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Abstract: Objective: The prediction of upcoming circular walking during linear walking is important
for the usability and safety of the interaction between a lower limb assistive device and the wearer.
This study aims to build a bilateral elimination rule-based finite class Bayesian inference system
(BER-FC-BesIS) with the ability to predict the transition between circular walking and linear walking
using inertial measurement units. Methods: Bilateral motion data of the human body were used to
improve the recognition and prediction accuracy of BER-FC-BesIS. Results: The mean predicted time
of BER-FC-BesIS in predicting the left and right lower limbs’ upcoming steady walking activities
is 119.32 ± 9.71 ms and 113.75 ± 11.83 ms, respectively. The mean time differences between the
predicted time and the real time of BER-FC-BesIS in the left and right lower limbs’ prediction are
14.22 ± 3.74 ms and 13.59 ± 4.92 ms, respectively. The prediction accuracy of BER-FC-BesIS is 93.98%.
Conclusion: Upcoming steady walking activities (e.g., linear walking and circular walking) can be
accurately predicted by BER-FC-BesIS innovatively. Significance: This study could be helpful and
instructional to improve the lower limb assistive devices’ capabilities of walking activity prediction
with emphasis on non-linear walking activities in daily living.

Keywords: Bayesian inference system; circular walking; lower limb assistive device; walking activity
transition prediction

1. Introduction

Intention is a mental activity that humans and animals use to regulate their activities.
In nature, predicting the intentions of other organisms can help prey and predators better
adjust their moving trajectories to survive [1]. In human society, predicting the intentions
of others is also an essential skill in competitive sports or daily living [2]. Predicting
human intentions is also important in the field of robotics. Lower limb assistive devices
(e.g., exoskeletons, orthotics, prostheses, etc.) adjust their assist strategies by predicting
the walking intention of the wearers, so as to ensure that they can achieve good assist
performance on multiple terrains and paths.

Lower limb assistive devices are gradually being applied in assisting human walking [3,4]
and fall prevention [5]. In order to make lower limb assistive devices interact with wearers
more actively, lower limb assistive devices should be able to provide active assist [6].
Therefore, the movements of lower limb assistive devices should be ahead of wearers’
movements [7]. Lower limb assistive devices adjust their assist strategies before the walking
activities of wearers change according to the results of walking intention prediction [7].
Thus, the prediction of wearers’ walking intention is one of the effective ways to realize the
active assist of lower limb assistive devices.

Walking intention includes maintaining the current steady walking activity or per-
forming transition walking activity. The walker has to make extra efforts to maintain
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balance during transition walking activity [8,9]. Upcoming steady walking activity can
be predicted according to the recognized transition walking activity and previous steady
walking activity. Therefore, the key to predict human walking intention lies in the accurate
and fast recognition of steady walking activity and transition walking activity [8]. For
this reason, researchers have carried out a lot of research on walking intention recognition
algorithms.

In existing studies, sensors used to predict the transition between steady walking ac-
tivities mainly include EMG electrodes [10–12], inertial measurement units (IMUs) [13–15],
or a combination of them [16,17]. Recognition algorithms using EMG electrodes have the
following disadvantages. Firstly, a surface electromyogram (sEMG) is a non-stationary
time-varying signal; the amplitude and frequency of the sEMG signal may change due
to the fatigue of the operator’s muscles [18]. Secondly, an sEMG signal varies between
individuals and is poorly repeatable. Thirdly, an sEMG is highly correlated with human
physical characteristics (e.g., corporeity, health, etc.) [19]. Compared with an sEMG, the
signal measured by IMUs is more stable and repeatable. Moreover, an IMU does not need
to be attached to the skin of wearers. Therefore, an IMU is more convenient for wearing and
more suitable for use in daily living [20]. The combination of EMG electrodes and IMUs
greatly increases the number of sensors and complexity of the lower limbs’ assistive device.
Therefore, more walking intention recognition algorithms use IMUs for data collection.

Roman Stolyarov et al. proposed a novel algorithm for predicting upcoming steady
walking activity through estimating leg joints’ translational motion. This algorithm can
predict the transitions among linear walking (LW), ramp ascend (RA), ramp descend (RD),
stair ascend (SA), and stair descend (SD). The prediction accuracy reaches 96.22% [7]. Ming
Liu et al. integrated the environmental information collected by the laser distance meter
on the lower limb assistive device and the IMUs on the wearer into the neuromuscular–
mechanical fusion-based locomotion mode recognition system. The transitions among LW,
RA/RD, and SA/SD can be predicted. The prediction accuracy is over 98%. The decision-
making time is more than 500 ms ahead of the real time [21]. Long Yi et al. proposed a
PSO-SVM-based online locomotion recognition algorithm, which can predict LW, RA/RD,
and SA/SD with an accuracy of 96.00 ± 2.45% [15]. The above algorithms meet the
requirements of adjusting the control strategies of lower limb assistive devices in terms of
accuracy and speed [22]. However, these algorithms generally ignore the recognition and
prediction of LW, clockwise circular walking (CW), and counterclockwise circular walking
(CCW) while subjects are walking on non-linear paths or avoiding obstacles. However, CW
and CCW account for 8~50% in typical life scenes [23]. In order to improve the applicability
of lower limb assistive devices in daily living, the recognition of transition walking activity
such as LW→CW (LC), LW→CCW (LCC), CW→LW (CL), or CCW→LW (CCL) is needed.
Akiyama et al. found that steady walking activities (e.g., LW, CW, and CCW) and transition
walking activities (e.g., LC, LCC, CL, and CCL) could not be recognized only based on
unilateral motion data of lower limbs [24]. In order to solve this problem, bilateral motion
data of lower limbs were referenced to recognize steady walking activities and transition
walking activities in this study. Based on the bilateral motion data of both lower limbs,
bilateral elimination rules (BERs) were developed to reduce the number of potential classes
before the decision-making, so as to further improve the accuracy of the walking intention
prediction.

