dynamic - Alpha, Beta, Gravity
Differential Mutation Distribution a Factor, Num. of Random Positions
Differential Crossover Version b Crossover Rate
Firefly Dynamic Distribution a Alpha, Beta, Gamma
Genetic Crossover Pairing c, Crossover d Mating Pool Factor
Genetic Mutation Distribution a Elite Rate, Mutation Rate, Scale
Gravitational Search - Alpha, Gravity
Local Random Walk Distribution a Probability, Scale
Random Flight Distribution a Beta, Scale
Random Search Distribution a Scale
Random Sample - -
Spiral Dynamic - Angle, Radius, Sigma
Swarm Dynamic Distribution a, Approach e Factor, Self Coeff., Swarm Coeff.

Selector (hs)

Direct - -
Greedy - -
Probabilistic - Probability
Metropolis - Boltzmann Const., Cooling, Temp_max
a Distribution: Gaussian, Uniform, or Lévy. b Version: Binomial or Exponential. c Pairing: Cost, Rank, Tournament,
or Random. d Crossover: Single, Two, Uniform, Blend, or Linear. e Approach: Inertial or Constriction.



Fractal Fract. 2024, 8, 223 9 of 21

2.5. Automated Algorithm Design

Automated Algorithm Design (AAD) has gained significant importance recently.
Several AAD proposals can be found in the literature, but they always seek to avoid the
bias caused by the algorithm designer. Although there are experts who can adjust or
design algorithms appropriately, these processes are usually carried out through trial-
and-error testing [54]. In this context, it is frequent that an algorithm does not offer the
best performance because the multiple available alternatives were not explored when
designing. However, proposals such as the Iterated Racing for Automatic Algorithm
Configuration (irace) method [55] focus on the optimal selection and adjustment of the
algorithm’s hyper-parameters. This approach is based on competitions or “races” in which
different configurations of hyper-parameters are evaluated on a set of problem instances.

Another approach involves modularly building algorithms to select the best sequence
of elements to solve a particular problem. Recently, Cruz-Duarte et al. [53] developed
the CUSTOMHyS framework, which provided a structured strategy to obtain MHs by
combining simple heuristics extracted from well-known MHs. Thus, the two design
strategies described above fit the model-free and model-based strategies, respectively [56].

This work uses the model-based category to obtain MHs to solve continuous opti-
mization problems by addressing the Metaheuristic Combinatorial Optimization Prob-
lem (MCOP) [50]. In this case study, the CUSTOMHyS framework generates a tailored MH
to tune the FOPID controller for an AVR system. In addition, an Hyper-Heuristic (HH)
is employed as a high-level solver for the MCOP, helping to explore the design space to
identify efficient configurations. So, an HH can be any algorithm that can achieve a tailored
MH by dealing with the following problem,

MH∗ = argmax
MH∈H, x⃗∈X

{Q(MH |X, f )}. (18)

Hence, the fundamental task of an HH is to solve an optimization problem but at a high
level. It must search within a heuristic space H ∈ Hϖ a feasible sequence of search
operators (composing a selection heuristic with a perturbator heuristic, i.e., hs ◦ hp) to
achieve the metaheuristic (MH∗) with the best performance or quality Q(MH∗ |X, f ) for
a given problem (family) [50]. In this context, ϖ represents the number of SOs blending
the MH.

Moreover, MH∗ is a solver with a low abstraction level, i.e., it interacts directly with
the particular problem (X, f ), where X ∈ RD is the search space, D is the problem dimen-
sionality, and f is an objective function of the optimization problem. Readers are referred
to [30,57] for a more in-depth review of HH concepts.

3. Methodology

This research was divided into three stages. The first was devoted to the HH process
to obtain the customized MH. For this purpose, a collection of 205 SOs was employed
as the heuristic space, combining the perturbators and selectors listed in Table 2 with
variation parameters and hyper-parameters predefined. We utilized Simulated Annealing
(SA) as the hyper-heuristic, namely SAHH, to control the search actions within the heuristic
space. So SAHH employed a set of ten simple heuristics to guide the search process;
some include add, remove, shift, swap, restart, mirror, and roll actions. Plus, SAHH
hyper-parameters include an initial dimensionless temperature, a minimum dimensionless
temperature, and a cooling rate set to 1.0, 10−6, and 10−3, respectively. These values were
selected from several preliminary studies and statistical tests reported in [30]. For the HH
process, a population size of 20 with a maximum number of 30 iterations for each candidate
MH was set. In addition, 10 HH steps were defined, and each candidate’s MH was run
20 times to obtain the respective performance metric defined by

Q(MH |X) = −(med(Fh) + iqr(Fh)), (19)



Fractal Fract. 2024, 8, 223 10 of 21

since Fh = { f (x⃗r,∗) | ∀ x⃗r,∗ ∈ X∗}, med is the median, and iqr is the interquartile range of
the last fitness values f (x⃗∗,r) achieved during the runs r = 1, . . . , Nr. So, this metric checks
the HH process improvement level. The idea is to select the array of SOs, i.e., the tailored
MH, that best adapts to the optimization low-level problem and achieves fast convergence
and repeatability of the obtained data. It is critical to clarify that the current process aims to
create a customized metaheuristic (MH) specifically tailored to a given problem. Therefore,
the outcome of the first stage is the MH itself rather than the solution to the low-level
problem related to the controller tuning. At this stage, the low-level optimization problem
has not been explicitly addressed. Once the MH is tailored to the problem family, it can be
implemented similarly to other metaheuristics without repeating the HH process.

Algorithm 1 summarizes the SAHH implemented for solving the MCOP in (18). The
process starts by randomly selecting a search operator from the heuristic space to generate
a candidate solution from scratch. This initial sequence of SOs is used to assemble an MH
according to Definition 1. Subsequently, the current MH is executed Nr times, recording all
the obtained fitness values and other measurements to evaluate its performance. Such a
performance is assessed via (19). Next, SAHH generates a neighbor of the current heuristic
sequence by picking up an action such as add, remove, or shift random heuristics. When
add or shift actions are selected, simple heuristics are sampled from the collection of
search operators. Subsequently, the MH is updated with these heuristics and evaluated as
before. The internal steps of Algorithm 1 correspond to the procedure commonly found in
SA implementations.

