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Abstract: Highly portable nanoelectronics and large-scale electronics rely on lithium-ion batteries
(LIBs) as the most reliable energy storage technology. This method is thought to be both environmen-
tally friendly and cost-effective. We provide a study of a low-cost, abundant, and renewable supply
of carbon-based biomass with potential uses in LIBs. Renewable feedstocks have received significant
attention in recent decades as promising tools for efficient and alternative anode materials for LIBs.
Researchers can synthesise carbon-rich biochar through the pyrolytic process of biomass. Depending
on the synthetic process, precise surface chemistry, and textural qualities such as specific surface
area and porosity, this material can be customised to favour application-specific properties with a
preferred application. In this research, we look at the performance of biochar in LIBs, its properties,
and the biomass supply, and we discuss the prospects for these biomass-derived materials in energy
storage devices.

Keywords: lithium-ion batteries; sugarcane bagasse; biochar; carbon; physicochemical properties

1. Introduction

Renewable energy is the most logical way to reduce global environmental issues. The
development of renewable energy systems is very important, especially in developing
energy storage systems that are not only efficient but also cost-friendly, making them easily
accessible and affordable or, at best, reducing the cost of energy storage devices. Electro-
chemical energy storage systems (ESSs) like batteries are storage devices that store a lot of
energy and complement the power densities they possess. The way in which performance
can be further investigated is by cost, cyclability, storage, and gravimetric/volumetric
energy density [1–4].

The use of electricity is unparalleled. In today’s world, electrical energy contributes to
about 12% of the energy being used by humans. The growing population and the scarcity
of fossil fuels have caused an energy crisis and environmental problems. The main effect of
this is pollution, as excess gas is released into the atmosphere. The release of gases such as
nitrogen oxide and carbon monoxide can be very harmful to human health [5].

Nanoelectronics, such as energy storage devices, have gained a lot of attention because
of their high-power densities. Lithium-ion batteries provide electrical endurance in auto-
mobiles. Lithium-ion batteries have great efficiency and performance, are lightweight, and
have a large storage capacity. Lithium-ion batteries are secondary batteries, which means
that they may be recharged and have a reversible response. To meet the demand for energy
storage systems, an ideal material that is cost-effective, has improved electrochemical
performance, and does not contribute to the ongoing global problem is desired [1,6].

Several carbonaceous nanomaterials, such as carbon nanofibers, nanotubes, and
graphite, have been used as negative electrodes in lithium-ion batteries. Graphite has
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shown advantages in terms of high capacity because of tailoring structural and morpholog-
ically defined preparations. However, graphite has its own drawbacks, including the need
for sophisticated equipment to realise practical large-scale applications [7–9].

Thus, biomass is a renewable source rich in carbon material. They require facile
synthesis of carbon from the pyrolysis of biomass. The physicochemical properties of
this process enhance the properties of the amorphous carbon derived from biomass. The
biomass could be pyrolyzed to produce biochar and used as a carbon substitute in the anode
material. As a negative electrode, carbon-based biomass has seen a range of advantages in
lithium-ion batteries, such as good cycling stability and high capacity. Moreover, lithium-
ion batteries over the years have realised various structural material compositions. Over
the years, the main objective has remained the same, which has always been to increase
scalability while decreasing battery weight [10–12].

It is imperative to note that the overall functionality can be increased from the en-
hanced cyclability of the anode and the higher rate capabilities. To mention a few, the
strategies include energy densities, long life span, and power. For example, nanostructured
materials, such as anodes, and better cathode capacity, can improve electrode performance.
Carbon has been known to be a very conductive material since the discovery of carbon
black [13].

In this review study, we look at the porous structure of carbon generated from biomass
and the role of textural features as negative electrode materials in LIBs, low-cost, abundant,
and ecologically beneficial renewable sources derived from biomass waste. The evolution of
biochar in LIBs has included anode materials and/or nanoadditives in carbon-free batteries.
The pyrolysis temperature, doping processes, and their effects on Li-ion storage capacity,
as well as other good electrochemical properties, are reviewed.

2. Synthesis Methods

The way a material is synthesised can affect how well the material will perform.
There have been several synthesis methods that have been developed mainly based on
pore size, particle structure, conductivity, and how simple the process is and its cost-
efficiency, as shown in Figure 1. This section discusses some of the primary ways or ways
in which biomass can be synthesised into biochar. Carbonaceous materials rely heavily
on synthetic routes. For example, pyrolysis temperature, residence duration, reaction
time, and environment all influence the final carbon material property. According to a
previous study, increasing temperature reduces surface terminations such as volatile O and
H concentrations as gases. Surface terminations play a significant role in the capacities and
power densities because oxygen content drives lithium-ion deposition or insertion without
the formation of dendrites. The pyrolytic temperature affects the oxygen content and/or
new surface functionalities, and the porosity of the material changes depending on the
amount of heat the material is exposed to [5,14–17].

The lattice oxygen can be oxidized to gaseous oxygen, causing irreversible reactions,
and preventing Li from being released, resulting in lower initial Coulombic efficiency
and poor rate performance. Researchers found that oxygen surface terminations (car-
boxylic acids, ketones, and lactones) resulted in reduced intrinsic electronic conductivity
on mesoporous carbon anodes in sodium-ion batteries. However, oxygen functions such
as carboxylic anhydrides and quinones enhanced the electronic conductivity, and notably,
20.12 wt% oxygen carboxyl-rich carbon had a high affinity for Na+ and hence improved
storage capacity in sodium-ion batteries [5,17].