In order to realize the prediction of upcoming steady walking activity, a bilateral
elimination rule-based finite class Bayesian inference system (BER-FC-BesIS) is proposed
in this paper. BER-FC-BesIS realizes the prediction of upcoming steady walking activity
by recognizing steady walking activity (e.g., LW, CW, and CCW) and transition walking
activity (e.g., LC, LCC, CL, and CCL). Major contributions of this paper include (1) BER-FC-
BesIS for the prediction of upcoming steady walking activity during non-linear walking on
a level ground, (2) bilateral elimination rules for the optimization of prediction accuracy,
and (3) the accurate and fast recognition of walking activities and gait events for the
optimization of bilateral elimination efficiency. The walking intention prediction method in
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this paper would be beneficial to optimize lower limb assistive devices’ control strategies
while wearers are walking on different terrains especially non-linear paths. This walking
intention prediction enhances the human–robot interaction performance of lifting parcels
or heavy marching during wearing exoskeletons. Consequently, the interactions between
lower limb assistive devices and wearers could be more ergonomic.

The following contents of this paper are organized as follows. Section 2 describes the
materials and methods. Section 3 describes the results of the testing experiment. Section 4
contains discussions of the results and future works. Section 5 contains the conclusion.

2. Materials and Methods
2.1. Subjects and Data Measurements

This paper studies the prediction of the upcoming steady walking activity of healthy
adults. Therefore, eight healthy subjects were recruited to this study. The demographic
information of subjects is listed in Table 1. The details about the experiments were disclosed
to the subjects. All the subjects volunteered and gave their consent to the experiments. All
experiments were performed with ethical approval from the Nanjing University of Science
and Technology Ethical Review Board.

Table 1. Subjects’ demographic information.

Subject Gender Age
(Years)

Height
(cm)

Weight
(kg)

1 Male 28 180.0 75.2
2 Male 32 178.2 72.4
3 Male 34 175.5 69.5
4 Male 22 181.3 78.0
5 Male 42 169.2 67.3
6 Female 23 165.0 51.5
7 Female 21 160.3 47.2
8 Female 45 158.4 48.0

Mean [SD] - 30.9 [9.1] 171.0 [9.0] 63.6 [12.7]

The hardware and venues for data collection experiments are shown in Figure 1. As
shown in Figure 1a, wireless Motion Trackers (MTw, Xsens Technologies B.V., Enschede,
NL, USA) were attached to the subjects’ chests, pelvises, thighs, and shanks for collecting
absolute angular velocities. The noise density of MTw is 0.01 deg/s/

√
Hz. The wireless

latency is less than 10 µs. The effectiveness of this sensor attachment in recognizing LW,
CW, and CCW as well as gait events within them has been demonstrated [25]. Therefore,
this study adopted the same sensor attachment strategy as adopted in [25]. The data
collected by MTw were stored in a laptop via the wireless receiver (Awinda Station, Xsens
Technologies B.V., Enschede, NL, USA). The motion data of the subjects were also collected
synchronously by a six-camera Motion capture system (Motion Analysis Corp., Rohnert
Park, CA, USA). The data collected by the Motion capture system were mainly used for
labeling the motion data. Both the Motion capture system and MTw set the sampling
frequency as 100 Hz. The motion data collected by MTw were stored in a laptop in the form
of vectors for the following sequence analysis. As shown in Figure 1b, there are two kinds
of walking activities that need to be labeled: steady walking activity and transition walking
activity. Steady walking activity includes LW, CW, and CCW. Transition walking activity
includes LC, LCC, CL, and CCL. Steady walking activity is persistent. Transition walking
activity is a transitional gait cycle between two steady walking activities. As shown in
Figure 1b, footprints show how the subject’s walking activity transits from CCW to LW,
i.e., CCL, which is represented by the black footprints in Figure 1b. CCW and LW are
represented by gray footprints. The definitions of LC, LCC, and CL are the same as that
of CCL.
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Figure 1. Hardware and venues for data collection experiments. (a) MTw is attached to chests, pel-
vises, thighs, and shanks of subjects, respectively. Data were collected by Awinda Station and Mo-
tion capture system at mean time. Collected data were processed on laptop. (b) Walking pathway 
of initial experiments. (c) Walking pathway of testing experiments. 

2.2. Data Processing 
The motion data were processed on a laptop (2 GHz CPU, 8 GB RAM). The frequency 

of subjects’ walking is within 6 Hz, thus 6 Hz second-order Butterworth low-pass filtering 
is adopted [24]. As shown in Figure 2, each gait cycle is composed of eight gait events: 
initial contact (IC), loading response (LR), mid-stance (MSt), terminal stance (TSt), pre-
swing (PS), initial swing (IS), mid-swing (MSw), and terminal swing (TSw). The data col-
lected by the Motion capture system were used as the references of labeling the motion 
data collected by the MTw. The threshold method and observation method were both 
adopted to label the motion data by experienced experts [25]. 

Figure 1. Hardware and venues for data collection experiments. (a) MTw is attached to chests,
pelvises, thighs, and shanks of subjects, respectively. Data were collected by Awinda Station and
Motion capture system at mean time. Collected data were processed on laptop. (b) Walking pathway
of initial experiments. (c) Walking pathway of testing experiments.

The experiments consist of two stages: the initial experiments and the testing ex-
periments. In all experiments, the subjects walked at their self-selected velocities. The
motion data collected in the initial experiments were used to build the likelihood estimation
model [25]. The motion data collected in the testing experiments were used to test the
performance of FC-BesIS and BER-FC-BesIS.

The walking pathway of the initial experiments is shown in Figure 1b, which consists
of straight paths (length: 5 m) and circular paths (radius: 0.5 m, 0.75 m, 1.0 m, and 1.5 m).
Each experiment starts when the subject’s toe off (TO) the start point is lifted and ends
when the subject’s heel contacts (HC) the start point again. There are two ambulation
directions in the initial experiments. The walking activity sequence of ambulation direc-
tion 1 is LW→LC→CW→CL→LW→LC→CW→CL→LW. The walking activity sequence
of ambulation direction 2 is LW→LCC→CCW→CCL→LW→LCC→CCW→CCL→LW.
Ambulation direction 1 and ambulation direction 2 were performed 5 times by each sub-
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ject, respectively. In order to avoid the effect of vertigo, there was 2 min of resting after
each experiment.