Operatively, each candidate MH is subjected to the low-level problem, which aims to tune
the FOPID controller, represented in a five-dimensional domain; i.e., x⃗ = (Kp, Ki, Kd, λ, µ)⊺ ∈
X ⊆ R5, with Kp ∈ ]0.1, 1.5], Ki ∈ ]0.01, 1], Kd ∈ ]0.01, 1], λ and µ ∈ [0.7, 1.5]. Besides,
the objective function associated with this problem is given by

f = min
{

α
(
Mp + Ess

)
+ (1− α)(Ts − Tr) + Ω, Ω

}
, (20)

since α is the regularization parameter determined after extensive experimentation and
predefined as α = 0.3, furthermore, Ω is the penalty value that, for simulation purposes, is
500 when the system is unstable and zero when it is stable. In addition, Mp is the overshoot,
Ess is the steady state error, and Ts and Tr are the settling and rise times, respectively.
Figure 3 describes this stage in detail.

During the second stage, our primary objective was to identify the most suitable
FOPID configuration for integration with the AVR system. To this end, the FOPID tuning
was performed 50 times using the MH achieved in the previous stage, storing the controller
constants and their fitness values. This test verified the repeatability of the optimization
process, selecting the best FOPID controller obtained in the different replicates.

The last stage was subdivided into three steps. The first step consisted of a compara-
tive analysis with four works published in the literature conceived under similar operating
conditions. Table 3 shows the most relevant operating conditions of the works analyzed. In
particular, each proposal has a budget and hyper-parameters appropriate to its dynamics.
The MHs employed by these works are Cuckoo Search (CS) [17], Particle Swarm Optimiza-
tion (PSO) [18], Improved Marine Predators Algorithm (MP-SEDA) [19], and Simulated
Annealing (SA) [58]. Another point of vital relevance is the objective function, which
presents slight variations in each proposal, prioritizing the presence of some additional
features (Mp, Ts, Tr, among others). Thus, each proposal shows an objective function
configuration, weighting these features using a scaling value or weight. We can observe
this in detail in (21), (22), (23), and (24) according to [17], [18], [19], and [58], respectively.

f =
(

1− e−β
) (

Mp + Ess
)
+ e−β(Ts − Tr) (21)

f = e−β(Ts + Tr) +
(

1− e−β
)(

ITSE+Mp
)

(22)

f =
(
1− e−η

) (
w ∗Mp + Ess

)
+ e−η(Ts − Tr) (23)



Fractal Fract. 2024, 8, 223 11 of 21

f = ITAE + w1 Mp + w2 Ess
2 + w3 Ts + w4 Tr + w5 Tp, (24)

where Tp is the maximum peak time, ITSE is the Integral of Time multiplied by Squared
Error Criterion, and ITAE is the Integral of Time multiplied by Absolute Error Criterion.
These are metrics of controller performance.

Algorithm 1 Simulated Annealing Hyper-Heuristic for Automated Metaheuristic Design

Input:
Low-level Problem Domain: Domain X and objective function f (x⃗).
High-level Problem Domain: Heuristic space H, initializer hi, finalizer h f , and perfor-
mance metric perf(X∗).
Hyper-Parameters: Population size N, and action set A. Initial Θ0 and minimal Θmin
temperature, cooling rate δ, maximum cardinality ϖmax, maximum number of iterations
tmax, and stagnation threshold nmax.

Output: Best metaheuristic ⟨hi, h⃗∗, h f ⟩

1: h⃗← INITIALIZER(Ho) ▷ Initialize with randomly selected heuristics
2: h⃗∗ ← h⃗, n← 0, and Θ← Θ0 ▷ Initialize other variables
3: Q← PERFORMANCE(⃗h) ▷ Evaluate the performance
4: while Θ > Θmin and n ≤ nmax do
5: a← CHOOSEFROM(A) ▷ Choose randomly an action considering ϖ

6: h⃗c ← a{⃗h} ▷ Apply the action to find the candidate neighbor
7: Qc ← EVALPERFORMANCE(⃗hc) ▷ Evaluate the performance
8: n← n + 1 ▷ Increase the stagnation counter
9: if r ∼ U (0, 1) ≤ e−(Qc−Q)/Θ then ▷ Metropolis selection

10: h⃗∗ ← h⃗c and Q← Qc ▷ Update the current solution
11: n← 0 ▷ Reset the stagnation counter

12: Θ← Θ(1− δ) ▷ Decrease the temperature

13: return ⟨hi, h⃗∗, h f ⟩ ▷ Return the best metaheuristic

14: function EVALPERFORMANCE(⃗h)
15: X∗ ← ∅ ▷ Initialize the set of solutions
16: for r = 1 to Nr do ▷ Perform repetitions required in (19)
17: x⃗r,∗ ← EVALMH(⃗hc) ▷ Use ⟨hi, h⃗c, h f ⟩ to solve (X, f )
18: X∗ ← X∗ ∪ {x⃗r,∗} ▷ Save the current solution

19: return perf(X∗) ▷ Return the performance using (19)

20: function EVALMH(⃗h)
21: t← 0 ▷ Initialize iteration counter
22: X ← {hi{X} | ∀ n = 1, . . . , N} ▷ Initialize population
23: F ← { f (x⃗n) | ∀ x⃗n ∈ X} ▷ Obtain fitness values
24: x⃗∗ ← x⃗k ∈ X since k = argmin{F} ▷ Current best
25: while c f (X, x⃗∗, F, t, . . . ) do ▷ Apply the finalizer, h f {X}
26: t← t + 1 ▷ Increase iteration counter
27: for o = 1 to ϖ do ▷ Apply the ϖ = #⃗h search operators
28: hp, hs ← ho ∈ h⃗ ▷ Read perturbator and selector
29: X′ ← hp{X} ▷ Apply the oth perturbator
30: X′ ← hs{X, X′} ▷ Apply the oth selector
31: x⃗∗ ← hs{X, x⃗∗} ▷ Apply the global selector

32: return x⃗∗, f (x⃗∗) ▷ Return the best solution and its fitness value



Fractal Fract. 2024, 8, 223 12 of 21

Calculate
performance

Selection criteria

 
Build a 

Simulated Annealing

Evaluate the 
Collection of 205 

search operators

candidateNo

High-level Domain

+

−

Low-level Domain

Tailored 

Metaheuristic

Controller AVR systems

Yes

Figure 3. Automated heuristic-based tuner designing methodology for Fractional-Order PID (FOPID)
controllers for Automatic Voltage Regulation (AVR) systems.

