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Abstract: Shea tree (Vitellaria paradoxa) is an important fruit tree crop because of its oil used for
cooking and the industrial manufacture of cosmetics. Despite its essential benefits, quantitative
trait loci linked to the economic traits have not yet been studied. In this study, we performed
association mapping on a panel of 374 shea tree accessions using 7530 Single-Nucleotide Polymor-
phisms (SNPs) markers for oil yield and seed-related traits. Twenty-three SNP markers significantly
(−log10 (p) = 4.87) associated with kernel oil content, kernel length, width, and weight were iden-
tified. The kernel oil content and kernel width had the most significant marker–trait associations
(MTAs) on chromosomes 1 and 8, respectively. Sixteen candidate genes identified were linked to early
induction of flower buds and somatic embryos, seed growth and development, substrate binding,
transport, lipid biosynthesis, metabolic processes during seed germination, and disease resistance
and abiotic stress adaptation. The presence of these genes suggests their role in promoting bioactive
functions that condition high oil synthesis in shea seeds. This study provides insights into the
important marker-linked seed traits and the genes controlling them, useful for molecular breeding
for improving oil yield in the species.

Keywords: linked; marker association; annotation; genes; SNPs; shea

1. Introduction

The shea tree (Vitellaria paradoxa C. F. Gaertn.) is an important economic tree crop
known for its oil used to produce valuable products in the food and cosmetic industries [1].
The tree is endemic to Sudano-Sahelian Africa, covering 21 countries [2], where it adds
to the sustainability of sociocultural and economic wellbeing of the communities. The
shea tree: Vitellaria paradoxa C. F. Gaertn., has two described subspecies: V. paradoxa subsp.
paradoxa and V. paradoxa subsp. nilotica. The two subspecies vary for their morphological
characteristics [3]. The subspecies nilotica has larger flowers and a dense “woolly” appear-
ance that remains on young leaves and persists on leaf veins and midribs. It is characterized
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by dense ferruginous indumentum on pedicels and outer sepals, with the constituent hairs
being longer, spreading and imparting a woolly appearance to the parts during the bud
stage. The hermaphroditic and actinomorphic flowers are always in dense clusters on the
twigs that have not formed leaves [4]. In the subspecies paradoxa, the flowers have longer
styles measuring 12–15 cm [5].

The tree is a diploid (2n = 24), highly outcrossing that has undergone domestication
in the savannah parklands of Africa for over 1000 years [6]. A molecular marker study
by Allal et al. [7] placed the centre of origin of V. paradoxa in West Africa, where three
genetic groups corresponding to West, Central, and East African types were found. The
shea genome size is up to 658.7 Mbp, consisting of 38,505 coding genes [8]. There is an
observable variation in stand densities within the shea parklands, due to the differences in
land use, localities, soils, rainfall, temperature, daylight length, and ecological conditions [9],
forming seven different morphological and structural forms [10].

The shea tree is recognized as the second-highest oil-producing plant, after the oil
palm [8]. The global market for shea products was reported to be USD 30 billion in
2020 [11]. This high demand is owed to its use in the confectionary and cosmetic industries.
The demand for these natural and organic cosmetics in the European market reached
EUR 3.90 billion in 2019 [12]. The cosmetic sector alone exceeded USD 530 in 2020 and
is expected to rise to USD 1025 million in 2027. Among this, the US market alone is
projected to rise from USD 240 million in 2020 to USD 390 in 2027 and expected to grow
at a compound annual growth rate (CAGR) of 7%, due to the increasing demand in the
cosmetics industry [13]. The total export of oils from different plants to Europe in 2020 was
estimated at 300,000 tonnes, with the Netherlands and France being the leading importers.
However, both processed and unprocessed products are sold in national and international
markets, contributing to national income through foreign exchange in the shea-producing
countries. The leading producers of shea in Africa are Nigeria (361,017 tons/year), Mali
(49,640 tons/year), Burkina Faso (45,183 tons/year), and Ghana (33,878 tons/year) [11].
There is a huge and untenable supply deficit due to heightened international demand,
necessitating breeding interventions to boost production across its range.

The first recognizable shea tree improvement efforts were through a participatory
selection trial of plus trees from three countries in West Africa [14]. A larger collection
(from Burkina Faso, Benin, Nigeria, Ghana, Cameroun, Niger, and Mali) of carefully
selected plus shea trees raised from clonal materials was also established in Mali by the
World Agroforestry (CIFOR-ICRAF) [14]. Over time, there has been increasing interest in
improving shea tree productivity to meet the looming domestic and international demand
for shea products [15]. Some concerted efforts have been made in shea tree breeding at
the University of Peleforo Gon Coulibaly (UPGC) in Korhogo, Côte d’Ivoire, where some
elite trees were selected and propagated [16] by grafting to reduce the juvenile maturity
period [17]. Other innovative approaches have been used in participatory plant breeding
(PPB), using local knowledge to identify and select preferred traits by the communities.
Such traditional and contemporary breeding and selection processes are important for tree
species like shea trees, to generate new varieties with various desired properties [18].