2.2. Data Processing

The motion data were processed on a laptop (2 GHz CPU, 8 GB RAM). The frequency
of subjects’ walking is within 6 Hz, thus 6 Hz second-order Butterworth low-pass filtering is
adopted [24]. As shown in Figure 2, each gait cycle is composed of eight gait events: initial
contact (IC), loading response (LR), mid-stance (MSt), terminal stance (TSt), pre-swing (PS),
initial swing (IS), mid-swing (MSw), and terminal swing (TSw). The data collected by the
Motion capture system were used as the references of labeling the motion data collected by
the MTw. The threshold method and observation method were both adopted to label the
motion data by experienced experts [25].
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Figure 2. The gait events’ sequences of a bilateral lower limb in a gait cycle. (1: IC, 2: LR, 3: MSt,
4: TSt, 5: PS, 6: IS, 7: MSw, 8: TSw).

2.3. Motion Feature Extraction

Motion feature extraction is the key to guarantee the accuracy of walking activity
recognition. The motion features listed in Table 2 were used as the inputs of BER-FC-BesIS.
The effectiveness of these motion features of recognition LW, CW, and CCW has been
demonstrated [25].

Table 2. The motion features for the recognition algorithm.

Features Signals

1 Pelvis yaw angular velocity
2 Chest yaw angular velocity
3 Left thigh yaw angular velocity
4 Right thigh yaw angular velocity
5 Pelvis roll angular velocity
6 Left shank yaw angular velocity
7 Right shank yaw angular velocity
8 Chest pitch angular velocity
9 Right shank pitch angular velocity
10 Right shank pitch angular velocity
11 Left shank pitch angular velocity
12 Left thigh pitch angular velocity

2.4. Finite Class Bayesian Inference System

The prediction of upcoming steady walking activity can be realized by recognizing
transition walking activity [13]. As shown in Figure 1c, when the subject wants to transit
walking activity from LW to CW, LC will be performed before the walking activity fully
transits to CW. Therefore, upcoming steady walking activity can be predicted according
to the previous steady walking activity and transition walking activity. FC-BesIS is able
to recognize LW, CW, and CCW as well as eight gait events within them. However, only
unilateral motion data were referenced for the walking activity and gait event recognition
of each lower limb. As demonstrated in [24], unilateral motion data are not enough for
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classifying LW, CW, CCW, LC, LCC, CL, and CCL. Therefore, this study modified and
expanded FC-BesIS to predict upcoming steady walking activity.

The likelihood estimation model was built based on the motion data collected by
the MTw in initial experiments. Elimination rule 1 based on the unilateral motion data
remained [25]. There are seven potential walking activities and eight potential gait events
before elimination rule 1 is performed. The potential classes consist of (walking activity,
gait event) pairs. After elimination rule 1 is performed, the number of potential classes
is reduced. And a new set of potential classes is obtained. The left lower limb’s potential
walking activities, right lower limb’s potential walking activities, left lower limb’s potential
gait events, and right lower limb’s potential gait events are all updated by then.

2.5. Bilateral Elimination Rules

The recognition accuracy of walking activity and gait events can be improved through
reducing the number of potential classes [25]. Therefore, bilateral elimination rules (BERs)
were built to further reduce the number of potential classes before decision-making. Elimi-
nation rule 2 was built based on the bilateral sequential relationships of walking activities.
Elimination rule 3 was built based on the bilateral sequential relationships of gait events.

The bilateral sequential relationships of walking activities during level walking are
shown in Table 3. The pseudocodes of elimination rule 2 were built based on the above
sequential relationships and are shown in Table 4. After elimination rule 2 is performed,
the potential classes of bilateral lower limbs which do not fit the relationships in Table 3
will be eliminated, which means only the walking activity pair consisting of the right lower
limb’s potential walking activities and the left lower limb’s potential walking activities
within Table 3 can really happen during level walking.

Table 3. The sequential relationship of bilateral walking activities.

Right Lower Limb’s Potential
Walking Activities

Left Lower Limb’s Potential
Walking Activities

1 1, 4, 5, 6, 7
2 2, 4, 6
3 3, 5, 7
4 1, 2, 4
5 1, 3, 5
6 1, 2, 6
7 1, 3, 7

1: LW, 2: CW, 3: CCW, 4: LC, 5: LCC, 6: CL, 7: CCL.

Table 4. Pseudocodes of elimination rule 2 in right side.

After the potential classes have been eliminated by elimination rule 1

IF (right lower limb’s potential walking activity, left lower limb’s potential walking activity)
belongs to walking activity pairs in Table 3 THEN

DO reserve potential classes with same right lower limb’s potential walking activities
ELSE

DO eliminate potential classes with same right lower limb’s potential walking activities
END IF

There are also sequential relationships of gait events during level walking [26]. There-
fore, the gait events’ sequential relationships of unilateral and bilateral lower limbs were
also referenced to build elimination rule 3. A gait cycle can be divided into eight gait events,
as shown in Figure 2 [26]. The sequential relationships of these eight gait events are as
follows. When the subject’s right heel contacts the ground, the right lower limb’s gait event
is IC followed by LR. LR ends when the left toe comes off the ground. The right lower
limb’s IC and the left lower limb’s PS start at the same time. The right lower limb’s LR
and the left lower limb’s PS end at the same time. After the right lower limb’s LR ends,
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MSt starts together with the left lower limb’s IS. After the right lower limb’s MSt ends, TSt
starts. The right lower limb’s TSt ends together with the left lower limb’s TSw. After the
right lower limb’s TSt ends, PS starts together with the left lower limb’s IC. The right lower
limb’s PS ends together with the left lower limb’s LR. After the right lower limb’s PS ends,
IS starts together with the left lower limb’s MSt. The right lower limb’s TSw ends together
with the left lower limb’s TSt [26].