Table 3. Comparison of the features and performance of different metaheuristic approaches as a
function of the maximum number of iterations (Max. Iter.), number of sub-iterations (Sub. Iter.),
population size (Pop. Size), number of hyper-parameters (Num. HP), number of features for the
objective function (Num. Features), and the iterations required for convergence (Conv [Iter]). Where
NA is not applicable, the symbol “-” indicates that the information could not be found in the article.
“Features” refers to control features such as Mp, Ts, Tr, Ess, among others.

Approach
Metaheuristic Objective Function

Max.
Iter.

Sub.
Iter.

Pop.
Size

Num.
HP

Num.
Features

Num.
Weights

Conv.
[Iter]

Tailored MH∗ 40 NA 20 4 4 1 8
SA [58] 100 20 10 4 6 5 -
CS [17] 150 NA - 3 4 1 -
PSO [18] 100 NA 100 3 4 1 18
MP-SEDA [19] 100 NA 40 5 4 2 97

In the second step, we focused on a robustness analysis by perturbing the AVR transfer
function. Specifically, a sweep was performed from −50% to 50% variation of the time
constants (τa, τe, τg, and τs) with an incremental step of 25% for each transfer function
composing the AVR (Ga, Ge, Gg, and Gs). Recall that these variations represent significant
changes in the system’s dynamics. Thus, in the last step, we varied fractional orders λ and
µ between 0.5 and 2 with a step of 0.01 to generate and study two landscapes that detail
the overshoot and settling time behavior of the FOPID controller.

All experiments performed in this work were coded in Python v3.9 and ran on an ASUS
TUF Gaming F17 with AMD Ryzen 5700G-8 CPU Cores, 16 GB RAM, and Windows 11-64
bit. Also, Matlab R2023b was used to simulate the AVR system; for the FOPID controller,



Fractal Fract. 2024, 8, 223 13 of 21

the FOMCON [59] toolbox was utilized. In addition, the freely available CUSTOMHyS
framework at PyPI, https://pypi.org/project/customhys/ (accessed on 14 March 2024),
was employed to implement the automated heuristic-based tuner designing methodology
described above.

4. Numerical Results

This first stage aims to obtain the MH as it best solves the optimization problem.
Figure 4 shows the HH evolution process obtained for this problem. Each boxplot rep-
resents the final fitness value for each candidate MH in the replicates to which it was
subjected (20 times). In addition, the best performance obtained in the HH process is
marked in orange dots. This performance metric is given by Q, presented in (19). The
candidate MH went from a value of Q0 = 7.93 (step 0) to Q2 = 0.7795 (step 2), representing
an enhancement of 90.17%. Plus, the zoomed box in Figure 4 indicates the steps with a
significant improvement. For instance, Q equals 0.61014 at step 5 and decreases to 0.5482 at
step 9; these represent 92.30% and 93.08% better values than the initial step, respectively.

Raw Data Performance

Figure 4. Evolution of the candidate MH for each hyper-heuristic step. Orange dots and dashed lines
illustrate the HH process’s performance.

In addition, data collected from steps 0 and 9 were analyzed to compare the perfor-
mance of the candidate metaheuristics. Figure 5a illustrates the fitness values achieved
in step zero, highlighting a noticeable stagnation and significant dispersion in fitness val-
ues among the candidate metaheuristics. Conversely, Figure 5b demonstrates that the
metaheuristic selected in step 9, denoted as MH9 = MH∗, rapidly converges to a lower
fitness value with minimal variation, as evidenced by the corresponding boxplot. It is
worth mentioning that the choice of an appropriate MH is crucial in optimization problems
due to its significant impact on the efficiency and effectiveness of finding optimal or near-
optimal solutions. A well-chosen Metaheuristic can effectively navigate the search space,
balancing exploration and exploitation while avoiding early convergence. The problem’s
nature, search space characteristics, constraints, and objectives should guide the selection.
As demonstrated by our comparison between steps 0 and 9, the right metaheuristic, MH∗,
can drastically reduce the search time and improve the quality of solutions, emphasizing
the significance of a thoughtful and automated selection process.

The tailored metaheuristic, denoted as MH∗, comprises two distinct perturbation
mechanisms. Specifically, the first mechanism is derived from the Swarm Dynamics
family, emphasizing collective behavior and information sharing among solutions (i.e.,
swarm intelligence). The second mechanism arrives from the Genetic Crossover family,
which employs biological inheritance and variation principles to generate new solutions.
The characteristics and parameters of these perturbators are detailed in Table 4, providing
insights into their operational mechanisms and contributions to the efficacy of MH∗.

https://pypi.org/project/customhys/


Fractal Fract. 2024, 8, 223 14 of 21

(a) (b)

Figure 5. Fitness evolution obtained by the candidate metaheuristics in the (a) initial and (b) ninth
steps during the hyper-heuristic process.

Table 4. Variation parameters and hyper-parameters of each search operator composing the tailored
metaheuristic (MH∗).

SOs Simple Heuristic Variation Parameters Hyper-Parameters

h184 Swarm Dynamic swarm_approach = Inertial
pdf = Uniform

α0 = 0.7,
ϕ1 = 2.54,
ϕ2 = 2.56

Metropolis selection - c = 0.01,
kB = 1.0,
Θ0 = 1000.

h60 Genetic Crossover crossover_mechanism = Two-points
pairing_scheme = Rank weighting

mp = 0.4

Metropolis selection - c = 0.01,
kB = 1.0,
Θ0 = 1000.

Upon tailoring MH∗, its robustness was assessed through a repeatability test to ensure
the results’ reliability. Figure 6 depicts boxplots representing the distribution of the FOPID
controller’s gains and fractional order variables across 50 iterations of the optimization
process. These iterations aimed to verify the consistency of the controller gains and the
corresponding fitness values. The results of this experiment emphasize the high repeata-
bility of MH∗, with a median fitness performance of 0.216 and a standard deviation of
±0.0541. Such statistical measures indicate a strong reliability in the optimization process
under MH∗. Furthermore, this evaluation process identified the optimal set of gains that
minimized the objective function, specifically targeting improved control features such
as peak overshoot (Mp), settling time (Ts), and rise time (Tr). The fine-tuned gains for
the FOPID controller are as follows: Kp = 1.24987, Ki = 0.5280, Kd = 0.2656, λ = 1.0820,
and µ = 1.2014. These delineate the parameters for achieving superior control performance.