Among the pyrolysis, activation, or thermochemical conversion of lignocellulosic
biomass for biochar formation, torrefaction and hydrothermal carbonization techniques
were used. These processes differ in their operating temperatures, with torrefaction re-
garded for this process in an inert environment under parameters such as air pressure and
temperatures ranging from 200 to 300 ◦C. The synthetic technique is typically preferred for
biofuel production. The most current technology involves a low-cost and environmentally
beneficial route in which biochar is produced at extremely low temperatures (180–260 ◦C)
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under increased water or steam pressures. Wet biomass does not need to be predried,
making it suitable for waste streams [5,17].
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2.1. Pyrolysis

This process can be defined as the conversion of material at temperatures that are
high without oxygen. Temperature, heating rate, and reaction time are known to have a
direct influence on the biochar. Biomass goes through several temperature stages to allow
appropriate decomposition into a carbon-rich material. Carbon monoxide and carbon
dioxide volatilisation occur at 100 degrees Celsius and at around 200 degrees Celsius,
respectively, and hemicellulose, hexoses, and pentoses begin to decompose [18–21].

Cellulose will then decompose at around 240 degrees Celsius. The final component,
lignin, breaks down at temperatures below 500 degrees Celsius. This eliminates all volatile
components, such as CH4. This will result in a solid black powder, which is biochar. It has
low crystallinity, surface area, and pore volume. Another study shows that slow pyrolysis
yields carbon (78.34–56.3%) between 200 and 500 ◦C. It is vital that temperatures do not
exceed 500 degrees Celsius; otherwise, they begin to form silica, which is an undesirable
product [22–26].

2.2. Activation

Biochar can be activated both chemically and thermally. Heat treatment thermally
activates biochar in a furnace, as mentioned above, and acidic/basic matrix chemically acti-
vates the biochar. The main purpose of activation is to improve the chemical and physical
properties of the product. This method can also, in other words, be said to be cracking,
which simply involves breaking up the biomass into carbon and hydrogen [17,27,28].

Therefore, the activation of the biochar chemically also needs to be washed after the
acids react with it to achieve a neutral pH, which is vital for the functioning of the bat-
tery and to remove any impurities that may have formed during the activation process.
Chemical activation has far more advantages than thermal activation because of its short ac-
tivation time, low temperature, high surface area, and high reactivity. Potassium hydroxide
is the best activator, as it delivers the highest yield [28,29].

Equations (1)–(3) were used to calculate the product yield. Previously, similar expres-
sions were used, where m1 denotes the mass of the feed chamber + feed (in grammes), m2
is the mass of the feed chamber, and m3 is the weight of the feed chamber + product. Data
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(m1 = 600 g, m2 = 480 g, and m3 = 500 g) were obtained from a single sugarcane bagasse
conversion. The researchers reported biochar yields from the values obtained, which are
summarised in Table 1.

mBiochar = (m3 − m2) (1)

mBiochar = (m1 − m2) (2)

YieldBiochar =
mBiochar

mRaw
× 100% (3)

Table 1. Comparative study on biochar production from various feedstocks.

Biomass Waste Optimal
Temperature (◦C) Duration (min) Product Yield

(wt%) References

Sugarcane
bagasse ash 349 70 16.67 [30]

Orange Peel 300 120 - [31]
Orange albedo 300 120 - [31]
Elephant grass 300 120 14.29 [32]
Palm oil fibres 387 80 15.9 [33]
Plantain fibres 220 150 6.98 [34]

The researchers recorded the results tabulated in Table 1, in which six different feed-
stocks were investigated under the same practical conditions. Based on the results, it is
worth noting that biochar derived from sugarcane bagasse ash was more effective. Further-
more, nontabled textural properties revealed that the biochar yield of sugarcane bagasse
ash was high quality, with a significantly greater surface area than its counterparts specific
to BET [28,35–38].

The carbon feedstock, Norway spruce bark, was pretreated with ZnCl2 and KOH for
biochar 1 and biochar 2, respectively. Biochar materials were exposed to 800 ◦C for 2 h in a
tube furnace under nitrogen atmosphere. The post-treatment involved the use of diluted
6 M HCl and 1 M HCl for biochar 1 and biochar 2, respectively. The biochars underwent
vacuum filtration and then were washed several times and decanted until the supernatant
reached an approximate value of 6.5. The textural properties of biochar 1 and 2 were
investigated using N2 adsorption–desorption at 77 K, as shown in Figure 2a,b. From the
isotherm analysis, biochar 2 (Figure 2b) showed the existence of micropores in the material
ascribed to N2 adsorption, as no hysteresis loop was observed, although a hysteresis loop
was observed for biochar 1, in the range of 0.4 and 0.6, indicating mesopores in the material.
The results indicate that biochar 1 treated with ZnCl2 exhibits mesopores, while biochar 2
treated with KOH exhibits micropores at low relative pressures [39–42].

Morphological studies were also performed, as shown in Figure 2c,d, in which both
materials showed macropores, and most ultra-macropores can be observed in Figure 2c.
The macropores facilitate the permeation of the electrolyte following charge accumulation
into the cavities. Figure 2d shows the rough surface and irregular structure with small holes.
It is evident that the activation of these materials was significant. Lastly, the structural
properties of the biochars were studied, and the degree of graphitisation was also observed
in the biochars. The structural defects and disorder of the carbon materials were more
prominent in biochar too, which means that the hybridisation of sp2 was low and highly
disordered at the D peak was larger than the G peak, as shown in Figure 2f. The degree of
graphitisation can be observed in Figure 2e, implying that activation with ZnCl2 induces
graphitic fragments and thus more sp2 electronic domains of sp2 in the structure, with the
peak of G being larger than that of D [39,42–45].
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3. Biochar Characteristics

Biochar has several origins that can influence its electrochemical efficiency. These
include biomass from forestry, where during photosynthesis about a percentage of the
sunlight is stored as chemical energy. This method is far from that of fossil fuels that burn
old biomass to produce new carbon dioxide [46,47]. The next is waste from municipal
waste systems; when it comes to waste from municipal drainage, it can be considered
organic waste. Biochar derived from municipal waste usually has a high surface area,
which improves storage in LIBs. Waste of this kind has always been used in fertilisers and
composts [48].

