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Abstract: This paper proposes a method for changing pixel shape by converting a CMYK raster
image (pixel) to an HSB vector image, replacing the square cells of the CMYK pixels with different
vector shapes. The replacement of a pixel by the selected vector shape is done depending on the
detected color values for each pixel. The CMYK values are first converted to the corresponding
RGB values and then to the HSB system, and the vector shape is selected based on the obtained hue
values. The vector shape is drawn in the defined space, according to the row and column matrix of
the pixels of the original CMYK image. Twenty-one vector shapes are introduced to replace the pixels
depending on the hue. The pixels of each hue are replaced by a different shape. The application of
this conversion has its greatest value in the creation of security graphics for printed documents and
the individualization of digital artwork by creating structured patterns based on the hue.
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1. Introduction

There has been a desire to modify and refine digital pictures since the beginning of
computer graphics and even today. This work was inspired in part by a series of articles
published in the 1990s, which dealt with the artistic rasterization (screening) of images [1,2].
In these papers, artistic screening was described as a new image reproduction technique in
which freely designed screening elements were used to create halftones. These were black
and white images. In artistic screening, the shape of the screen dots can be customized
according to the designer’s will. Various screen shapes created in Adobe Illustrator were
used. They are used in the creation of graphic designs of high artistic quality and in the
field of security graphics [3]. In addition, the development of computer graphics allows
for the research and creation of mathematical tools for computer-generated ornamental
patterns to create images [4]. To improve image quality without increasing the resolution
of the square pixels, variable shaped pixels are used [5,6]. The Mathematica program can
be used to test the output shapes of future screen elements. By translating mathematical
functions into the Postscript programming language, a database of screen elements of
various shapes was developed and created [7,8]. Experiments with variable shapes of
screen elements, so-called mutants, have also been performed [9]. Multicolor dithering
is applied to generate color images whose screen dots consist of artistic shapes (letters,
symbols, ornaments, etc.) [10]. An algorithm is also presented for extracting a resolution-
independent vector representation from pixel art images, which can be used to arbitrarily
enlarge the results without image degradation [11].

Images can be manipulated by applying various filters that enhance certain properties
of the image. In particular, the application of the Gaussian filter is frequently cited in
the literature as a basis for further research [12–15]. The Gaussian filter is an important
component of many algorithms in image processing. The bilateral filter was originally
introduced for the task of image denoising as an edge-preserving filter [16–19]. There are
works in which joint bilateral filtering improves the quality of photographs by combining
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an image taken with daylight and one taken with flash [20,21]. Trilateral filters for high
contrast images and meshes built from two modified forms of Tomasi and Manduchi’s
bilateral filter for edge-preserving smoothing and visual detail removal for n-dimensional
signals in computer graphics, image processing, and computer vision applications have
also been presented [22].

One of the most important and commonly used manipulations of images is pseudo-
coloring, which has applications in various fields. There are several techniques for coloring
satellite images SAR. Deep learning has become the main method of SAR colorization, with
the most advanced pix2pix method [23]. One of the methods is based on transferring black
and white images to the RGB system through the CIE Lab system [24]. Various techniques
are also used to enhance the colors in the images. For example, there is a method to improve
saturation in the context of hue-preserving color image enhancement in an RGB color space.
The proposed method handles colors in an RGB color space that has the shape of a cube,
and improves the contrast of a given image by histogram manipulation [25]. There are also
methods to improve contrast by reversible data hiding [26].

In the field of security graphics, various methods are used to protect the originality
of the image. There are various techniques to secure digital images such as encryption,
steganography, and watermarking [27–29]. Using fractal geometry, Hilbert curve-based
image protection software has been developed in Postscript programming language [30].

However, to our knowledge, there are no scientific studies in which the appearance
(shape) of the pixels themselves has been changed. Our research provides a suggestion on a
method to change the shape and appearance of pixels by inserting the various vector shapes
into an empty pixel cell. For this purpose, different vector shapes have been designed to
represent pixels in different ways for each hue in the HSB color space. The aim of this
research is to show that it is possible to change the appearance of each pixel and thereby
affect the appearance of the entire image on the basis of the hue value. In the results of
the research, we were able to present a multi-color graphic in which a different shape is
automatically displayed for each hue instead of the original pixels.