The bilateral sequential relationships of gait events during level walking are shown in
Table 5. The pseudocodes of elimination rule 3 are shown in Table 6. After elimination rule 3
is performed, the potential classes of bilateral lower limbs which do not fit the relationships
in Table 5 will be eliminated, which means only the gait event pair consisting of the right
lower limb’s potential gait events and the left lower limb’s potential gait events within
Table 5 can really happen during level walking.

Table 5. The sequential relationship of bilateral gait events.

Right Lower Limb’s Potential Gait Events Left Lower Limb’s Potential Gait Events

1 5
2 5, 6
3 6, 7
4 7, 8
5 1, 2, 8
6 2, 3
7 3, 4
8 4, 5

1: IC, 2: LR, 3: MSt, 4: TSt, 5: PS, 6: IS, 7: MSw, 8: TSw.

Table 6. Pseudocodes of elimination rule 3 in right side.

After the potential classes have been eliminated by ER 2

IF (right lower limb’s potential gait event, left lower limb’s potential gait event) belongs to gait
event pair in Table 5 THEN

DO reserve potential classes with same right lower limb’s potential gait events
ELSE

DO eliminate potential classes with same right lower limb’s potential gait events
END IF

BERs consist of elimination rule 2 and elimination rule 3. As shown in Figure 3, the
left lower limb’s potential walking activities, left lower limb’s potential gait events, right
lower limb’s potential walking activities, and right lower limb’s potential gait events will be
eliminated by elimination rule 2 and elimination rule 3, respectively. After elimination, the
new potential walking activities and gait events will be used for the following recognition
processes of BER-FC-BesIS.
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2.6. Bilateral Elimination Rules-Based Finite Class Bayesian Inference System

The accurate prediction of upcoming walking activity is crucial for the adjustments of
lower limb assistive devices’ assist strategies [13]. This requires that BER-FC-BesIS should
not only be able to recognize steady walking activity and transition walking activity but
also be able to predict the timing when the next steady walking activity starts. When
transition walking activity is recognized, the timing of upcoming steady walking activity
can be predicted according to the recognized gait event and its proportion within a gait
cycle. Therefore, BER-FC-BesIS is designed to recognize not only walking activities (LW,
CW, CCW, LC, LCC, CL, and CCL) but also gait events (IC, LR, MSt, TSt, PS, IS, MSw,
and TSw). A transition prediction module was also designed for predicting the timing of
upcoming steady walking activity. The pseudocodes of the transition prediction module
are shown in Table 7. In each gait cycle of normal level walking, the proportion of each gait
event is relatively fixed [26]. The proportion of each gait event in a gait cycle is referenced
to [26].

Table 7. Pseudocodes of transition prediction module.

After the walking activity and gait event are recognized

DO Calculate MGCT (the mean time of the last three gait cycles, MGCT).
IF transition walking activity is recognized THEN

IF gait event is IC or LR THEN
DO The first HC of the next steady walking activity will occur after 0.9*MGCT

ELSE IF gait event is MSt THEN
DO The first HC of the next steady walking activity will occur after 0.7*MGCT

ELSE IF gait event is TSt THEN
DO The first HC of the next steady walking activity will occur after 0.5*MGCT

ELSE IF gait event is PSw THEN
DO The first HC of the next steady walking activity will occur after 0.4*MGCT

ELSE IF gait event is IS THEN
DO The first HC of the next steady walking activity will occur after 0.27*MGCT

ELSE IF gait event is MSw THEN
DO The first HC of the next steady walking activity will occur after 0.13*MGCT

ELSE
DO The first HC of the next steady walking activity will occur within 0.13*MGCT

END IF
ELSE

DO The transition prediction module is skipped
END IF

As shown in Figure 4, BER-FC-BesIS is an extension of FC-BesIS (the black dashed
square) [25]:

P(gm|st) = P(st|gm)P(gm|st−1)/P(st|st−1) (1)

Puni(gm) = Pf (gm

∣∣∣s0) = 1/M (2)

Pf (l f |gm) = h f ,m(b)/∑Numbs
b=1 h f ,m(b) (3)

P(st|gm) =
1

Ff eatures
log

Ff eatures

∏
f=1

Pf (l f

∣∣∣gm) (4)

P(st|st−1) =
M

∑
m=1

P(st|gm)P(gm|st−1) (5)

P(ai|st) =
J

∑
j=1

P(ai, ej
∣∣st) (6)



Biomimetics 2024, 9, 266 9 of 15

P(ej|st) =
I

∑
i=1

P(ai, ej
∣∣st) (7)

where st is a vector composed of Ff recorded by MTws at time t. Pf(lf|gm) is a model of
likelihood. Vt(ak, el) is the set of the finite class at time t. P(st|gm) is the likelihood of gm at
time t. P(st|st−1) is the standardized constant at time t. P(gm|st) is the posterior probability
of gm at time t. P(ak|st) is the standardized marginal posterior probability of ak. ak is the
finite walking activity. âk is the recognized walking activity. P(en|st) is the standardized
marginal posterior probability of en. en is the finite gait event. êj is the recognized gait event.
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Figure 4. The diagram of BER-FC-BesIS on the right lower limb. The black dashed square is FC-BesIS.
The blue lines indicate the expanded module of BER-FC-BesIS. (MEL: likelihood estimation model,
ER1: elimination rule 1, ER2: elimination rule 2, ER3: elimination rule 3, WA: module for recognizing
walking activities, GE: module for recognizing gait events).