There is also food waste and perishable waste, which contain a lot of valuable re-
sources, for example, potassium, calcium, magnesium, etc. Animal waste, for example, fish
scales, bones, and animal skin, is high in collagen and can be synthesised into a carbona-
ceous material upon pyrolysis. Eggshells are rich in nitrogen. Eggshells can be used to
make carbon-rich material, which can then be used to synthesise anode material for LIBs.
The eggshells, which are also very rich in calcium, can also be used to synthesise anode
material in LIBs, which minimises issues that may arise with electrode degrading due to
electrolytes [49,50].
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Silicon, potassium, and nitrogen are some of the elements found in perishable waste
that therefore contribute to the conductivity of carbon biochar. The next is waste from
agriculture. This refers to crop waste left over after harvest, for example, straw stems and
bagasse, stalks, and leaves. Annually large amounts of agricultural waste are produced;
the main contributors are maize, wheat, rice, sugar cane, cotton, and beans, as shown in
Figure 3. These agricultural residues are not only a good source of carbon but also serve as
self-doping for heteroatoms [51–53].
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Agriculture waste is the most abundant waste and is produced in large amounts
throughout the world. Therefore, it adds significantly to the amount of pollution that
affects the environment. In South Africa, sugarcane bagasse contributes greatly to pollution
in the country. Sugarcane is grown and harvested in KZN, and if it is not properly disposed
of, it attracts insects that affect air quality and further affect future harvests. Sugar cane
waste consists of potassium, phosphorus, methionine, and cysteine [50–53]. In this review,
further studies look at sugar-cane-derived biochar, not only because of its physicochemical
properties but also because it is the waste that is produced the most abundantly in South
Africa [38,54,55].

3.1. Elemental Composition of Biochar

Biochar consists of carbon, oxygen, nitrogen, hydrogen, and sulphur. During pyrolysis,
the composition of each of these heteroatoms is significantly reduced. Since the charring
process is closely related to the functional groups present, it is important to explore them.
The main functional group consists of mainly carbon-containing groups, for example,
carboxylic acids, hydroxyls, phenolics, and carbonyls. These functional groups may be
found in actual biomass or in the pyrolyzed product [46–49,56].

3.2. pH and Surface States

When the biochar was analysed for functional group contents and pyrolysis tempera-
tures, it was found that with an increase in the use of pyrolysis temperatures, there would
be an increase in pH. High temperatures will produce conductive biochar, whereas at low
temperatures, acidic biochar is produced. Surface charge can be defined as the difference in
conductivity between the internal and external parts of the biochar. The pH of a matrix
can tailor the surface charge of a material. And the electron-donating capacity of Biochar
was shown to increase with increasing temperature, but not at temperatures of about
500 degrees Celsius [46–55,57].
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3.3. Surface Area

This property of biochar or most material being used as anode material is crucial in the
overall performance of the device. Biochar is capable of hosting as many ions as possible.
The size of the pores in the biochar dictates how large an ion can be trapped. Biochar
with a small pore size cannot trap large substances. Larger pores and larger surface areas
can be achieved at higher pyrolysis temperatures, and the porous structure of biochar can
offer a larger surface area, thus storing a lot more lithium ions, regardless of where it is
used [56,57]. Table 2 shows the different ways in which biomass can be used in lithium-ion
batteries. Also, it offers some of the properties that make this biochar a specific part of the
battery [58].

Table 2. The uses and functions of biochar made from biomass in LIBs.

Roles of Biomass-Derived
Carbon in LIBs Biochar Types Properties of Biomass Ref.

Anode material Hard/soft carbon
Activated carbon

SP3 hybridised carbon sites,
porosity, conductivity.

[38]

Dopant Chitosan Foreign atoms N and O [38]

Binder Chitin, Chitosan Polymeric composition,
chemically stable [38]

Separator Cellulose Nonconductive, mechanically
flexible, chemically stable [38]

Current collector Carbon cloth
Conductive thin film,

mechanically flexible, and
chemically organised

[38]

Carbonaceous materials derived from biomass have been widely and highly recog-
nised, especially because they are raw materials for high-performance anode materials.
In the quest to develop environmentally friendly and economically viable sustainable
materials, Table 3 represents the various feedstock methodologies and their electrochemical
performances. Biochars are low-cost and derived from various feedstocks; and they offer a
wide range of excellent properties. Biochar-derived bagasse performed significantly higher
than its counterparts, with an initial capacity of 2347.56 g−1 [58].

Table 3. Electrochemical performance of carbon-based anodes for LIBs.

Feedstock Synthetic Route Initial Capacity (mA h g−1) Ref.

Mustard seed Hydrothermal ~822 [5]
Rice straws High temperature 2041 [59]

Bagasse Hydrothermal 2347.56 [29]
Banana peel High temperature ~2150 [60]

Wood Ball milling and pyrolysis ~315 [61]
Grass pollen Pyrolysis 788.99 [62]

Coffee waste Dry mechanochemical
grinding 764 [63]

Sisal fibre Hydrothermal 646 [64]

4. Energy Storage Systems

Energy can be generated, transmitted, converted, and stored when necessary. Now
more than ever, it has become important to store energy, but this can be difficult. This may
require bulky and expensive equipment. The main goal of many of today’s energy storage
systems is not only to have high performance but also to have a cheap and long-lasting life.
These energy storage devices should also have no negative impact on the environment. The
type of energy being stored determines a suitable energy device. Energy storage systems
consist of a storage area and an energy conversion region [65,66]. The energy storage unit
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can be operated with the use of an inverter. For others, a rectifier converts the alternating
current to direct current [67–71].