2. Materials and Methods

According to CIE, colors are represented geometrically in space, usually in 3 dimen-
sions. Color spaces are divided into device-dependent and device-independent spaces,
according to the 1996 IFRA Special Report. Device specific color spaces represent colors
relative to device properties. The most commonly used device-dependent color spaces are
RGB, CMY, CMYK, and YCC color spaces. Device-independent color spaces are based on
consistency with a standard observer’s perception, as well as perceptual uniformity. The
most common ones are: HSB, CIE XYZ, CIE xyY, CIE Lab, CIELAB, and CIE Luv. In this
document, the color systems CMYK, RGB, and HSB are used [31].

CMYK is a subtractive color system whose primary colors are cyan, magenta, and
yellow, with black added. In this system, also known as “printer inks”, colors are viewed
from the perspective of the reflection of white light on a surface. The color obtained is the
result of subtraction from the white color. Theoretically, if all the colors in this system are
mixed together, the result is the color black. The values of the CMYK colors range from 0 to
100% [32].

The additive or RGB color model consists of three primary colors: red, green, and blue.
The RGB model is used by RGB monitors and LCD screens. When all three components are
added together, white is (theoretically) obtained. The color values in the RGB system range
from 0 to 255 [33].

The HSB color model is a model of secondary and complementary colors. In it, the com-
bination of primary colors from the two previously mentioned systems leads to all other col-
ors or tones. The color wheel is used to represent hues and their ‘positions’. The hue is given
in degrees, and the values for the primary colors of the additive color model can be easily de-
termined by dividing 360 degrees into thirds (R = 0 or 360, G = 120, B = 240). By combining
the primary colors of the additive color model, the primary colors of the subtractive color
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model are also determined (R + G = Y = 60, G + B = C = 180, B + R = M = 300 degrees). In
this way, all other color tones can be defined. Moreover, each primary color of the additive
system is complementary to one color of the subtractive system (R~C, G~M, B~Y). Satura-
tion is a property which defines full hues or shades of gray, while brightness controls the
lightness or darkening of the color [34–37].

In this research, the Postscript programming language is used for image analysis
and pattern creation [38–41]. Instead of classical halftone elements, individual shapes are
created whose position is defined by the location of the pixel cell in the coordinate space of
the image. The shapes are first sketched and then programmed. A square cell is created
in which new vector shapes are programmed. The shapes are programmed to use data
about the dimensions of a particular square shape, which is the pixel size, so they can
easily be sized in relation to the dimensions of the original pixel. To apply new vector
shapes, graphics with division into CMYK system channels are used. Each image channel
is defined by a hexadecimal matrix, and the color component of each pixel is described
by two values from 00 to FF. Converted to the decimal system, it is possible to represent
256 hues for each CMYK channel. The hue of each pixel is determined by representing all
four components of the CMYK channels. The original hexadecimal code of the image is
translated into the decimal system and normalized (where 0 represents the absence of color
and 1 represents the maximum tone intensity). Figure 1 shows the research plan of image
transformation from the original image in jpeg format to the image with applied vector
shapes based on the hue value.
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The algorithm reads the CMYK values of each pixel and converts them to values
between 0 and 1. The rows and columns of the matrix are defined programmatically, based
on the image width and height. To correctly represent the pixels from all four CMYK
channels, a pixel width offset is defined on the x-axis for the columns and a pixel height
offset is defined on the y-axis for the rows. It is important to emphasize that in Postscript, it
is possible within one program (one printable page) to use all three-color systems—CMYK,
RGB, and HSB—simultaneously. This possibility will prove to be very necessary when
continuing the experimental part of the work.

Algorithm for creating a matrix of cells based on the image pixel position:

- Define the width (w) and height (h) of the cell at the position of the original pixel;
- Define the total number of columns (S) and rows (R) of the matrix;
- Construct a matrix in which the cell positions x and y are defined as x = w × s; y = h × r,

where ‘s’ and ‘r’ are the values of the current column and row.