Table 5 provides a comprehensive comparative analysis between the fine-tuned FOPID
controller and four existing approaches, all designed under similar operational conditions
for AVR systems and optimized through various MHs. This comparison leverages control
gains from studies reported in [17–19,58], specifically applied to the case study. The data
indicate that our optimization strategy yields a controller performance approximately
1.69 times faster than the comparator approaches, achieving near-zero overshoot. Notably,
despite the designed controller exhibiting a rise time that is 2.13 times longer than that
reported in [19], it demonstrates the slightest discrepancy between the settling and rise
times (∆T), highlighting its efficiency and robustness in dynamic response.



Fractal Fract. 2024, 8, 223 15 of 21

Figure 6. Distribution of the controller parameters and the resulting fitness values for 50 replicates
obtained by MH∗.

Table 5. Comparative analysis of the proposed Fractional-Order PID Controller against published
approaches in the literature. Colors indicate performance rankings: blue highlights the best values
achieved, whereas yellow denotes the least favorable features.

Features Controller Gains and Orders

Approach Mp [%] Ts [s] Tr [s] ∆T [s] Kp Ki Kd λ µ

MH∗ 0 0.3315 0.2156 0.1159 1.24987 0.5280 0.2656 1.0820 1.2014
Lahcene et al. [58] 0.0271 0.4351 0.2825 0.1526 0.7837 0.5027 0.2307 1.0103 1.0727
Sikander et al. [17] 2.4926 0.8780 0.1133 0.7646 2.5150 0.1629 0.3888 0.9700 1.3800

Ramezanian et al. [18] 0.5129 0.5027 0.2438 0.2588 1.2623 0.5531 0.2382 1.1827 1.2555
Mohd Tumari et al. [19] 0.5866 0.4323 0.1010 0.3312 2.9487 0.4533 0.4391 1.4016 1.4154

Figure 7 illustrates the dynamic responses of the controllers listed in Table 5, tracking
a Heaviside step function. Upon closer examination, it becomes evident that the controller
fine-tuned through the tailored MH reaches the steady state with remarkable swiftness,
showcasing superior performance. This enhanced response is attributed to the meticulously
fine-tuned control gains, as detailed in the third row of Table 5, which significantly improve
the system’s transient behavior. Besides, our heuristically tuned controller distinctly outper-
forms the alternatives in three critical control metrics: peak overshoot (Mp), settling time
(Ts), and the difference between settling and rise times (∆T). In comparison, the approach
by Sikander et al. [17], represented by the yellow line in the figure, demonstrates the least
favorable performance, positioning it at the lower end of the comparative spectrum.

Lahcene et al.

Sikander et al.

Ramezanian et al.

Mohd Tumari et al.

Reference

Figure 7. Step response of different fractional PID controllers designed for the AVR system. The
metaheuristic algorithms used to perform the fractional PID controller tuning are: MH∗, SA by
Lahcene et al. [58], CS by Sikander et al. [17], PSO by Ramezanian et al. [18], and MP-SEDA by
Mohd Tumari et al. [19].

On the other hand, this study quantifies the impact of variations in each AVR trans-
fer function parameter (see Table 1) on the performance of the fractional PID controller,
as detailed in Table 6. Our analysis covers three critical control features: overshoot, settling



Fractal Fract. 2024, 8, 223 16 of 21

time, and rise time (Mp, Ts, and Tr, respectively). To achieve this with incremental steps of
25%, the parameters of the transfer functions were varied within a range of −50% to 50%
of their nominal values. It is important to note that the following analysis is conducted
individually, i.e., , for each AVR transfer function parameter variation. Moreover, these
performance impacts are contrasted with the control outcomes achieved through the con-
trol gains optimized by the tailored MH (referenced in row 1 of Table 5). Concerning τa,
the overshoot remains at zero for parameter variations of −50% and −25% (as shown in
row 3, columns 2 and 3, respectively). However, with a positive increase in this parameter,
i.e., , at 50% and 75%, the Mp experiences an average increase of 4.71%. Additionally, both
Tr and Ts render an average increase of 1.86 and 1.09 times, respectively, irrespective of the
variation in τa.

Table 6. Comparative analysis of the proposed fractional PID controller performance across a range
of variations in AVR transfer function parameters. τa, τe, τg, and τs denote the parameters for the
amplifier, exciter, generator, and sensor models, respectively, as detailed in Table 1.

Transient Response Transfer Function Parameters
Features τa = 0.05 τa = 0.075 τa = 0.125 τa = 0.15

Mp [%] 0 0 3.212 6.219
Ts [s] 0.635 0.573 0.558 0.701
Tr [s] 0.261 0.218 0.221 0.228

τe = 0.2 τe = 0.3 τe = 0.5 τe = 0.6

Mp [%] 0 0 2.623 5.325
Ts [s] 1.138 0.774 0.871 1.176
Tr [s] 0.138 0.178 0.249 0.280

τg = 0.5 τg = 0.75 τg = 1.25 τg = 1.5

Mp [%] 3.776 0.798 1.751 3.516
Ts [s] 1.915 0.746 0.415 1.331
Tr [s] 0.119 0.166 0.265 0.313

τs = 0.005 τs = 0.0075 τs = 0.0125 τs = 0.015

Mp [%] 0 0 0.286 0.753
Ts [s] 0.364 0.348 0.319 0.308
Tr [s] 0.226 0.220 0.210 0.206

A similar trend is observed with τe, where Mp equals zero for negative variations but
experiences an average increase of 3.97% for positive changes. Likewise, the Ts values
indicate that the proposed controller response becomes 66.50% slower before achieving
a steady state. Interestingly, negative variations in τe lead to faster rise times, whereas
positive ones result in slower rise times.