4.1. Operational Principles of LIBs

Lithium-ion batteries also have high efficiency and performance, are lightweight, and
have a high storage capacity [1]. Several cells must be placed in series to obtain direct
voltage and capacity. Normal functioning needs to be considered, since there is a positive
terminal called the cathode, where charge happens, and a negative terminal called the
anode, where oxidation occurs when discharging. Both the anode and the cathode are
soaked in the electrolyte with a separator included to separate them [4,70,71].

They can deliver the same or greater energy at half the size and weight. Unlike
lead–acid batteries, they do not charge in stages. Temperature fluctuations or energy
depletion do not affect the power output of lithium-ion batteries. Unfortunately, the reason
that LIBs have such low overall application is due to the high price and safety issues they
pose. One way to solve this problem is to develop their anode material. The most suitable
is biochar, as it is derived from renewable biomass [72,73].

Inside the device, a redox reaction is taking place; reaction (4) denotes the lithiation of
cobalt oxide (cathode) and reaction (5) the delithiation of graphite (anode). Lastly, reaction
(6) describes the overall mechanism:

CoO2 + Li+ + e− → LiCoO2 (4)

LiC6 → C6 + Li+ + e− (5)

LiC6 + CoO2 → C6 + LiCoO2 (6)

The lithiation process or charge is represented in reaction (4), and delithiation is
shown in reaction (5), which depicts the discharge process. During charging, emitted Li+

travels from the cathode and is delivered to the anode, whereas during discharge, the
opposite takes place. Graphite has also been a satisfactory conductive anode material
and is not costly to prepare, making it a viable anode material [4]. It has been reported
that its capacity is very close to its theoretical maximum, and it is important to develop
a much higher capacity. Unfortunately, poor performance rates hindered the significant
development of LIBs. To improve lithium-ion batteries, new carbon-rich materials must be
introduced [65–73].

4.2. Biochar in LIBs

Low-cost and ecologically friendly carbon obtained from biomass can be useful for
lithium-ion batteries. This section shows the impact of pristine and doped carbon matrices
from various sources and analyses their electrochemical performance.

Researchers report the slow catalytic pyrolysis of green toxic macroalgae to produce
biochar. The magnetic biochar generated in the presence of iron as a catalyst exhibited
exceptional textural qualities, with a specific surface area of 296.4 m2/g. Cyclic voltammetry
was performed on biochar in Figure 4a and magnetic biochar in Figure 4b during the 2nd,
10th, and 50th cycles, with a scan rate of 0.05 mV s−1. Half-cells exhibited typical CV
curves for carbon-based anode materials in LIBs. Furthermore, the electrode materials
demonstrated strong reversible reactions and stability based on the observable overlaps
between the two cycles. The area of the CV curves in both electrodes was determined,
and magnetic biochar had a high area under the CV curves, which is attributable to Fe
concentration; consequently, doping with Fe increases the capacity of anode materials in
Li-ion batteries [74–76].



Batteries 2024, 10, 144 9 of 19

Batteries 2024, 10, x FOR PEER REVIEW 9 of 20 
 

development of LIBs. To improve lithium-ion batteries, new carbon-rich materials must 
be introduced [65–73]. 

4.2. Biochar in LIBs 
Low-cost and ecologically friendly carbon obtained from biomass can be useful for 

lithium-ion batteries. This section shows the impact of pristine and doped carbon matrices 
from various sources and analyses their electrochemical performance. 

Researchers report the slow catalytic pyrolysis of green toxic macroalgae to produce 
biochar. The magnetic biochar generated in the presence of iron as a catalyst exhibited 
exceptional textural qualities, with a specific surface area of 296.4 m2/g. Cyclic voltamme-
try was performed on biochar in Figure 4a and magnetic biochar in Figure 4b during the 
2nd, 10th, and 50th cycles, with a scan rate of 0.05 mV s−1. Half-cells exhibited typical CV 
curves for carbon-based anode materials in LIBs. Furthermore, the electrode materials 
demonstrated strong reversible reactions and stability based on the observable overlaps 
between the two cycles. The area of the CV curves in both electrodes was determined, and 
magnetic biochar had a high area under the CV curves, which is attributable to Fe concen-
tration; consequently, doping with Fe increases the capacity of anode materials in Li-ion 
batteries [74–76]. 

 
Figure 4. CV profiles of (a) biochar and (b) magnetic biochar. Reproduced with permission from 
[76], © 2019 Elsevier Ltd. All rights reserved. 

In a novel and intriguing study, green poisonous macroalgae—a naturally occurring 
resource—was used as feedstock for lithium-ion batteries (Figure 5a–d). First, the waste 
material was used to create Fe (III)-decorated algae. After being doped with Fe (III), the 
pyrolytic feedstock was utilised to create magnetic biochar. As a result, research on LIBs 
produced some interesting findings, including an increase in surface area and electroac-
tive sites, which increased capacity (see Table 4). They conducted a comparative analysis 
and found that the magnetic biochar capacity (91%) was double that of pure biochar (62%). 
This work could lead to a breakthrough in the development of environmentally benign 
and alternative magnetic materials for use in low-cost and clean energy systems [76]. 

Figure 4. CV profiles of (a) biochar and (b) magnetic biochar. Reproduced with permission from [76],
© 2019 Elsevier Ltd. All rights reserved.