When a cell is created with its own dimensions and position, an arbitrary shape is
created that defines a new raster element with the dimensions of the cell itself. This raster
element contains information about the coloring that was previously associated with the
pixel. The plan for conducting the experiment is shown in Figure 2.
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Figure 2. Shows 12 pixels of different hues and their replacement with a new fish shape.

For the first phase of the research, an 8-bit raster image is used, consisting of 3 rows
and 4 columns. In the first example, four solids of the CMYK system were used in the top
row, while different hues were mixed in the other two rows. The color data are expressed
in hexadecimal values, and their image is displayed with these values, i.e., an image of
12 pixels with different hues. The same image was used to manipulate the pixels that
now represent the vector shape of the “fish”. The vector shape is placed in the previously
defined square shape with pixel width and height. The data of each color channel are
converted from hexadecimal values to values between 0 and 1, adapted to the Postscript
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programming language. The newly obtained data for each pixel are then plotted in the
shape of a fish.

In the next phase of the research, a different shape is used for each of the CMYK
channels. The experiment consists of four solid squares of C, M, Y, and K. The image is
saved with the separation of the channels. A new alternative pixel shape is defined for each
channel (Figure 3a,b).
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(b) shows enlarged details of the pixel layout.

The pixels in the cyan channel are replaced by a Bezier curve to which a pseudorandom
number has been added as the x value in the first control point and the x and y values
in the second control point. In this way, the curves are drawn differently for each pixel,
randomly but predefined by the seed of the pseudorandom numbers.

In the magenta channel, the pixels are replaced by three circles, with the initial angle
at the largest of the three circles also determined by pseudorandom numbers.

The pixels in the yellow channel are replaced by heart shapes.
In the last K channel, the pixels are replaced by a fish shape. The conditions are

set to split the image so that a different replacement shape for the pixels is chosen for
each channel.

In the continuation, the investigation has been extended to the three basic colors of the
RGB system (Figure 4). Seven new shapes were used: random curves (lines), the letter ‘a’, a
star, a wave, a diamond, and rotating squares.

Seven new shapes were used: random curves (lines), the letter ‘a’, a star, a wave, a
diamond, and rotating squares (Figure 4).

In the next phase of research, we wanted to extend the sampling of new replacement
shapes for the classic pixels to more hues, not just the basic ones from the CMYK and RGB
systems, for which it is easy to set the conditions. We encountered an obstacle in that it
was not possible for us to achieve an appropriate response by combining these two-color
systems and setting conditions for selecting another element for a particular hue. Setting
the condition would result in at least one hue popping out and displaying the wrong vector
element or no vector element at all. Therefore, the conversion was made from the CMYK
system to the RGB system to the HSB system. Figure 5 shows the result of displaying
different hues after conversion.
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The first step is to read the cyan, magenta, yellow, and black values from the hexadeci-
mal data contained in the image.

To perform the conversion from CMYK to RGB, the CMYK values read from the image
are converted to CMY (K = 0) using the “gray component replacement” (GCR) method
with the minimization of the black component.

The formulas in Equation (1) show the conversion from CMYK to CMY (K = 0):

C1 = C + K
M1 = M + K
Y1 = Y + K

K1 = K − K = 0

(1)

In the next step, the values of the newly obtained C, M, and Y are converted to the
RGB system using the complementarity method shown in Equation (2):

R = 1 − C1
G = 1 − M1
B = 1 − Y1

(2)

The last step is the conversion from RGB to HSB. First, the largest and smallest values
of the RGB components must be determined (e.g., for R = 25, G = 70, B= 15, the smallest
value would be the B component and the largest would be the G component). The highest
value ‘max’ is appended to the brightness component of the HSB.