In the case of τg, this parameter consistently influences the overshoot across all varia-
tions, resulting in an average increment of 2.46% for this control feature. Moreover, this
parameter significantly delays the control response, effectively tripling the settling time.
Similarly, τg impacts the rise time, where negative changes reduce it (as detailed in row
12, columns 2 and 3), and positive changes cause it to increase by 1.36 times (as seen in
row 12, columns 4 and 6). With respect to τs, it is noteworthy that negative fluctuations
maintain overshoots at zero and induce only slight variations in either the settling or rise
times. In contrast, positive variations lead to increments of 0.51% for the overshoot and
reductions of 5.74% and 1.65% for the settling and rise times, respectively.

The analysis reveals that the most affected control feature is Ts, specifically at the op-
posite extremes of the transfer function parameters variation (±50%, as shown in columns
2 and 5). The least compromised AVR transfer function is associated with the sensor model
(τs parameter), likely due to the relatively minor variations observed compared to the other
parameters. Despite this, the performance of the fine-tuned controller still demonstrates



Fractal Fract. 2024, 8, 223 17 of 21

superior efficiency compared to some approaches detailed in Table 5, highlighting its
robustness across a broad range of operational conditions.

Figure 8a,b depict the performance of the fractional PID controller under parameter
variations for each of the AVR transfer functions. For the sake of clarity and practicality,
only variations of -50% and 50% are presented, as they exemplify the most significant
effects on the control performance. The controller fine-tuned via the tailored metaheuristic
demonstrates consistent robustness and stability across the varied disturbance conditions
analyzed in this work.

(a) (b)

Figure 8. Step responses of the fine-tuned Fractional-Order PID controller under parameter variations
of (a) −50% and (b) 50% for each AVR transfer function. τa, τe, τg, and τs represent the parameters of
the amplifier, exciter, generator, and sensor models, respectively (see Table 1).

Figures 9 and 10 illustrate the relationship between the fractional parameters λ and µ,
and their impact on two critical control features, Mp and Ts. These contour maps enable the
identification of λ-µ combinations that minimize or maximize the overshoot and settling
time of the AVR system, with darker colors indicating lower values and lighter colors
higher values of these control features. The green marker highlights the minimum Mp and
Ts values achieved by the standard PID structure, whereas the red marker signifies the
outcomes obtained with the fractional control scheme (referenced in row 1 of Table 5).

(a) (b)

Figure 9. Landscape of relationship λ and µ and their effects over the overshoot: (a) Isometric view
of the overshoot landscape; and (b) Superior view of the overshoot landscape.

The analysis reveals that Mp spans a wide range from 0% to 64%, while Ts fluctuates
within a more confined spectrum, between 0.33 s and 3.49 s. These plots demarcate reliable
regions for stable AVR system operation concerning these control features.



Fractal Fract. 2024, 8, 223 18 of 21

(a) (b)

Figure 10. Landscape of relationship λ and µ and their effects over the settling time: (a) Isometric
view of the settling time landscape; and (b) Superior view of the settling time landscape.

Aiming to refine significantly the transitory response over the traditional PID control
(denoted by the green point)—specifically, to reduce overshoot and settling time—the blue
regions in these plots are especially targeted. The tailored MH and the proposed fitness
criterion suggest a pivotal relationship for the fractional parameters: µ > λ is essential for
attaining the optimal response. It becomes apparent that the optimal λ-µ combination can
render the controller four times faster with zero overshoot compared to the traditional PID,
which exhibits control features of Ts = 1.34 s and Mp = 17.70%. In summary, integrating
fractional calculus into PID control introduces a higher degree of complexity in gain tuning.
Nonetheless, this approach significantly enhances the robustness of AVR dynamics, offering
a wider spectrum of feasible control features.

5. Conclusions

In this work, we implemented a methodology based on Automated Algorithm De-
sign (AAD), focusing on Metaheuristic (MH) design for engineering applications. A pertur-
bative selection hyper-heuristic model, driven by Simulated Annealing, was employed to
construct a tailored metaheuristic (MH∗). The design of MH∗ involved a specific sequence
of search operators: an inertial swarm dynamic perturbator followed by a metropolis
selector, and a crossover genetic operator succeeded again by a metropolis selection. As a
case study, a Fractional-Order Proportional-Integral-Derivative (FOPID) controller was
fine-tuned through MH∗ to enhance the Automatic Voltage Regulator (AVR) response.

The comparative analysis demonstrated that the FOPID controller, fine-tuned via
MH∗, exhibited superior control features compared to similar approaches documented
in the literature, such as improved settling time and reduced overshoot. On average,
the achieved controller delivered responses 1.69 times faster with virtually no overshoots.
Furthermore, variations within each subsystem of the AVR plant were tested to assess the
controller’s robustness in terms of these control features. The greatest and least settling
times were observed when τg (corresponding to the generator subsystem) experienced
perturbations at the extreme ranges of −50% and 50% of its nominal value, respectively.
Regarding overshoot, this feature remained near zero for negative variations of the τa, τe,
and τs parameters (amplifier, exciter, and sensor subsystems, respectively). However, when
these parameters were perturbed to 50% of their nominal values, they exhibited an average
overshoot of 6.219%.

Additionally, a landscape analysis focusing on these control features was conducted by
maintaining the gains kp, ki, and kd constant while varying λ and µ. This analysis enabled
the identification of controller settings that offered overshoots and settling times within
the range of 0% to 64% and 0.33 s to 3.49 s, respectively, indicating that incorporating the
fractional domain into conventional control schemes expands the AVR system’s control
gain possibilities. However, these degrees of freedom were limited, as evidenced by the
settling time landscape, where the stability region was clearly defined.



Fractal Fract. 2024, 8, 223 19 of 21

Although this study focused on a specific problem, the proposed AAD methodology
holds the potential to guide practitioners toward achieving suitable performance on a
broader array of optimization problems. Future research aims to extend this approach to
other real-world engineering applications, evaluating the effectiveness of customized MHs
in scenarios akin to design specifications.