The right lower limb’s BER-FC-BesIS is taken as an example. The processes of BER-
FC-BesIS are as follows. Firstly, the likelihood estimation of the collected motion data
is performed in a likelihood estimation model module. Secondly, elimination rule 1 is
performed according to the results from the likelihood estimation model. Thirdly, the
potential classes are further eliminated by elimination rule 2 and elimination rule 3. Ac-
cording to the reduced potential classes, FC-BesIS processes for walking activity and gait
event recognition are performed. Once a transition walking activity is recognized by the
decision-making (WA) module, the transition prediction module is activated to predict the
timing of upcoming steady walking activity.

2.7. Statistical Analysis

To evaluate the algorithm performance across all subjects, we conducted a two-way
repeated measures analysis of variance (ANOVA) with an α value set to 0.05.

3. Results

The performances of FC-BesIS and BER-FC-BesIS on predicting upcoming steady
walking activity were evaluated by testing experiments. The results consist of three parts:
(1) the walking activity recognition accuracy of FC-BesIS; (2) the gait event recognition accuracy
of BER-FC-BesIS; and (3) the walking activity prediction performance of BER-FC-BesIS.
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3.1. Walking Activity Recognition Accuracy of FC-BesIS

FC-BesIS that is based on unilateral motion data was first evaluated in the testing
experiments. The mean recognition accuracy of each walking activity was adopted to
evaluate the performance of FC-BesIS quantitatively. The walking activity recognition
accuracy confusion matrixes of bilateral lower limbs are as shown in Figure 5. Figure 5a is
the mean recognition accuracy confusion matrix of the left lower limb’s walking activities.
The left lower limb’s mean recognition accuracies of LW, CW, CCW, LC, LCC, CL, and
CCL are 67.11%, 50.56%, 68.25%, 51.98%, 58.12%, 46.74%, and 46.06%, respectively. The
mean decision time of walking activity recognition is 62.35 ms. Figure 5b is the mean
recognition accuracy confusion matrix of the right lower limb’s walking activities. The
right lower limb’s mean recognition accuracies of LW, CW, CCW, LC, LCC, CL, and CCL
are 65.11%, 55.56%, 66.25%, 57.98%, 57.12%, 56.74%, and 49.06%, respectively. The mean
decision time of walking activity recognition is 59.81 ms, across all subjects (p < 0.05). The
mean recognition accuracy of FC-BesIS is lower than 70%, across all subjects (p < 0.05).
The low mean recognition accuracy based on unilateral motion data is consistent with
the conclusion in [24]. Since the mean recognition accuracy of transition walking activity
recognition is low, FC-BesIS is not appropriate for the accurate prediction of upcoming
steady walking activity. Therefore, it is reasonable to introduce BER to FC-BesIS for the
improvement of mean recognition accuracy.
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Figure 5. Walking activity confusion matrix of FC-BesIS. (a) Confusion matrix of left lower limb’s
walking activity recognition. (b) Confusion matrix of right lower limb’s walking activity recognition.

3.2. Gait Event Recognition Performance of BER-FC-BesIS

The transition prediction module is built based on the sequence and proportion of a
gait event in a gait cycle. An accurate recognition of a gait event is the key to ensure the
efficiency of a transition prediction module. The gait event recognition accuracy confusion
matrixes of bilateral lower limbs are shown in Figure 6. Figure 6a is the mean recognition
accuracy confusion matrix of the left lower limb’s gait events. The left lower limb’s mean
recognition accuracies of IC, LR, MSt, TSt, PS, IS, MSw, and TSw are 100.00%, 100.00%,
95.67%, 100.00%, 92.67%, 100.00%, 100.00%, and 100.00%. The mean decision time of gait
event recognition is 45.98 ms, across all subjects (p < 0.05). Figure 6b is the mean recognition
accuracy confusion matrix of the right lower limb’s gait events. The right lower limb’s
mean recognition accuracies of IC, LR, MSt, TSt, PS, IS, MSw, and TSw are 100.00%, 93.45%,
95.67%, 100.00%, 98.63%, 100.00%, 100.00%, and 98.65%. The mean decision time of gait
event recognition is 50.27 ms, across all subjects (p < 0.05). The mean recognition accuracies
of BER-FC-BesIS on recognizing bilateral lower limbs’ gait events is 98.42%, across all
subjects (p < 0.05).



Biomimetics 2024, 9, 266 11 of 15

Biomimetics 2024, 9, 266 13 of 18 
 

 

 

 
(a) (b) 

Figure 6. Gait event confusion matrix of BER-FC-BesIS. (a) Confusion matrix of left lower limb’s gait 
event recognition. (b) Confusion matrix of right lower limb’s gait event recognition. 

  

Figure 6. Gait event confusion matrix of BER-FC-BesIS. (a) Confusion matrix of left lower limb’s gait
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3.3. Walking Activity Prediction Performance of BER-FC-BesIS

The walking activity recognition accuracy confusion matrixes of bilateral lower limbs
are as shown in Figure 7. Figure 7a is the mean recognition accuracy confusion matrix of
the left lower limb’s walking activities. The left lower limb’s mean recognition accuracies
of LW, CW, CCW, LC, LCC, CL, and CCL are 89.70%, 99.25%, 91.60%, 92.80%, 94.50%,
92.03%, and 96.06%, respectively. The mean decision time of walking activity recognition
is 23.19 ms, across all subjects (p < 0.05). Figure 7b is the mean recognition accuracy
confusion matrix of the right lower limb’s walking activities. The right lower limb’s
mean recognition accuracies of LW, CW, CCW, LC, LCC, CL, and CCL are 92.70%, 98.25%,
93.60%, 95.81%, 96.37%, 94.15%, and 94.02%, respectively. The mean decision time of
walking activity recognition is 29.52 ms, across all subjects (p < 0.05). Figure 7c shows
the recognition results of subject 1 within one testing experiment cycle. The real walking
activity, recognized walking activity by FC-BesIS, and recognized walking activity by
BER-FC-BesIS are represented by the red line, black dashed line, and blue dot dashed
line, respectively. The recognition performance of BER-FC-BesIS is greatly improved over
FC-BesIS. The prediction accuracy of BER-FC-BesIS is 93.98%, across all subjects (p < 0.05).