Hue and saturation are defined by the difference between the maximal and minimal
RGB value. If the difference is zero, then the saturation is also zero, otherwise it is calculated
as follows in the formula:

S = (max − min)/max (3)

For hue, the following conditions apply: If the difference ∆max–min between the max
and min is zero, then the hue is zero. If this is not the case, then the highest value of the
three RGB components is searched for (max) and calculated according to the following
expressions in Equation (4):

For R = max, H = (G − B/∆max-min) × 60/360
For G = max, H = 2 + (B − R/∆max-min) × 60/360
For B = max, H = 4 + (R − G/∆max-min) × 60/360

(4)

if H turns out to be a negative number in a calculation, 1 is added to it.
This experiment led to the final phase, where a problem was also encountered. The

HSB color wheel was used, which is divided into 20 hues. The pixels of each hue were
to be replaced by a vector shape. However, while some hues responded correctly to the
program’s requirements, others did not. The result is shown in Figures 6b and 7 (enlarged
detail of Figure 6b). Figure 6a presents the original image that was used totest our method.
The Postscript code of this example can be found in the supplementary material under the
name Code S1.
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Figure 7. Shows enlarged details of Figure 6b. Some hues responded correctly to the program’s
requirements, others did not. Some shapes appear in more than one hue interval (green waves,
blue lines).

3. Results

Since the shapes were not distributed according to the hues and conditions set, addi-
tional measurements and corrections were made. It was found that the color settings affect
the way of conversion from the CMYK system to the HSB system, and also the distribution
of the shapes within a certain interval. The colors are grouped around some tones, i.e., they



J. Imaging 2023, 9, 106 9 of 21

are too similar to each other, and this is exactly the reason why the program uses the same
shape for several neighboring tones, despite the precisely set conditions (Figure 7). The
measurements gave different results. The hues group around certain hue angles. This is
particularly pronounced for green, green-blue, blue, and blue-violet hues, hue (72, 90), hue
(90, 108, 126, 144), hue (234, 252), hue (252, 270), and the general absence of cyan (hue 180).
Although the hues constantly increase by a constant angle of 18 degrees, in reality, the C,
M, and Y values do not exactly follow this change. For example, at angles 90, 108, 126,
and 144, the equivalent of the C, M, and Y values are almost the same (53, 0, 100; 65, 0,
100; 68, 0, 100; 66, 0, 91). After extensive analysis and measurements, we concluded that
the hue spacing must be increased for certain hues and decreased for others to achieve an
appropriate distribution of hues across all twenty parts and black. To produce the desired
hue separations, five different color settings were used to analyze the hue behavior of C, M,
and Y. The hue of each of the five color settings was then used to produce the desired hue
separations. These color settings provide different separation methods and are designed to
use different inks under different printing conditions and on different papers. Euroscale
Coated V2, for example, uses specifications designed to produce high-quality separations
with Euroscale inks at 300% total ink coverage, positive plate, and bright white coated
paper. Fogra was developed by the German Graphic Technology Research Organization,
Japan was developed by the Japan Magazine Publisher Association, and the U.S. was
developed to produce quality separations using U.S. inks. Using these color settings and
the differences in the C, M, and Y values in correlation to hue, as shown in Table 1, will
result in the correct color setting and the correct distribution of shapes as a function of hue.
The first column of Table 1 contains the data used for the example in Figure 7. The other
columns contain measurement data as a function of various color settings. Chart 1 shows
the poor distribution of C, M, and Y in certain parts of the spectrum. Table 1 shows the C, M,
and Y values correlated with the hue angle. Viewed from left to right, the mathematically
calculated values are shown first, followed by the measured values using five different
color settings.
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Table 1. Shows the differences in the correlations of C, M, Y on hue (H) with respect to the mathemat-
ically determined angle relative to the measured values for five different color settings.