Author Contributions: Conceptualization, D.F.Z.-G.; Formal analysis, J.M.C.-D. and J.G.A.-C.; Inves-
tigation, D.F.Z.-G., G.H.V.-R., I.A., J.M.C.-D. and J.G.A.-C.; Methodology, D.F.Z.-G., G.H.V.-R., I.A.,
J.M.C.-D. and J.G.A.-C.; software, D.F.Z.-G. and J.M.C.-D.; Validation, J.M.C.-D., I.A. and J.G.A.-C.;
Writing—original draft, D.F.Z.-G. and G.H.V.-R.; writing—review and editing, D.F.Z.-G., G.H.V.-R., I.A.,
J.M.C.-D. and J.G.A.-C. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Research Group in Advanced Artificial Intelligence
at Tecnologico de Monterrey, grant NUA A00836756 and A00834075, and the Mexican Council of
Humanities, Sciences, and Technologies (CONAHCyT) under scholarships 1046000 and 863547.
Besides, this work was partly supported by the University of Guanajuato through CIIC (Convocatoria
Institucional de Investigación Científica, UG) Project 243/2024.

Institutional Review Board Statement: Not required for this study.

Informed Consent Statement: No Formal written consent was required for this study.

Data Availability Statement: Data available under a formal demand.

Conflicts of Interest: All authors declare no conflicts of interest in this paper.

References
1. Al-Shetwi, A.Q.; Hannan, M.; Jern, K.P.; Mansur, M.; Mahlia, T.M.I. Grid-connected renewable energy sources: Review of the

recent integration requirements and control methods. J. Clean. Prod. 2020, 253, 119831. [CrossRef]
2. Andersson, G.; Bel, C.Á.; Cañizares, C. Frequency and voltage control. In Electric Energy Systems; CRC Press: Boca Raton, FL,

USA, 2017; pp. 355–400.
3. Ji, Y.; He, W.; Cheng, S.; Kurths, J.; Zhan, M. Dynamic network characteristics of power-electronics-based power systems. Sci.

Rep. 2020, 10, 9946. [CrossRef] [PubMed]
4. Perera, S.; Elphick, S. Chapter 7—Implications of equipment behaviour on power quality. In Applied Power Quality; Perera, S.,

Elphick, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 185–258. [CrossRef]
5. Karaagac, U.; Kocar, I.; Mahseredjian, J.; Cai, L.; Javid, Z. STATCOM integration into a DFIG-based wind park for reactive power

compensation and its impact on wind park high voltage ride-through capability. Electr. Power Syst. Res. 2021, 199, 107368.
[CrossRef]

6. Ćalasan, M.; Kecojević, K.; Lukačević, O.; Ali, Z.M. Chapter 10—Testing of influence of SVC and energy storage device’s location
on power system using GAMS. In Uncertainties in Modern Power Systems; Zobaa, A.F., Abdel Aleem, S.H., Eds.; Academic Press:
Cambridge, MA, USA, 2021; pp. 297–342. [CrossRef]

7. Abood, L.H.; Oleiwi, B.K. Design of fractional order PID controller for AVR system using whale optimization algorithm. Indones.
J. Electr. Eng. Comput. Sci. 2021, 23, 1410–1418. [CrossRef]

8. Köse, E. Optimal control of AVR system with tree seed algorithm-based PID controller. IEEE Access 2020, 8, 89457–89467.
[CrossRef]

9. Jahanshahi, E.; Sivalingam, S.; Schofield, J.B. Industrial test setup for autotuning of PID controllers in large-scale processes:
Applied to Tennessee Eastman process. IFAC-PapersOnLine 2015, 48, 469–476. [CrossRef]

10. Shah, P.; Agashe, S. Review of fractional PID controller. Mechatronics 2016, 38, 29–41. [CrossRef]
11. Izci, D.; Ekinci, S.; Mirjalili, S. Optimal PID plus second-order derivative controller design for AVR system using a modified

Runge Kutta optimizer and Bode’s ideal reference model. Int. J. Dyn. Control 2023, 11, 1247–1264. [CrossRef]
12. Sivanandhan, A.; Aneesh, V. A Hybrid Technique Linked FOPID for a Nonlinear System Based On Closed-Loop Settling Time of

Plant. Robot. Auton. Syst. 2024, 176, 104651. [CrossRef]
13. Podlubny, I. Fractional-order systems and fractional-order controllers. Inst. Exp. Phys. Slovak Acad. Sci. Kosice 1994, 12, 1–18.
14. Izci, D.; Ekinci, S.; Hekimoğlu, B. Fractional-order PID controller design for buck converter system via hybrid Lévy flight

distribution and simulated annealing algorithm. Arab. J. Sci. Eng. 2022, 47, 13729–13747. [CrossRef]
15. Nassef, A.M.; Abdelkareem, M.A.; Maghrabie, H.M.; Baroutaji, A. Metaheuristic-Based Algorithms for Optimizing Fractional-

Order Controllers—A Recent, Systematic, and Comprehensive Review. Fractal Fract. 2023, 7, 553. [CrossRef]
16. Altbawi, S.M.A.; Mokhtar, A.S.B.; Jumani, T.A.; Khan, I.; Hamadneh, N.N.; Khan, A. Optimal design of Fractional order PID

controller based Automatic voltage regulator system using gradient-based optimization algorithm. J. King Saud Univ.-Eng. Sci.
2021, 36, 32–44. [CrossRef]

http://doi.org/10.1016/j.jclepro.2019.119831
http://dx.doi.org/10.1038/s41598-020-66635-0
http://www.ncbi.nlm.nih.gov/pubmed/32561818
http://dx.doi.org/10.1016/B978-0-323-85467-2.00002-0
http://dx.doi.org/10.1016/j.epsr.2021.107368
http://dx.doi.org/10.1016/B978-0-12-820491-7.00010-4
http://dx.doi.org/10.11591/ijeecs.v23.i3.pp1410-1418
http://dx.doi.org/10.1109/ACCESS.2020.2993628
http://dx.doi.org/10.1016/j.ifacol.2015.09.012
http://dx.doi.org/10.1016/j.mechatronics.2016.06.005
http://dx.doi.org/10.1007/s40435-022-01046-9
http://dx.doi.org/10.1016/j.robot.2024.104651
http://dx.doi.org/10.1007/s13369-021-06383-z
http://dx.doi.org/10.3390/fractalfract7070553
http://dx.doi.org/10.1016/j.jksues.2021.07.009


Fractal Fract. 2024, 8, 223 20 of 21

17. Sikander, A.; Thakur, P.; Bansal, R.C.; Rajasekar, S. A novel technique to design cuckoo search based FOPID controller for AVR in
power systems. Comput. Electr. Eng. 2018, 70, 261–274. [CrossRef]