In a novel and intriguing study, green poisonous macroalgae—a naturally occurring
resource—was used as feedstock for lithium-ion batteries (Figure 5a–d). First, the waste
material was used to create Fe (III)-decorated algae. After being doped with Fe (III), the
pyrolytic feedstock was utilised to create magnetic biochar. As a result, research on LIBs
produced some interesting findings, including an increase in surface area and electroactive
sites, which increased capacity (see Table 4). They conducted a comparative analysis and
found that the magnetic biochar capacity (91%) was double that of pure biochar (62%). This
work could lead to a breakthrough in the development of environmentally benign and
alternative magnetic materials for use in low-cost and clean energy systems [76].
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Thus, carbon-rich biochar can contribute several advantages, namely increased poros-
ity, which leads to increased Li-ion storage capacity. The morphological benefit of biochar
is that it offers a high specific surface area, allowing for the increased storage of lithium
ions. Biochar also increases the diffusion rate. This increases the discharge and charge rates.
Biochar increases the stability and longevity of lithium-ion batteries, enhances the stability
of the anode material over repeated cycles, and mitigates issues that may arise, such as
fading capacity. The use of biochar is also environmentally friendly, as it uses renewable
biomass as a direct feedstock [77].

Researchers have revealed interesting findings (see Table 4, Figure 6A–D, on porous
carbon generated from nitrogen-doped human hair. According to reports, the study was
the first to synthesise anode material from the human hair hydrothermal carbonization
process, and it outperformed other biomass-based carbon compounds in terms of elec-
trochemical properties. This was thought to be related to the carbon porosity (3–24 nm
range) and graphitic nanosheet fragments, the large specific surface area of 1617 m2 g−1,
and the presence of a foreign atom, nitrogen. This was a low-cost, environmentally friendly
innovative material for LIBs [78–80].
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(C) capacity retention, and (D) capacity as a function of current density. Reproduced with per-
mission from [80], Copyright © 2014 Elsevier Ltd.

In a typical pyrolysis method, carbon was produced from soybean milk as the pre-
cursor material which underwent high temperatures (600–800 ◦C) in an inert atmosphere
of nitrogen. Figure 7a–d depicts the electrochemical analysis of carbon produced from
soybean milk as a source. This material demonstrated a high degree of graphitisation with
interconnected nanosheets suited for Li insertion, owing principally to the heteroatom
nitrogen, which improved the rate performance in LIBs for ultrathin carbon nanosheets.
The excellent Li-ion insertion capacity of this material and the reversible capacity (see
Table 4) make it a promising candidate for portable energy storage devices. The presence
of heteroatoms in the carbon matrix determines the degree of graphitisation [81–83].
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The carbon derived from sisal fibres via hydrothermal activation was tested for elec-
trochemical indicators in LIB half-cells. And the intercalation capability was shown to
be fairer in treated carbon than in untreated carbon, as shown in Figure 8. The greater
insertion capacity (see Table 4) in treated carbons results from the presence of additional
nanopores in the treated material. However, the minor inadequate capacity during cycling
is due to structural flaws originating from nanodomains, such as dangling bonds, which
are primarily the sp3 hybridised carbon of sp3. Biomass annealing or pyrolysis causes
disturbances in sp2 bonding [63,84].
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The carbon material created from the biomass was examined, and the cycling results
were obtained (Figure 9a,b). Figures 7b and 9a depict the first cycles of untreated and
treated carbon, respectively. The reported data demonstrated that the discharge–charge
curves of the manufactured electrode materials had much higher theoretical capacity values
than those of graphite, owing to the degree of disorder in the carbon material. As previ-
ously stated, the amorphous carbon was added through pyrolysis rather than improved
graphitisation. Furthermore, capacity losses have been reported, which can be accounted
for by SEI film degradation on the electrode surface and irreversible Li insertion because
of chemically adsorbed hydroxyl molecules on the surface of the microporous carbons.
Biomass has a strong Li insertion capacity and cycle stability; see Table 4. Interestingly,
Figure 5 shows that carbon-based biomass has a high Li insertion capacity and cycling
stability [63,84].
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Biomass research is a robust sector that produces useful and valuable products. The
study used a feedstock from bamboo chopsticks as a carbon source and was exposed
to a hydrothermal synthetic route in alkaline media to produce biochar. Figure 10A–D
shows the findings of a study on bamboo-derived carbon fibres. Figure 10A shows the CV
analysis of cathodic behaviour throughout an increasing voltage window, which is mostly
linked with Li intercalation into the carbon matrix. The disappearance peak in reduction is
caused by irreversible reactions, including SEI degradation in carbon fibres. The feedstock
was utilised to make carbon fibres, which were then carbonised to incorporate graphitic
pieces. The material was further examined for electrochemical performance in LIBs and
demonstrated improved rate capabilities (see Table 4). The researchers next grew MnO2
atop the carbon matrix to build a 3D core shell with synergetic effects, which led to the
excellent cycling performance of the hybrid electrode material. The good anode material for
LIBs is the result of the synergistic effects of nanostructured metal-based oxide(s) anchored
to the carbon matrix [84–88].
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Table 4 evaluates the identification of biomass and the electrochemical examination
of the carbon extracted from it. Table 4 highlights the electrochemical output of biochar
materials derived from spruce trees, sisal fibre, sugarcane bagasse, macroalgae, bamboo,
soybeans, gelatine, and human hair. The results indicate that biochar is electroactive and
can be fine-tuned to extract the most electrochemistry properties from the substance. The
biochar produced from bagasse showed an excellent capacity of 1662 mAh g−1, indicating
that this feedstock can be used for industrial purposes in the energy storage sector [89].

Table 4. Electrochemical performance of carbon-based biomass as anode material.

Biomass. Rate Capability
(mA g−1) Cycles Capacity

(mAh g−1)
Capacity

Retention Ref.

Spruce tree 100, 500, 1000 100, 1000, 5000 370, 332.4, 319 98.50 [42]

Sisal fiber - - 492/646 (T) - [63]

Sugarcane
bagasse 100 600 1662 80.2 [89]

MacroAlgae - 500 740 - [76]

Bamboo
chopsticks - 300 710 - [87]

Soybean Milk 50 100 1084 - [83]

Gelatin - 200 600 - [90]

Human hair 50, 100 50 700, 610 - [80]

4.3. Prospects

Greener and more cost-effective methods for processing sustainable batteries must
be developed. Interesting results are reported in Table 5. The morphology and structural
properties of carbonaceous materials affect electrochemical performance, whereby the
structurally dejected carbon displayed the lowest rate, and the cherry pit exhibited excellent
capacities, largely due to the porosity associated with these hard carbons [38,61,63,91,92].