Recent advances in shea tree genomic studies by Hale et al. [8] and Wei et al. [1]
have provided insights on the new opportunities in genome-assisted breeding. Despite
these advancements, the genomic resources remain underused for boosting production
and improving oil yield and quality. Genome-wide association studies (GWAS) provide
opportunities to identify genomic regions of an organism that are putatively associated
with the traits of interest to plant breeders [8]. With the availability of affordable and
economic modifications of genome sequencing approaches like genotyping by sequencing
(GBS), discovering and using SNP markers has become a preferred way of genotyping.
One of these technologies is the Diversity Arrays Technology Sequencing (DArTseq), where
a genome is partially sequenced using a specific combination of restriction enzymes and
the restriction tags are used for assembling and discovering the SNP markers [19]. The
discovered SNPs are generally spread all over the genome and can be used in GWAS for
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the study of a wide range of tree crop traits of economic importance [20]. This study was
carried out to identify genomic loci associated with seed oil content, seed weight, seed
length and width of the shea tree in Uganda. Determining the marker trait association shall
enhance shea tree breeding by reducing on the time required to complete the breeding cycle.

2. Materials and Methods
2.1. Plant Materials and Leaf Sampling for DNA Extraction

A total of 374 shea genotypes from the germplasm collection (Breeding Seedling
Orchard) Uganda were used in this study. A total of 3600 shea fruits/seeds were collected
from 180 families (Supplementary Table S1) in the districts of Amuru, Arua, Katakwi,
Moyo and Otuke. The seeds were then divided into two portions: for sowing and for oil
extraction. A minimum of 10 seeds were randomly picked from each family for sowing
to generate seedlings used in DNA extraction. Fifteen seeds from the remaining lot were
processed and used for oil extraction.

The shea seeds were sown in a tree nursery at Ngetta Zonal Agricultural Research De-
velopment Institute (NgeZARDI), Lira—Uganda in the month of June 2018. The seedlings
were managed in the tree nursery for 12 months until they developed between 4–6 leaves
before sampling the leaf tissues for DNA extraction. Leaf samples of 374 seedlings were
randomly picked for DNA extraction and analysis at Biosciences Eastern and Central Africa-
International Livestock Research Institute (BeCA-ILRI). Only healthy and recently flushed
leaves from the previous season were sampled and placed in DNA extraction kit and dried
using Silica gel before shipping to BeCA-ILRI.

After leaf tissue sampling, the genotypes were further managed in the nursery for
another 6 months to allow them to heal and later planted in a multi-locational trial (breeding
seed orchard) located in Lira (NgettaZARDI) and Serere (National Semi Arid Resources
Research Institute (NASARRI), using Random Complete Block Design (RCBD) in the month
of October 2019. The trials were maintained as germplasm collection for future breeding
programme in Uganda.

2.1.1. Shea Oil Extraction Procedure

Oil content was determined using Soxhlet extraction [21], the American Official Agri-
cultural Chemists’ method for determination of oil content in plant materials in the months
of September and October 2020. Oil was extracted with continuous reflux of petroleum
ether over crushed dried Shea nut powder in a Soxhlet extractor. The oil contents of each
seed lot were extracted in triplicates and presented in percentage of its dry matter content.

2.1.2. DNA Extraction and SNP Discovery by DArTseq™ Technology

Total genomic DNA from silica dried leaf samples were extracted at BeCA-ILRI
following the CetylTrimethylAmmonium Bromide (CTAB)/chloroform/isoamyl alcohol
method [22]. DNA samples were processed in digestion/ligation reactions as described
by Hale et al. [8]. The DNA was quality checked using standard processes involving 0.8%
agarose gel electrophoresis, optical measurements for 260 and 280 nm using a NanoDrop
2000 spectrophotometer (ND-2000 V3.5, NanoDrop Technologies, Inc., Wilmington, DE,
USA) and quantification using a Qubit™ 3.0 Fluorometer (Thermo Fisher Scientific, Grand
Island, NY, USA). The libraries were prepared for 752 individuals using the PstI-SphI com-
plexity reduction method [23] and partial-genome sequenced using proprietary DArTseq
(1.0) methodology [19] on a HiSeq2500 Sequencer (Illumina Inc., San Diego, CA, USA) with
72 bases read length [24,25].