Mathematecally Euroscale Coated V2 Uncoated Fogra 29

H C M Y H C M Y H C M Y

0 0 100 100 0 0 94 87 0 0 98 99
18 0 70 100 18 0 80 88 18 0 78 100
36 0 40 100 36 0 46 89 36 0 41 100
54 0 10 100 54 2 4 89 54 3 1 91
72 20 0 100 72 30 0 100 72 25 0 100
90 50 0 100 90 53 0 100 90 45 0 100
108 80 0 100 108 65 0 100 108 58 0 100
126 100 0 90 126 68 0 100 126 60 0 100
144 100 0 60 144 66 0 91 144 58 0 90
162 100 0 30 162 62 0 49 162 57 0 46
180 100 0 0 180 58 0 14 180 52 0 12
198 100 30 0 198 71 12 0 198 69 13 0
216 100 60 0 216 86 55 0 216 92 61 0
234 100 90 0 234 92 70 0 234 100 75 0
252 80 100 0 252 90 73 0 252 98 77 0
270 50 100 0 270 78 77 0 270 86 80 0
288 20 100 0 288 53 78 0 288 67 81 0
306 0 100 10 306 27 80 0 306 42 81 0
324 0 100 40 324 0 92 0 324 3 94 0
342 0 100 70 342 0 95 52 342 0 100 56

Japan Web Coated Photoshop 5 Web Coated V2 U.S.

H C M Y H C M Y H C M Y
0 0 98 89 0 0 87 99 0 0 99 100

18 0 88 90 18 0 78 98 18 0 84 100
36 0 52 93 36 0 51 95 36 0 47 100
54 2 7 93 54 1 11 93 54 2 4 99
72 31 0 100 72 26 0 93 72 25 0 100
90 53 0 100 90 46 0 90 90 48 0 100
108 65 0 100 108 55 0 88 108 60 0 100
126 67 0 100 126 56 0 86 126 62 0 100
144 65 0 90 144 53 0 68 144 60 0 95
162 63 0 53 162 46 0 41 162 57 0 51
180 61 0 15 180 38 0 16 180 52 0 13
198 74 14 0 198 70 15 0 198 65 15 0
216 86 67 0 216 86 58 0 216 81 61 0
234 90 82 0 234 100 78 0 234 87 76 0
252 88 84 0 252 100 81 0 252 84 78 0
270 78 87 0 270 84 77 0 270 69 79 0
288 56 89 0 288 58 70 0 288 45 82 0
306 30 91 0 306 37 68 0 306 21 84 0
324 0 96 0 324 6 87 0 324 0 96 0
342 0 98 55 342 0 90 62 342 0 99 61

Chart 1 shows the values from Table 1 for the first four columns, i.e., the correlation
of C, M, and Y as a function of hue. The mathematically determined values (large image)
show the equal distribution of the values. The values obtained by the measurement for
different color settings (five small images) show how the measured values deviate from
the mathematical model. The greatest changes are visible in the cyan (C) and magenta (M)
values, while the yellow (Y) values remain close to the mathematical model.

By correcting the interval, the correct distribution of shapes was achieved by the hue
spectrum, which was divided into 20 parts, and the added black component, which was
the goal of this research.
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The final result is shown in Figure 8. All 21 shapes were used, each in its own segment
or interval. It can also be seen that individual elements appear in other segments, as already
shown for the most challenging blues and greens.
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Figure 8. Showing a color wheel with 21 different shapes (20 + black) replacing the original pixels
with corrected intervals of hue values.

Figure 7 shows variations in individual hue intervals where the program did not
use different shapes for different intervals, but used the same shape to represent several
adjacent intervals. After correcting the tones, the result shown in Figure 8 was obtained
so that all 20 tones and the black color are displayed. The Postscript code of Figure 8
can be found in the supplementary material under the name Code S2. Chart 2 shows the
deviations of the values of each hue interval from the values obtained by calculation. The
differences in degrees between the initial and final angles within which a shape or hue
value is displayed for both cases are shown. The correct distribution of the difference values
of 18 degrees is shown in blue, and the visibly fluctuating difference is shown in red.

Chart 3 not only shows the difference between the calculated intervals and those
after correction, but also the possibility to visualize parts of the spectrum. The difference
with the color wheel example (Figure 8) is that the distribution of colors and shapes in the
example starts at 90◦ (3 of the clock) and moves counterclockwise, while in Graph 3, it
starts at 0◦ (12 of the clock) and moves clockwise.
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Chart 2. The comparison of the distribution of hue values obtained mathematically by dividing the
circle into 20 equal parts (delta) and hue intervals for correctly displayed shape distributions. Table 2
shows the values obtained mathematically at the beginning, with intervals of 18 degrees and the
values for the correct representation of the shape by the individual segments.
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Chart 3. The difference between the mathematically determined hue intervals (inner circle data—
intervals of 18 degrees) and those after correction showing the result of our method (outer circle
data—different hue intervals). Chart 4 shows the difference between the initial and final values
of the hue interval determined by the program and those measured in the case of a regular shape
distribution on the color wheel. Since the differences between the initial and final values of the hue
interval in the program solution are always 18, straight lines (blue and orange) are obtained, while
oscillations (gray and yellow) can be seen in the corrected values.