Table 5. The electrochemical output of carbonaceous-based biomass materials.

Source of
Biomass Morphology

Specific
Surface Area

(m2 g−1)

Initial Discharge–
Charge Capacity
Yield (mAh g−1)

Cycles/Rate
Capability
(mAh g−1)

Ref.

Wood Hard 61 400/250 100/4 C [92]
Sisal fiber Honeycomb 103.5 1037/414 - [93]
Jute fiber Micro–meso 1028.6 1173/534.1 310.4/1.86 [94]
Plant tree

leaves Porous 518.6 906.2/460.4 242.7/2 A [63]

Tamarind
plant seeds porous 103.5 1037/414 - [95]

Cherry pit Dejected 1662 1300/300 70/1.86 A [96]

To produce porous carbon material, plane tree leaves were pyrolysed at temperatures
between 500 and 800 ◦C in an inert atmosphere. The discharge–charge curves of carbon-
based biomass that was calcined at 500, 600, 700, and 800 ◦C are shown in Figure 11. The
primary cause of the first loss of capacity is the abundant carbon pores due to electrolyte
breakdown and surface hydrogenation, which traps lithium ions and fills the gaps [95]. The
best specific surface area and maximum Coulombic efficiency were found in carbon calcined
at 700 ◦C, indicating that porous materials aid in the intercalation and deintercalation of
the reversible lithium cycle. Furthermore, calcined carbon at 800 ◦C has charge voltages of
about 1.0 V, which is different from 600 and 700 ◦C. This difference in charging voltages
encourages lithiation through pore channels and a high specific surface area [96,97].
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The use of biogenic carbon (biochar) has the potential to accelerate research on alter-
natives to greener materials, but it also has the potential to effectively address important
challenges, such as improving the electrochemical output of these technologies [97,98].
Pretreatment of carbon from biomass, depending on the type of feedstock, can increase
electron and ion transportation. The increased surface area and porosity of carbon-based
biomass are often ascribed to the excellent electrochemical properties of these carbonaceous
materials, hence their potential application in fuel cell technology, supercapacitors, and
adsorbents. Therefore, an entirely bioderived energy storage device is critical. Despite all
the benefits, the following challenges remain [97–101]:

Inadequate understanding of the behaviour of biomass-based carbon at the molecular
and electronic level. Materials generated from biomass, such as multidimensional inorganic
carbons, can help create more sustainable battery systems and components [101]. This study
has provided evidence that biochar has a future in energy storage devices and conversion.

I. The chemistry of various biomass sources should be further and extensively studied
to better understand the low cost and quality of biomass to yield significant and
promising battery performance.

II. Surface science study is also required to better take impurities or residuals to a
negligible level in biomass-derived carbon. Sophisticated techniques to explain the
chemistry of these carbonaceous nanomaterials from atomic and molecular structure
will aid in theoretical and experimental studies.
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III. A window of opportunity in this area is to opt for a tailored atomic structure of carbon
derived from biomass. In the future, upcoming authors may look at other forms of
biomass that could potentially offer improved performance.

5. Conclusions

Biomass carbon-based material is critical as new plans are established to reduce the
predominant use of fossil fuels. Biochar, which can be obtained from a variety of sources,
has been proven to be an effective substance, because it is readily available, abundant, and
inexpensive. To replace or compete with the current graphite anode, biochar demonstrated
increased energy storage capacity, stability, and overall cyclability, which are discussed in
this paper. However, research to realise possible practical applications in commercial LIBs
is still in its infancy stage.

Biochar obtained from agricultural waste, the most prevalent waste generated, has
been found to improve the efficiency and capacity of LIBs. This study demonstrated that
biochar might be used as a lithium-ion anode material. Furthermore, doping or surface
functionalisation of biochar with foreign or heteroatoms enhances its electrochemical
performance as an anode material. Carbon from renewable feedstocks or biomass ensures
low-cost and environmentally friendly procedures. As a result, it has pioneered the creation
of clean, low-cost energy storage devices. The physicochemical properties of biochar
combined with its electrochemical performance show that Li-ion storage capacity can
be improved by its textural properties, which emphasises that biochar has intercalating
strengths, as this review was able to prove.

Funding: The financial assistance of the National Research Foundation (NRF), grant number (138079)
and Eskom, grant number (2002/015527/0), South Africa, towards this research is acknowledged.

Acknowledgments: This research was supported by the Electrochemical Energy Technology Research
Group, the Energy Centre, at the CSIR, and the Sustainable and Renewable Energy Nanomaterials
Research Group, the University of the Western Cape.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Nayak, P.K.; Yang, L.; Brehm, W.; Adelhelm, P. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises.

Angew. Chem. Int. Ed. 2018, 57, 102–120. [CrossRef] [PubMed]
2. Bae, H.; Kim, Y. Technologies of lithium recycling from waste lithium-ion batteries: A review. Mater. Adv. 2021, 2, 3234–3250.