As shown in Figure 8a, the numbers of potential classes in FC-BesIS and BER-FC-
BesIS from 2 to 3.6 s were compared with each other. It is obvious that BER-FC-BesIS
eliminated more potential classes than FC-BesIS. As shown in Figure 8b, all through the
testing experiments, the mean potential classes of BER-FC-BesIS are 3.95 with a standard
deviation of 2.47. The mean potential classes of FC-BesIS are 4.76 with a standard deviation
of 2.74. According to bilateral motion data, BER-FC-BesIS reduces more potential classes
than FC-BesIS before decision-making. Thus, a higher recognition accuracy as shown in
Figure 7a,b is achieved.

Through a transition prediction module, BER-FC-BesIS can predict when the first
HC of upcoming steady walking activity is performed by the subject. The time difference
between the predicted time and real time is used to quantitatively evaluate the prediction
accuracy of BER-FC-BesIS. A positive time difference indicates that the predicted time of
upcoming steady walking activity is earlier than the real time of upcoming steady walking
activity. A negative time difference indicates that the predicted time of upcoming steady
walking activity is later than the real time of upcoming steady walking activity. The mean
predicted time and mean time difference are shown in Table 8. The right lower limb’s
mean predicted time is 119.32 ms with a standard deviation of 9.71 ms, across all subjects
(p < 0.05). The left lower limb’s mean predicted time is 113.75 ms with a standard deviation
of 11.83 ms, across all subjects (p < 0.05). The right lower limb’s mean time difference is
14.22 ms with a standard deviation of 3.74 ms, across all subjects (p < 0.05). The left lower
limb’s mean time difference is 13.59 ms with a standard deviation of 4.92 ms, across all
subjects (p < 0.05).
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the Motion capture system, black dashed line: the recognized walking activity by FC-BesIS, blue dot
dashed line: the recognized walking activity by BER-FC-BesIS).
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Table 8. The mean predicted time and mean time difference.

MPT ± STD (ms) MTD (±STD) (ms)

Right 119.32 ± 9.71 14.22 ± 3.74
Left 113.75 ± 11.83 13.59 ± 4.92

MPT: mean predicted time, MTD: mean time difference between predicted time and real time, STD: standard
deviation.

4. Discussion
4.1. Summary

In this study, BER-FC-BesIS is proposed to predict upcoming steady walking activity
(LW, CW, and CCW, etc.) during level walking. The prediction performance of BER-FC-
BesIS is quantitively evaluated by testing experiments. The experimental results show
that the introduction of BERs greatly improves the accuracy and speed of BER-FC-BesIS in
predicting upcoming steady walking activity. To our knowledge, BER-FC-BesIS is the first
prediction algorithm that has realized the prediction of the transition between LW, CW,
and CCW.

4.2. Advantages of BER-FC-BesIS

In state-of-the-art walking activity recognition algorithms, recognition is performed
separately by a unilateral lower limb according to unilateral motion data only [27–30]. Al-
though, steady walking activity such as LC, CW, and CCW can be classified and recognized
based on unilateral motion data [24]. In the real world, transition walking activity such as
LC, LCC, CL, and CCL are inevitable, and it is hard to distinguish them from LW, CW, and
CCW using only unilateral motion data [24]. The mean recognition accuracy of FC-BesIS
on recognizing transition walking activities and steady walking activities is lower than 70%.
The experimental results show that it is difficult to accurately classify transition walking
activities and steady walking activities based on unilateral motion data, which is consistent
with the conclusion in [24].

Therefore, in order to improve the recognition accuracy of transition walking activity
and steady walking activity, it is necessary to improve the mean recognition accuracy of
FC-BesIS. It has been demonstrated that reducing the number of potential classes before
decision-making can effectively improve the accuracy and speed of walking activity (LW,
CW, and CCW) recognition even only using unilateral motion data [25]. Therefore, it is
reasonable to introduce BERs into FC-BesIS. A BER enables the bilateral motion data to
be used by unilateral walking activity recognition. Thus, more efficient elimination is
achieved with the help of BERs. The prediction accuracy and speed of BER-FC-BesIS meet
the requirements of lower limb assistive devices’ control systems [22]. The experimental
results demonstrate that the elimination rules based on bilateral sequential relationships
of walking activities and gait events can effectively improve the prediction accuracy of
upcoming steady walking activity.

4.3. Potential Improvements and Future Works

BER-FC-BesIS has realized the accurate prediction of upcoming steady walking activity.
The experimental results in Figure 7a,b and Figure 8b show that the accuracy and speed of
recognition can be improved by eliminating potential classes before decision-making. By
further optimizing and extending the elimination rules, it is expected that BER-FC-BesIS
would be able to predict more kinds of upcoming steady walking activities, such as RA/RD
and SA/SD.

The recognition and prediction algorithms for walking activities (e.g., LW, RA/RD,
SA/SD, etc.) have been studied extensively [28–30]. One of the original intentions of this
study was to emphasize and verify the prediction of upcoming LW, CW, and CCW possible
during level walking. The other intention of this study is to lay the foundation of the
following studies in non-linear walking prediction by proposing a prediction algorithm.
Therefore, this study did not study and test the performance of BER-FC-BesIS in the
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recognition and prediction of linear walking activities, such as LW, RA/RD, and SA/SD.
However, it can be seen from [31], even an original BesIS is able to accurately recognize
walking activities, such as LW, RA/RD, and SA/SD. As an extension of BesIS, BER-FC-BesIS
has the potential to recognize and predict linear walking activities, such as LW, RA/RD,
and SA/SD. To verify this hypothesis, the performance of BER-FC-BesIS in the recognition
and prediction of linear walking activities will be tested in our future works.