J. Imaging 2023, 9, 106 13 of 21

Table 2. The values from Chart 1 obtained mathematically, with intervals of 18 degrees and the values
for the correct representation of shapes by each segment of hue.

H
Mathematically

(Degrees)

H
Mathematically

(Values 0–1)

Interval
(Degrees)

H Displaying
Correctly
(Degrees)

H Displaying
Correctly

(Values 0–1)

Interval
(Degrees)

1 0–18 0–0.05 18 0–18 0–0.05 18

2 18–36 0.05–0.1 18 18–36 0.05–0.01 36

3 36–54 0.1–0.15 18 34.2–70.2 0.095–0.195 36

4 54–72 0.15–0.2 18 70.56–90 0.196–0.25 19.44

5 72–90 0.2–0.25 18 90–106.2 0.25–0.295 16.2

6 90–108 0.25–0.3 18 104.4–115.2 0.29–0.32 10.8

7 108–126 0.3–0.35 18 115.2–118.8 0.32–0.33 3.6

8 126–144 0.35–0.4 18 117–136.8 0.325–0.38 19.8

9 144–162 0.4–0.45 18 138.6–162 0.385–0.45 23.4

10 162–180 0.45–0.5 18 162–180 0.45–0.5 18

11 180–198 0.5–0.55 18 180–194.4 0.5–0.54 14.4

12 198–216 0.55–0.6 18 198–223.2 0.55–0.62 25.2

13 216–234 0.6–0.65 18 223.2–234 0.62–0.65 10.8

14 234–252 0.65–0.7 18 234–244.8 0.65–0.68 10.8

15 252–270 0.7–0.75 18 244.8–266.4 0.68–0.74 21.6

16 270–288 0.75–0.8 18 266.4–288 0.74–0.8 21.6

17 288–306 0.8–0.85 18 284.4–306 0.79–0.85 21.6

18 306–324 0.85–0.9 18 298.8–334.8 0.83–0.93 36

19 324–342 0.9–0.95 18 324–342 0.9–0.95 18

20 342–360 0.95–1 18 342–360 0.95–1 18
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Chart 4. Shows the difference between the initial and final values of the hue interval determined
mathematically by the program, and those measured in the case of a regular shape distribution on
the color wheel.
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Once the proper distribution of shapes is determined according to a particular hue,
the search is extended to color images. The image of a colorful bouquet of flowers is
used in the next example, as shown in Figure 9a. Figure 9b shows the result according to
the distribution of shapes depending on the determined values of the hue for each pixel.
Figure 10 shows the enlarged details of Figure 9.
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image after the pixels were replaced by different shapes based on the detected hue values.
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The next example used in our research is the image of Easter eggs (Figure 11).
Figure 11a shows the original image, while Figure 11b shows the result after applying
our method. Figure 12 shows the enlarged detail of the Figure 11 b).
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In addition to real nature images, we also tested our method on pop art images of
Marilyn Monroe. Figure 13 shows the artwork obtained by changing the shapes for the
detected hue. In this way, numerous completely different results can be obtained. In this
example, there is no right or wrong shape distribution. It is a matter of taste as to which
looks better than the other.
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Figure 13. Proposed method implemented on pop art image of Marilyn Monroe (Source: https://www.
pxfuel.com/en/desktop-wallpaper-eejre, visited on 2 May 2023), creating numerous different solutions
based on the change of shapes for the same hue.