[CrossRef]
3. Xu, D.; Liang, M.; Qi, S.; Sun, W.; Lv, L.P.; Du, F.H.; Wang, B.; Chen, S.; Wang, Y.; Yu, Y. Progress and prospects of tunable organic

molecules for organic lithium-ion batteries. ACS Nano 2020, 15, 47–80. [CrossRef] [PubMed]
4. Kane, S.; Storer, A.; Xu, W.; Ryan, C.; Stadie, N.P. Biochar as a renewable substitute for carbon black in lithium ion battery

electrodes. ACS Sustain. Chem. Eng. 2022, 10, 12226–12233. [CrossRef]
5. Molaiyan, P.; Dos Reis, G.S.; Karuppiah, D.; Subramaniyam, C.M.; Garcia-Alvarado, F.; Lassi, U. Recent progress in biomass-

derived carbon materials for lithium ion and Na ion batteries: A review. Batteries 2023, 9, 116. [CrossRef]
6. Muddasar, M.; Mushtaq, M.; Beaucamp, A.; Kennedy, T.; Culebras, M.; Collins, M.N. Synthesis of sustainable lignin precursors

for hierarchical porous carbons and their efficient performance in energy storage applications. ACS Sustain. Chem. Eng. 2024, 12,
2352–2363. [CrossRef] [PubMed]

7. Abe, H.; Murai, T.; Zaghib, K. Vapor-grown carbon fiber anode for cylindrical lithium ion rechargeable batteries. J. Power Sources
1999, 77, 110–115. [CrossRef]

8. Li, W.; Huang, J.; Feng, L.; Cao, L.; Ren, Y.; Li, R.; Xu, Z.; Li, J.; Yao, C. Controlled synthesis of macroscopic three-dimensional
hollow reticulate hard carbon as long-life anode materials for Na-ion batteries. J. Alloys Compd. 2017, 716, 210–219. [CrossRef]

9. Zhao, Y.; Feng, J.; Liu, X.; Wang, F.; Wang, L.; Shi, C.; Huang, L.; Feng, X.; Chen, X.; Xu, L.; et al. Self-adaptive strain-relaxation
optimization for high-energy lithium storage material through crumpling of graphene. Nat. Commun. 2014, 5, 4565. [CrossRef]

10. Kong, X.; Zhu, Y.; Lei, H.; Wang, C.; Zhao, Y.; Huo, E.; Lin, X.; Zhang, Q.; Qian, M.; Mateo, W.; et al. Synthesis of graphene-like
carbon from biomass pyrolysis and its applications. Chem. Eng. J. 2020, 399, 125808. [CrossRef]

11. Jin, C.; Nai, J.; Sheng, O.; Yuan, H.; Zhang, W.; Tao, X.; Lou, X.W.D. Biomass-based materials for green lithium secondary batteries.
Energy Environ. Sci. 2021, 14, 1326–1379. [CrossRef]

12. Zhou, L.; Zhang, K.; Hu, Z.; Tao, Z.; Mai, L.; Kang, Y.M.; Chou, S.L.; Chen, J. Recent developments on and prospects for electrode
materials with hierarchical structures for lithium-ion batteries. Adv. Energy Mater. 2018, 8, 1701415. [CrossRef]

https://doi.org/10.1002/anie.201703772
https://www.ncbi.nlm.nih.gov/pubmed/28627780
https://doi.org/10.1039/D1MA00216C
https://doi.org/10.1021/acsnano.0c05896
https://www.ncbi.nlm.nih.gov/pubmed/33382596
https://doi.org/10.1021/acssuschemeng.2c02974
https://doi.org/10.3390/batteries9020116
https://doi.org/10.1021/acssuschemeng.3c07202
https://www.ncbi.nlm.nih.gov/pubmed/38362533
https://doi.org/10.1016/S0378-7753(98)00158-X
https://doi.org/10.1016/j.jallcom.2017.05.062
https://doi.org/10.1038/ncomms5565
https://doi.org/10.1016/j.cej.2020.125808
https://doi.org/10.1039/D0EE02848G
https://doi.org/10.1002/aenm.201701415


Batteries 2024, 10, 144 16 of 19

13. Mahmood, N.; Tang, T.; Hou, Y. Nanostructured anode materials for lithium ion batteries: Progress, challenge and perspective.
Adv. Energy Mater. 2016, 6, 1600374. [CrossRef]

14. Das, R.; Panda, S.N. Preparation and Applications of Biochar-Based Nanocomposite: A review. J. Anal. Appl. Pyrolysis 2022,
167, 105691. [CrossRef]

15. You, S.; Ok, Y.S.; Chen, S.S.; Tsang, D.C.; Kwon, E.E.; Lee, J.; Wang, H.C. A Critical Review on Sustainable Biochar System through
Gasification: Energy and environmental applications. Bioresour. Technol. 2017, 246, 242–253. [CrossRef] [PubMed]

16. Lin, Y.; Li, F.; Zhang, Q.; Liu, G.; Xue, C. Controllable preparation of green biochar-based high-performance supercapacitors.
Ionics 2022, 28, 2525–2561. [CrossRef]

17. Salimi, P.; Tieuli, S.; Taghavi, S.; Venezia, E.; Fugattini, S.; Lauciello, S.; Prato, M.; Marras, S.; Li, T.; Signoretto, M.; et al. Sustainable
lithium-ion batteries based on metal-free tannery waste biochar. Green Chem. 2022, 24, 4119–4129. [CrossRef]

18. Bartoli, M.; Arrigo, R.; Malucelli, G.; Tagliaferro, A.; Duraccio, D. Recent advances in biochar polymer composites. Polymers 2022,
14, 2506. [CrossRef]

19. Malyan, S.K.; Kumar, S.S.; Fagodiya, R.K.; Ghosh, P.; Kumar, A.; Singh, R.; Singh, L. Biochar for environmental sustainability in
the energy-water-agroecosystem nexus. Renew. Sustain. Energy Rev. 2021, 149, 111379. [CrossRef]

20. Sun, C.; Du, A.; Deng, G.; Zhao, X.; Pan, J.; Fu, X.; Liu, J.; Cui, L.; Wang, Q. Naturally nitrogen-doped self-encapsulated biochar
materials based on mouldy wheat flour were used for silicon anode in lithium-ion batteries. Electrochim. Acta 2023, 450, 142269.
[CrossRef]