18. Ramezanian, H.; Balochian, S.; Zare, A. Design of optimal fractional-order PID controllers using particle swarm optimization
algorithm for automatic voltage regulator (AVR) system. J. Control. Autom. Electr. Syst. 2013, 24, 601–611. [CrossRef]

19. Mohd Tumari, M.Z.; Ahmad, M.A.; Suid, M.H.; Hao, M.R. An improved marine predators algorithm-tuned fractional-order PID
controller for automatic voltage regulator system. Fractal Fract. 2023, 7, 561. [CrossRef]

20. Srinivas, M.; Patnaik, L.M. Genetic algorithms: A survey. Computer 1994, 27, 17–26. [CrossRef]
21. Price, K.; Storn, R.M.; Lampinen, J.A. Differential Evolution: A Practical Approach to Global Optimization; Springer Science & Business

Media: Berlin/Heidelberg, Germany, 2006. [CrossRef]
22. Kennedy, J.; Eberhart, R. Particle swarm optimization (PSO). In Proceedings of the International Conference on Neural Networks

(ICNN’95), Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.
23. de Armas, J.; Lalla-Ruiz, E.; Tilahun, S.L.; Voß, S. Similarity in metaheuristics: A gentle step towards a comparison methodology.

Nat. Comput. 2022, 21, 265–287. [CrossRef]
24. Tzanetos, A.; Dounias, G. Nature inspired optimization algorithms or simply variations of metaheuristics? Artif. Intell. Rev. 2021,

54, 1841–1862. [CrossRef]
25. Piotrowski, A.P.; Napiorkowski, J.J.; Rowinski, P.M. How novel is the “novel” black hole optimization approach? Inf. Sci. 2014,

267, 191–200. [CrossRef]
26. Stützle, T.; López-Ibáñez, M. Automated design of metaheuristic algorithms. In Handbook of Metaheuristics; Springer:

Berlin/Heidelberg, Germany, 2019; pp. 541–579.
27. Yi, W.; Qu, R.; Jiao, L.; Niu, B. Automated Design of Metaheuristics Using Reinforcement Learning Within a Novel General

Search Framework. IEEE Trans. Evol. Comput. 2023, 27, 1072–1084. [CrossRef]
28. Hassan, A.; Pillay, N. Hybrid metaheuristics: An automated approach. Expert Syst. Appl. 2019, 130, 132–144. [CrossRef]
29. Qu, R.; Kendall, G.; Pillay, N. The General Combinatorial Optimisation Problem: Towards Automated Algorithm Design. IEEE

Comput. Intell. Mag. 2020, 15, 14–23. [CrossRef]
30. Cruz-Duarte, J.; Amaya, I.; Ortiz-Bayliss, J.; Conant-Pablos, S.; Terashima-Marín, H.; Shi, Y. Hyper-Heuristics to customise

metaheuristics for continuous optimisation. Swarm Evol. Comput. 2021, 66, 100935. [CrossRef]
31. Burke, E.K.; Gendreau, M.; Hyde, M.; Kendall, G.; Ochoa, G.; Özcan, E.; Qu, R. Hyper-heuristics: A survey of the state of the art.

J. Oper. Res. Soc. 2013, 64, 1695–1724. [CrossRef]
32. Zambrano-Gutierrez, D.F.; Cruz-Duarte, J.M.; Avina-Cervantes, J.G.; Ortiz-Bayliss, J.C.; Yanez-Borjas, J.J.; Amaya, I. Automatic

Design of Metaheuristics for Practical Engineering Applications. IEEE Access 2023, 11, 7262–7276. [CrossRef]
33. Patil, P.M.; Patil, S. Automatic voltage regulator. In Proceedings of the 2020 International Conference on Emerging Trends in

Information Technology and Engineering (ic-ETITE), Vellore, India, 24–25 February 2020; pp. 1–5.
34. Yoshida, H.; Kawata, K.; Fukuyama, Y.; Takayama, S.; Nakanishi, Y. A particle swarm optimization for reactive power and

voltage control considering voltage security assessment. IEEE Trans. Power Syst. 2000, 15, 1232–1239. [CrossRef]
35. Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of

Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998.
36. Chen, Y.; Petras, I.; Xue, D. Fractional order control—A tutorial. In Proceedings of the 2009 American Control Conference, St.

Louis, MO, USA, 10–12 June 2009; pp. 1397–1411. [CrossRef]
37. Loverro, A. Fractional Calculus: History, Definitions and Applications for the Engineer. Rapport technique, Univeristy of Notre

Dame: Department of Aerospace and Mechanical Engineering . 2004, pp. 1–28. Available online: https://citeseerx.ist.psu.edu/
document?repid=rep1&type=pdf&doi=6256fee0c10bdb7096df51ca8e64df58414ed026 (accessed 5 January 2024).

38. Monje, C.A.; Chen, Y.; Vinagre, B.M.; Xue, D.; Feliu-Batlle, V. Fractional-Order Systems and Controls: Fundamentals and Applications;
Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010.

39. Caputo, M. Linear models of dissipation whose Q is almost frequency independent—II. Geophys. J. Int. 1967, 13, 529–539.
[CrossRef]

40. Ortigueira, M.D. Principles of fractional signal processing. Digit. Signal Process. 2024, 149, 104490. [CrossRef]
41. Sun, H.; Chang, A.; Zhang, Y.; Chen, W. A review on variable-order fractional differential equations: mathematical foundations,

physical models, numerical methods and applications. Fract. Calc. Appl. Anal. 2019, 22, 27–59. [CrossRef]
42. Joseph, S.B.; Dada, E.G.; Abidemi, A.; Oyewola, D.O.; Khammas, B.M. Metaheuristic algorithms for PID controller parameters

tuning: review, approaches and open problems. Heliyon 2022, 8, E09399. [CrossRef]
43. Ersali, C.; Hekimoğlu, B. A novel opposition-based hybrid cooperation search algorithm with Nelder–Mead for tuning of