The next example shows the difference in selecting shapes by detected hue on images
created with different color settings (Figure 14). Figure 14a shows the distributions of
the shapes depending on the detected hue using our method, while Figure 14b shows
the deviations in shape distribution using color setting Uncoated Fogra 29. Additional
figures can be found in the supplementary material under Figures S1–S4. The figures show
the deviations of the shape distribution depending on the detected hue for different color
settings as follows: Figure S1: Euroscale Coated V2; Figure S2: Japan web coated; Figure S3:
Photoshop 5; and Figure S4: U.S. web coated V2. This example also shows that even
using the original graphics for protective printing can lead to an incorrect result. Using an
incorrect color setting can result in different shapes being displayed that represent pixels
for a detected hue.

https://www.pxfuel.com/en/desktop-wallpaper-eejre
https://www.pxfuel.com/en/desktop-wallpaper-eejre
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Figure 14. (a) Right distribution of the shapes obtained with our method. (b) The distribution of the
shapes obtained using Uncoated Fogra 29 color setting—deviations are visible in the letters S, C, I, Y,
P, A, S, S.

The last example was created to show the possibility of counterfeit protection. The
example shows the original graphic and what happens to it after printing and rescanning.
The graphic would be very difficult to reconstruct using vector graphics software because
some shapes are created using random numbers, i.e., they are built and distributed ran-
domly. The shadow of the first red letter S, which passes over the letter P, has lost the
structure of the shape. The letters ‘P’ and ‘A’ show too much light detail from the shadow.
The yellow letter ‘S’ has practically lost its shadow. The colors are completely different,
especially visible in the letters ‘C’, ‘U’, ‘P’, and ‘A’. This experiment was performed with the
Canon ImagePress C165. The use of different shapes, algorithms known only to the authors,
and the correct distribution of shapes according to the detected hue make our proposed
method a good way to protect graphics from forgery. Figure 15a shows the original security
graphic and Figure 15b shows the result after printing and rescanning the graphic.
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4. Discussion and Conclusions

This work shows that by converting from CMYK to RGB and then to the HSB system,
it is possible to manipulate pixels more easily and influence their replacement by different
vector shapes depending on the hue. We managed to represent 20 different vector shapes
by replacing 20 hue intervals and one additional interval for black. When converting from
the CMYK system to the HSB system, deviations and anomalies were encountered. These
anomalies are particularly pronounced for greens and blues, as shown in the paper. These
hues are an area where research could be expanded. Several other conclusions follow from
this research. It is possible to manage different hues and replace the pixels representing
their values with different vector shapes. There are numerous graphic elements that can be
used as a replacement for square pixels. Thus, it is possible to fill the image with different
elements that change the shape of the pixels. This conclusion could be used for protection
against counterfeiting, including in art and in the economic sense.

Pixel manipulation creates great value in creating security graphics for printed docu-
ments. Pixel size can also be controlled so that vector shapes can be reduced so that they are
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not visible to the human eye, but only with the aid of a magnifying device. When scanning
and reprinting, the structures of the various vector shapes that replace the pixels would be
completely lost. The appearance of the pixels displayed in this way is simply impossible
to reproduce without the knowledge of all the algorithms used in the work. In addition
to the individualized shapes to replace standard pixel shapes, algorithms to convert to
and from different color systems also contribute, and there are few programs that allow
the use of three-color systems in one document. Furthermore, even if the algorithm is
known, additional measurements, analysis, and corrections are required at certain intervals
to achieve the desired result.

There are several software solutions for manipulating an image or its parts. At the
time of writing, we have not yet found one that can process so many hues simultaneously
and in different ways. The original image can be rendered quite differently, either on an
artistic basis or on a strictly programmable basis. Moreover, a multicolor graphic can be
represented in innumerable ways by changing the parameters or the vector shape that
represents a particular hue.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/jimaging9060106/s1, Figure S1: The deviations of the shape distribution
depending on detected hue for Euroscale coated V2 color setting; Figure S2: The deviations of the shape
distribution depending on detected hue for Japan web coated color setting; Figure S3: The deviations
of the shape distribution depending on detected hue for Photoshop 5 color setting; Figure S4: The
deviations of the shape distribution depending on detected hue for U.S. web coated V2 color setting;
Code S1: Postscript code for Figure 6; Code S2: Postscript code for Figure 8.
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