5. Conclusions

The major contribution of this study is to demonstrate that LW, CW, CCW, LC, LCC,
CL, and CCL can not only be recognized but also be predicted. BER-FC-BesIS is proposed in
this paper to accurately predict upcoming steady walking activity (e.g., LW, CW, and CCW)
by recognizing transition walking activity (e.g., LC, LCC, CL, and CCL). The introduction
of bilateral elimination rules greatly improved the prediction performance of BER-FC-BesIS.
The testing experiments’ results demonstrate that the mean predicted time and mean time
difference in BER-FC-BesIS both meet the requirements of the lower limb assist devices’
control strategies’ adjustments. Furthermore, this study provides a new insight into the
prediction of walking activities’ transition with emphasis on non-linear walking.

Future work focuses on the prediction of the transition between LW, RA/RD, SA/SD,
and CW/CCW. A larger subject pool with amputees will also be adopted to further test the
performance of BER-FC-BesIS.

Author Contributions: Conceptualization, W.S. and K.L.; methodology, W.S.; software, T.G.; vali-
dation, T.G. and Y.W.; formal analysis, Y.W.; investigation, W.S.; resources, W.S.; data curation, K.L.;
writing—original draft preparation, W.S.; writing—review and editing, W.S.; visualization, T.G.;
supervision, Y.W.; project administration, Y.W.; funding acquisition, Y.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the Fundamental Research Funds for the Central Universities,
No. 30922010719.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Ethics Committee of Nanjing University of Science and Technology
(protocol code NJUST-HE-AIM-01, 22 January 2024).

Informed Consent Statement: Informed consent was obtained from all subjects involved in
the study.

Data Availability Statement: Data are unavailable due to privacy or ethical restrictions.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Blakemore, S.-J.; Decety, J. From the perception of action to the understanding of intention. Nat. Rev. Neurosci. 2001, 2, 561–567.

[CrossRef]
2. Zhang, K.; Wang, J.; de Silva, C.W.; Fu, C. Unsupervised cross-subject adaptation for predicting human locomotion intent. IEEE

Trans. Neural Syst. Rehabil. Eng. 2020, 28, 646–657. [CrossRef]
3. Ledoux, E.D. Inertial sensing for gait event detection and transfemoral prosthesis control strategy. IEEE Trans. Biomed. Eng. 2018,

65, 2704–2712. [CrossRef] [PubMed]
4. Young, A.J.; Ferris, D.P. State of the art and future directions for lower limb robotic exoskeletons. IEEE Trans. Neural Syst. Rehabil.

Eng. 2017, 25, 171–182. [CrossRef] [PubMed]
5. Zha, F.; Sheng, W.; Guo, W.; Qiu, S.; Wang, X.; Chen, F. The exoskeleton balance assistance control strategy based on single step

balance assessment. Appl. Sci. 2019, 9, 884. [CrossRef]
6. Ding, Y.; Kim, M.; Kuindersma, S.; Walsh, C.J. Human-in-the-loop optimization of hip assistance with a soft exosuit during

walking. Sci. Robot. 2018, 3, eaar5438. [CrossRef]
7. Stolyarov, R.; Burnett, G.; Herr, H. Translational Motion Tracking of Leg Joints for Enhanced Prediction of Walking Tasks. IEEE

Trans. Biomed. Eng. 2018, 65, 763–769. [CrossRef]
8. Gates, D.; Lelas, J.; Croce, U.; Herr, H.; Bonato, P. Characterization of ankle function during stair ambulation. In Proceedings of

the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, USA, 1–5
September 2004; pp. 4248–4251.

https://doi.org/10.1038/35086023
https://doi.org/10.1109/tnsre.2020.2966749
https://doi.org/10.1109/tbme.2018.2813999
https://www.ncbi.nlm.nih.gov/pubmed/29993444
https://doi.org/10.1109/tnsre.2016.2521160
https://www.ncbi.nlm.nih.gov/pubmed/26829794
https://doi.org/10.3390/app9050884
https://doi.org/10.1126/scirobotics.aar5438
https://doi.org/10.1109/tbme.2017.2718528


Biomimetics 2024, 9, 266 15 of 15

9. Wang, Q.; Yuan, K.; Zhu, J.; Wang, L. Walk the walk: A lightweight active transtibial prosthesis. IEEE Robot. Autom. Mag. 2015, 22,
80–89. [CrossRef]

10. Miller, J.D.; Beazer, M.S.; Hahn, M.E. Myoelectric walking mode classification for transtibial amputees. IEEE Trans. Biomed. Eng.
2013, 60, 2745–2750. [CrossRef]

11. Liu, M.; Zhang, F.; Huang, H. An adaptive classification strategy for reliable locomotion mode recognition. Sensors 2017, 17, 2020.
[CrossRef]

12. Du, L.; Zhang, F.; Liu, M.; Huang, H. Toward design of an environment-aware adaptive locomotion-mode-recognition system.
IEEE Trans. Biomed. Eng. 2012, 59, 2716–2725. [CrossRef] [PubMed]

13. Gong, C.; Xu, D.; Zhou, Z.; Vitiello, N.; Wang, Q. Real-time on-board recognition of locomotion modes for an active pelvis
orthosis. In Proceedings of the 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids), Beijing, China,
6–9 November 2018; pp. 346–350.