FOPID-controlled buck converter. Trans. Inst. Meas. Control 2024, 1–19.
44. Tejado, I.; Vinagre, B.M.; Traver, J.E.; Prieto-Arranz, J.; Nuevo-Gallardo, C. Back to basics: Meaning of the parameters of fractional

order PID controllers. Mathematics 2019, 7, 530. [CrossRef]
45. Can Kurucu, M.; Yumuk, E.; Güzelkaya, M.; Eksin, I. Online tuning of derivative order term of variable-order fractional

proportional–integral–derivative controllers for the first-order time delay systems. Asian J. Control 2023, 25, 2628–2640. [CrossRef]
46. Chen, X.; Wang, C.; Xu, J.; Long, S.; Chai, F.; Li, W.; Song, X.; Wang, X.; Wan, Z. Membrane humidity control of proton exchange

membrane fuel cell system using fractional-order PID strategy. Appl. Energy 2023, 343, 8–13. [CrossRef]

http://dx.doi.org/10.1016/j.compeleceng.2017.07.005
http://dx.doi.org/10.1007/s40313-013-0057-7
http://dx.doi.org/10.3390/fractalfract7070561
http://dx.doi.org/10.1109/2.294849
http://dx.doi.org/10.1007/3-540-31306-0
http://dx.doi.org/10.1007/s11047-020-09837-9
http://dx.doi.org/10.1007/s10462-020-09893-8
http://dx.doi.org/10.1016/j.ins.2014.01.026
http://dx.doi.org/10.1109/TEVC.2022.3197298
http://dx.doi.org/10.1016/j.eswa.2019.04.027
http://dx.doi.org/10.1109/MCI.2020.2976182
http://dx.doi.org/10.1016/j.swevo.2021.100935
http://dx.doi.org/10.1057/jors.2013.71
http://dx.doi.org/10.1109/ACCESS.2023.3236836
http://dx.doi.org/10.1109/59.898095
http://dx.doi.org/10.1109/ACC.2009.5160719
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6256fee0c10bdb7096df51ca8e64df58414ed026
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=6256fee0c10bdb7096df51ca8e64df58414ed026
http://dx.doi.org/10.1111/j.1365-246X.1967.tb02303.x
http://dx.doi.org/10.1016/j.dsp.2024.104490
http://dx.doi.org/10.1515/fca-2019-0003
http://dx.doi.org/10.1016/j.heliyon.2022.e09399
http://dx.doi.org/10.3390/math7060530
http://dx.doi.org/10.1002/asjc.2972
http://dx.doi.org/10.1016/j.apenergy.2023.121182


Fractal Fract. 2024, 8, 223 21 of 21

47. Hussain, K.; Salleh, M.N.M.; Cheng, S.; Shi, Y. Metaheuristic research: A comprehensive survey. Artif. Intell. Rev. 2019,
52, 2191–2233. [CrossRef]

48. Abdel-Basset, M.; Abdel-Fatah, L.; Sangaiah, A.K. Chapter 10—Metaheuristic Algorithms: A Comprehensive Review. In
Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications; Intelligent Data-Centric Systems;
Academic Press: Cambridge, MA, USA, 2018; pp. 185–231. [CrossRef]

49. Sörensen, K. Metaheuristics—The metaphor exposed. Int. Trans. Oper. Res. 2015, 22, 3–18. [CrossRef]
50. Cruz-Duarte, J.; Ortiz-Bayliss, J.; Amaya, I.; Shi, Y.; Terashima-Marín, H.; Pillay, N. Towards a Generalised Metaheuristic Model

for Continuous Optimisation Problems. Mathematics 2020, 8, 2046. [CrossRef]
51. Pillay, N.; Qu, R. Hyper-Heuristics: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2018.
52. Kramer, O.; Kramer, O. Genetic Algorithms; Springer: Berlin/Heidelberg, Germany, 2017.
53. Cruz-Duarte, J.M.; Amaya, I.; Ortiz-Bayliss, J.C.; Terashima-Marín, H.; Shi, Y. CUSTOMHyS: Customising Optimisation

Metaheuristics via Hyper-heuristic Search. SoftwareX 2020, 12, 100628. [CrossRef]
54. Alfaro-Fernández, P.; Ruiz, R.; Pagnozzi, F.; Stützle, T. Automatic algorithm design for hybrid flowshop scheduling problems.

Eur. J. Oper. Res. 2020, 282, 835–845. [CrossRef]
55. López-Ibáñez, M.; Dubois-Lacoste, J.; Cáceres, L.P.; Birattari, M.; Stützle, T. The irace package: Iterated racing for automatic

algorithm configuration. Oper. Res. Perspect. 2016, 3, 43–58. [CrossRef]
56. Zhao, Q.; Duan, Q.; Yan, B.; Cheng, S.; Shi, Y. Automated Design of Metaheuristic Algorithms: A Survey. arXiv 2023,

arXiv:2303.06532.
57. Drake, J.H.; Kheiri, A.; Özcan, E.; Burke, E.K. Recent advances in selection hyper-heuristics. Eur. J. Oper. Res. 2020, 285, 405–428.

[CrossRef]
58. Lahcene, R.; Abdeldjalil, S.; Aissa, K. Optimal tuning of fractional order PID controller for AVR system using simulated annealing

optimization algorithm. In Proceedings of the 2017 5th International Conference on Electrical Engineering—Boumerdes (ICEE-B),
Boumerdes, Algeria, 29–31 October 2017; pp. 1–6. [CrossRef]

59. Tepljakov, A.; Tepljakov, A. FOMCON: Fractional-order modeling and control toolbox. In Fractional-Order Modeling and Control of
Dynamic Systems; Springer: Cham, Switzerland, 2017; pp. 107–129.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10462-017-9605-z
http://dx.doi.org/10.1016/B978-0-12-813314-9.00010-4
http://dx.doi.org/10.1111/itor.12001
http://dx.doi.org/10.3390/math8112046
http://dx.doi.org/10.1016/j.softx.2020.100628
http://dx.doi.org/10.1016/j.ejor.2019.10.004
http://dx.doi.org/10.1016/j.orp.2016.09.002
http://dx.doi.org/10.1016/j.ejor.2019.07.073
http://dx.doi.org/10.1109/ICEE-B.2017.8192194

	Introduction
	Foundations
	Automatic Voltage Regulator System
	Fractional Calculus
	Fractional-Order Proportional-Integral-Derivative Controller
	Metaheuristics
	Automated Algorithm Design

	Methodology
	Numerical Results
	Conclusions
	References