Sequences generated from each lane were processed using proprietary DArT ana-
lytical pipelines. DArT-Seq™ technology relies on a complexity reduction method using
restriction enzymes that are sensitive to DNA methylated sites and repetitive DNA [24].
In the primary pipeline, the FASTQ files were first processed to filter poor-quality se-
quences, applying more selection criteria to the barcode region compared to the rest of
the sequence. Approximately 2,500,000 (±7%) sequences per barcode/sample were used
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in marker calling. Finally, identical sequences were collapsed into “fastqcall files.” These
files were used in the secondary pipeline for DArT P/L’s proprietary SNP and SilicoDArT
(Presence/Absence Markers in genomic representations) (present = 1 vs. absent = 0) calling
algorithms (DArTsoft14). The analytical pipeline processed the sequence data. The reads
were then aligned to the shea_V1 reference genome publicly available from the ORCAE
database (https://bioinformatics.psb.ugent.be/orcae) (accessed on 30 December 2021),
using BWA-MEM/VarDict mapper for mapping of reads against the reference genome [8].

2.2. Data Analysis
2.2.1. Seed Trait Data Analysis

The seed trait data were analysed using “agricolae” package in R software v 4.0 [26].
Analysis of variance (ANOVA) was performed to determine the variations within and among
the genotypes. The “corr” function in R software v.4.0 (R Core Team, 2022) was used to
calculate correlation coefficients between the studied traits and presented in graphical form.

2.2.2. Genome-Wide Association Analysis and Gene Annotation Identification

A multi-locus random-SNP-effect mixed linear model (mrMLM) [26] was implemented
in R statistical software using the mixed model equation for GWAS presented in Equation
(1), in accordance to Yu et al. [27], using additive, general; dominant alternative and
dominant reference gene action models for trait association study [28]. This current study
selected mrMLM method to avoid bottlenecks in stringent correction using other control
measures (false discovery rate (FDR) and Bonferroni correction) against false positive
rate [29]. The mrMLM uses a less stringent significance threshold considering a critical
probability value or log of odds (LOD) making it possible to identify any possible loci
of importance.

Y = Xb + Zu + e (1)

where:

Y = the vector of the phenotypic observations estimated for the traits studied;
X = the SNP markers (fixed effect) matrix;
Z = the random kinship (co-ancestry) matrix;
b = a vector representing the estimated SNP effects;
u = a vector representing random additive genetic effects, and
e = the vector for random residual errors.

The phenotypic variation explained by the model for a trait and a particular SNP
was determined using stepwise regression implemented in the “lme4” R package. The
SNP loci in significant association with traits were determined by adjusted p-value using
Bonferroni correction [30]. Quantile–quantile (QQ) plots were generated by plotting the
negative logarithms (−log10) of the p-values against their expected p-values to test the
appropriateness of the GWAS model with the null hypothesis of no association and to
determine how well the models accounted for the population structure.

To account for the putative genes linked to traits, a window range of 5 kb (upstream and
downstream) was defined [31]; and genes were searched from the V. paradoxa Whole Genome
v2.0 Assembly and Annotation v2.1 [32] in the ORCAE database (https://bioinformatics.psb.
ugent.be/orcae, accessed on the 30 November 2022) [3], with a search for candidate genes
associated with oil yield traits. The gene name, description, and AGPv4 coordinates with
their protein, were then retrieved from the Vitellaria paradoxa reference genome database.
The putative functional candidate genes linked to the associated SNPs were then annotated
in line with any initially annotated genes from other species.

A Linkage disequilibrium (LD) heat map was generated for the entire genome, with
heterozygous calls ignored and a default sliding window of 50 used in tassel software.
LD decay rate was then evaluated on a chromosome-by-chromosome basis. A measure
of LD (r2) and pairwise distance between SNPs were generated in TASSEL and exported
to R version 4.3, where scripts were written to generate LD decay plots for significant
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LD pairs. Mean LD per chromosome was calculated after every 20 kb interval, and the
average genome-wide decay rate estimated by averaging LD in each interval across all
chromosomes. A line graph was used to clearly display an overlay of chromosome-specific
and the mean genome-wide LD decay rates.

3. Results
3.1. Phenotypic Variation for the Shea Tree Traits

The traits mean values, standard deviations and the phenotypic data range of a
collection of 374 open pollinated seeds from 180 shea trees from Uganda’s parklands are
presented in Table 1.

Table 1. Summary statistics for the studied traits.

Traits Mean ± (SD a) Minimum Maximum

Kernel dry matter oil content (% b) 53.53 ± 2.28 39.05 69.77
Kernel length (cm c) 3.19 ± 0.34 1.90 8.43
Kernel width (cm) 3.61 ± 0.43 2.23 4.97
Kernel weight (mg d) 10.30 ± 0.30 2.00 18.8

a Standard Deviation; b Percentage; c Centimetre; d Milligram.