14. Gong, C.; Xu, D.; Zhou, Z.; Vitiello, N.; Wang, Q. BPNN-Based real-time recognition of locomotion modes for an active pelvis
orthosis with different assistive strategies. Int. J. Humanoid Robot. 2020, 17, 2050004. [CrossRef]

15. Long, Y.; Du, Z.-J.; Wang, W.-D.; Zhao, G.-Y.; Xu, G.-Q.; He, L.; Mao, X.-W.; Dong, W. PSO-SVM-Based online locomotion mode
identification for rehabilitation robotic exoskeletons. Sensors 2016, 16, 1408. [CrossRef] [PubMed]

16. Ai, Q.; Zhang, Y.; Qi, W.; Liu, Q.; Chen, K. Research on lower limb motion recognition based on fusion of sEMG and accelerometer
signals. Symmetry 2017, 9, 147. [CrossRef]

17. Spanias, J.A.; Simon, A.M.; Finucane, S.; Perreault, E.; Hargrove, L. Online adaptive neural control of a robotic lower limb
prosthesis. J. Neural Eng. 2018, 15, 016015. [CrossRef] [PubMed]

18. Artemiadis, P.K.; Kyriakopoulos, K.J. An EMG-Based robot control scheme robust to time-varying EMG signal features. IEEE
Trans. Inf. Technol. Biomed. 2010, 14, 582–588. [CrossRef] [PubMed]

19. Lee, S.W.; Wilson, K.M.; Lock, B.A.; Kamper, D.G. Subject-specific myoelectric pattern classification of functional hand movements
for stroke survivors. IEEE Trans. Neural Syst. Rehabil. Eng. 2011, 19, 558–566. [CrossRef] [PubMed]

20. Taborri, J.; Palermo, E.; Rossi, S.; Cappa, P. Gait partitioning methods: A systematic review. Sensors 2016, 16, 66. [CrossRef]
21. Liu, M.; Wang, D.; Huang, H. Development of an environment-aware locomotion mode recognition system for powered lower

limb prostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24, 434–443. [CrossRef]
22. Gopura, R.A.R.C.; Bandara, D.S.V.; Gunasekara, J.M.P.; Jayawardane, T.S.S. Recent trends in EMG-based control methods for

assistive robots. In Electrodiagnosis in New Frontiers of Clinical Research; InTech Open: London, UK, 2013; p. 32.
23. Glaister, B.C.; Bernatz, G.C.; Klute, G.K.; Orendurff, M.S. Video task analysis of turning during activities of daily living. Gait

Posture 2007, 25, 289–294. [CrossRef]
24. Akiyama, Y.; Okamoto, S.; Toda, H.; Ogura, T.; Yamada, Y. Gait motion for naturally curving variously shaped corners. Adv. Robot.

2017, 32, 77–88. [CrossRef]
25. Sheng, W.; Zha, F.; Guo, W.; Qiu, S.; Sun, L.; Jia, W. Finite Class Bayesian Inference System for Circle and Linear Walking Gait

Event Recognition Using Inertial Measurement Units. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 2869–2879. [CrossRef]
[PubMed]

26. Grant, A.D. Gait analysis: Normal and pathological function. JAMA-J. Am. Med. Assoc. 2010, 304, 907. [CrossRef]
27. Pew, C.; Klute, G.K. Turn intent detection for control of a lower limb prosthesis. IEEE Trans. Biomed. Eng. 2018, 65, 789–796.

[CrossRef] [PubMed]
28. Bartlett, H.L.; Goldfarb, M. A phase variable approach for IMU-based locomotion activity recognition. IEEE Trans. Biomed. Eng.

2018, 65, 1330–1338. [CrossRef] [PubMed]
29. Prateek, G.V.; Mazzoni, P.; Earhart, G.M.; Nehorai, A. Gait cycle validation and segmentation using inertial sensors. IEEE Trans.

Biomed. Eng. 2020, 67, 2132–2144. [CrossRef] [PubMed]
30. Islam, M.; Hsiao-Wecksler, E.T. Detection of gait modes using an artificial neural network during walking with a powered

ankle-foot orthosis. J. Biophys. 2016, 2016, 7984157. [CrossRef]
31. Martinez-Hernandez, U.; Dehghani-Sanij, A.A. Adaptive Bayesian inference system for recognition of walking activities and

prediction of gait events using wearable sensors. Neural Netw. 2018, 102, 107–119. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/mra.2015.2408791
https://doi.org/10.1109/tbme.2013.2264466
https://doi.org/10.3390/s17092020
https://doi.org/10.1109/tbme.2012.2208641
https://www.ncbi.nlm.nih.gov/pubmed/22996721
https://doi.org/10.1142/s0219843620500048
https://doi.org/10.3390/s16091408
https://www.ncbi.nlm.nih.gov/pubmed/27598160
https://doi.org/10.3390/sym9080147
https://doi.org/10.1088/1741-2552/aa92a8
https://www.ncbi.nlm.nih.gov/pubmed/29019467
https://doi.org/10.1109/titb.2010.2040832
https://www.ncbi.nlm.nih.gov/pubmed/20172839
https://doi.org/10.1109/tnsre.2010.2079334
https://www.ncbi.nlm.nih.gov/pubmed/20876030
https://doi.org/10.3390/s16010066
https://doi.org/10.1109/tnsre.2015.2420539
https://doi.org/10.1016/j.gaitpost.2006.04.003
https://doi.org/10.1080/01691864.2017.1396251
https://doi.org/10.1109/tnsre.2020.3032703
https://www.ncbi.nlm.nih.gov/pubmed/33085609
https://doi.org/10.1001/jama.2010.1210
https://doi.org/10.1109/tbme.2017.2721300
https://www.ncbi.nlm.nih.gov/pubmed/28678699
https://doi.org/10.1109/tbme.2017.2750139
https://www.ncbi.nlm.nih.gov/pubmed/28910754
https://doi.org/10.1109/tbme.2019.2955423
https://www.ncbi.nlm.nih.gov/pubmed/31765301
https://doi.org/10.1155/2016/7984157
https://doi.org/10.1016/j.neunet.2018.02.017

	Introduction 
	Materials and Methods 
	Subjects and Data Measurements 
	Data Processing 
	Motion Feature Extraction 
	Finite Class Bayesian Inference System 
	Bilateral Elimination Rules 
	Bilateral Elimination Rules-Based Finite Class Bayesian Inference System 
	Statistical Analysis 

	Results 
	Walking Activity Recognition Accuracy of FC-BesIS 
	Gait Event Recognition Performance of BER-FC-BesIS 
	Walking Activity Prediction Performance of BER-FC-BesIS 

	Discussion 
	Summary 
	Advantages of BER-FC-BesIS 
	Potential Improvements and Future Works 

	Conclusions 
	References