21. Anand, A.; Kumar, V.; Kaushal, P. Biochar and its twin benefits: Management of crop residues and mitigation of climate change in
India. Renew. Sustain. Energy Rev. 2022, 156, 111959. [CrossRef]

22. Kang, Z.; Jia, X.; Zhang, Y.; Kang, X.; Ge, M.; Liu, D.; Wang, C.; He, Z. A review on application of biochar in the removal of
pharmaceutical pollutants through adsorption and persulfate-based AOPs. Sustainability 2022, 14, 10128. [CrossRef]

23. Li, M.; Lu, J.; Chen, Z.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561. [CrossRef] [PubMed]
24. Zhao, J.; Zhu, M.; Pang, Y.; Wu, H.; Ding, S. Layered NiPS3 nanoparticles anchored on two-dimensional nitrogen-doped biochar

nanosheets for ultra-high-rate sodium-ion storage. Compos. Commun. 2022, 29, 100988. [CrossRef]
25. Adeniyi, A.G.; Abdulkareem, S.A.; Ighalo, J.O.; Onifade, D.V.; Sanusi, S.K. Thermochemical co-conversion of sugarcane bagasse-

LDPE hybrid waste into biochar. Arab. J. Sci. Eng. 2021, 46, 6391–6397. [CrossRef]
26. Ma, C.; Wang, H.; Zhao, X.; Wang, X.; Miao, Y.; Cheng, L.; Wang, C.; Wang, L.; Yue, H.; Zhang, D. Porous Bamboo-Derived

Carbon as Selenium Host for Advanced Lithium/Sodium–Selenium Batteries. Energy Technol. 2020, 8, 1901445. [CrossRef]
27. Zhou, X.; Chen, F.; Bai, T.; Long, B.; Liao, Q.; Ren, Y.; Yang, J. Interconnected highly graphitic carbon nanosheets derived from

wheat stalk as high-performance anode materials for lithium ion batteries. Green Chem. 2016, 18, 2078–2088. [CrossRef]
28. Adeniyi, A.G.; Ighalo, J.O.; Onifade, D.V. Biochar production from elephant grass (Pernisetum purpureum) using an updraft

biomass gasifier with retort heating. Biofuels 2019, 12, 1283–1290. [CrossRef]
29. Zheng, S.; Luo, Y.; Zhang, K.; Liu, H.; Hu, G.; Qin, A. Nitrogen and phosphorus co-doped mesoporous carbon nanosheets derived

from bagasse for lithium-ion batteries. Mater. Lett. 2021, 290, 129459. [CrossRef]
30. Adeniyi, A.G.; Ighalo, J.O.; Onifade, D.V. Production of biochar from plantain fibres (Musa paradisiaca) fibers using an updraft

biomass gasifier with retort heating. Combust. Sci. Technol. 2021, 193, 60–74. [CrossRef]
31. Adelodun, A.A.; Adeniyi, A.G.; Ighalo, J.O.; Onifade, D.V.; Arowoyele, L.T. Thermochemical conversion of oil palm fiberLDPE

hybrid waste to biochar. Biofuels Bioprod. Biorefining 2020, 14, 1313–1323. [CrossRef]
32. Sun, J.; Shu, X.; Guan, J.; Tong, G.; Ding, H.; Chen, L.; Zhou, N.; Shuai, Y. N, P, and O-coated biochar from phytoremediation

residues: A promising cathode material for Li–S batteries. Nanotechnology 2022, 33, 215403.
33. Li, M.; Zhang, H.; Xiao, T.; Wang, S.; Zhang, B.; Chen, D.; Su, M.; Tang, J. Low-cost biochar derived from corncob as an oxygen

reduction catalyst in air cathode microbial fuel cells. Electrochim. Acta 2018, 283, 780–788. [CrossRef]
34. Ren, B.; Zhang, X.; Wang, B.; Li, Y.; Zeng, X.; Zhang, X.; Fan, M.; Yang, X. Designed the formation of hierarchical core-shell

NiCo2S4@ NiMoO4 arrays on cornstalk biochar as battery-type electrodes for hybrid supercapacitors. J. Alloys Compd. 2023,
937, 168403. [CrossRef]

35. Gu, X.X.; Kuang, L.Y.; Lin, J.; Qiao, S.; Ma, S.; Li, Y.; Wang, Q.; Dai, J.H.; Zhou, X.; Zhou, H.Y.; et al. Highly porous nitrogen-doped
biochar nanosheets for high-performance Li–Se batteries. Rare Met. 2023, 42, 822–829. [CrossRef]

36. Wang, X.; Zhang, Y.; Chang, Q.; Wu, Y.; Lei, W.; Zou, Y.; Ma, Z.; Pan, Y. Porous biochar nanosheets loaded with Fe3C particles
accelerate electrochemical reactions and their applications in Li–S batteries. Sustain. Energy Fuels 2021, 5, 4346–4354. [CrossRef]

37. Magnacca, G.; Guerretta, F.; Vizintin, A.; Benzi, P.; Valsania, M.C.; Nistic, R. Preparation, characterisation, and environmen-
tal/electrochemical energy storage testing of low-cost biochar from natural chitin obtained by pyrolysis under mild conditions.
Appl. Surf. Sci. 2018, 427, 883–893. [CrossRef]

38. Senthil, C.; Lee, C.W. Biomass-derived biochar materials as sustainable energy sources for electrochemical energy storage devices.
Renew. Sustain. Energy Rev. 2021, 137, 110464. [CrossRef]

39. Reis, G.S.D.; Oliveira, H.P.D.; Larsson, S.H.; Thyrel, M.; Claudio Lima, E. A short review on the electrochemical performance of
hierarchical and nitrogen-doped activated biocarbon-based electrodes for supercapacitors. Nanomaterials 2021, 11, 424. [CrossRef]
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