The mean seed oil content of 180 shea genotypes was 53.53% with a range of
39.05–69.77%. A relatively heavy kernels (18.81) and very low weight genotypes were also
observed (Table 1).

Analysis of variance showed that genotype, environment, and their interaction
(genotype-environment) were highly significant for kernel oil content (Table 2). Varia-
tion in kernel weight and its axial dimensions were significantly influenced by genotype
and the environment. However, the interaction of genotype and environment had no
significant effect on kernel weight and its axial dimension (Table 2).

Table 2. Summary analysis of variance for the studied traits.

Source of Variation Df a KOC b KL c KW d KWt e

Replications 2 4.81 0.01307 0.0249 0.08108
Environment 4 1840.82 *** 0.694 *** 0.82403 *** 0.90574 ***
Genotypes 373 60.42 *** 1.45026 *** 2.54701 *** 0.9112 ***
Genotype x Environment 1492 35.9 ** 0.01524 20.69 0.01666
Residuals 3738 8.61 0.0159 0.01553 0.02156

a Degrees of freedom; b Kernel dry matter oil content (%); c kernel length (cm); d kernel width (cm); e Kernel
weight (mg) and levels of significance ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05.

Seed oil content showed a significant positive correlation with kernel width (r = 0.1,
p ≤ 0.001). However, it negatively correlated with kernel weight (−0.01) and kernel length
(−0.09) (Figure 1). The result further revealed a moderate (0.44) correlations between kernel
width and kernel weight, and kernel width and kernel oil content (0.1), whereas oil content
is negatively correlated with kernel weight (−0.1) and kernel length (−0.9) (Figure 1).
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Figure 1. Correlation among four traits (Length = Kernel length, Width = Kernel width and
Weight = Kernel Weight and Oil = Kernel oil content) of the 374 Shea tree lines. Colour in the
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3.2. Marker Coverage and SNP Distribution

The SNP calling pipeline generated 30,733 highly polymorphic SNP markers, of which
27,063 (88.1%) remained unmapped on the 12 Vitellaria paradoxa chromosomes. Only
7530 SNP markers (27.8%) of the mapped SNP markers were retained after filtering with
>20% of missing data, <0.05 minor allele frequency (MAF) and utilized as input for the
GWAS analysis.

Chromosome two had the highest number of markers (960 SNPs; Chr size = 74.5 Mb,
~13 SNPs/Mb) followed by chromosomes one (805 SNPs; Chr size = 82 Mb; ~10 SNPs/Mb),
chromosome ten (780 SNPs; Chr size = 50 Mb; 10 SNPs/Mb), five and eight (650 SNPs; Chr
size = 56.5 Mb; ~11 SNPs/Mb, and 645 SNPs; Chr size = 58 Mb; ~12 SNPs/Mb respectively).
Meanwhile, chromosomes four (425 Chr size = 37 Mb; ~ 12 SNPs/Mb) and chromosome
three (430 SNPs; Chr size = 38.6 Mb; 11 SNPs/Mb) had the lowest number of markers
(Figure 2 and Table 3). This indicates a non-random distribution of SNPs with varying SNP
frequencies on the 12 chromosomes of shea tree genome in Uganda. Further population
structure and SNP data (Table 3) information are available in Odoi et al. [33].

Minor allele frequency (MAF) among the 7530 SNP markers varied from 0.03 to 0.50.
The study further revealed a high level of heterozygosity within individuals (0.26) and
markers (0.32) indicating a high non-random association of alleles at different loci that offer
opportunity for association studies and allele transfer through marker-assisted selection
of the population. The filtered markers were similar in their Polymorphic Information
Content (PIC), ranging from 0.258 (chromosome 4) to 0.269 (chromosome 12) with a mean
PIC of 0.26 across the chromosomes (Table 3).

There was a general high gene diversity (0.32) across the chromosomes with chromosome
12 being the highest (0.33) and chromosomes 4, 1 and 6 being the lowest (0.31 respectively).
Structure analysis revealed that shea tree populations in Uganda are genetically grouped
into two clusters of Eastern group and West Nile/Northern Uganda group. The Eastern
cluster contributed the highest (57%) proportion of individuals and West Nile/Northern
Uganda cluster (43%).
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Out of the 12 chromosomes in the shea genome (Figure 2), only two (Chromosome 1
and 8) revealed significant loci. The result of Linkage disequilibrium (LD) indicated that
187,487 loci pairs in a physical distance of 605,450 bp. Of the total loci, 3.62% (6795) of them
were in significant (p < 0.01) LD. The results further revealed that 87 (1.28%) loci pairs had
r2 = 1 (were in complete LD).
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Table 3. Number of SNPs for each chromosome before and after filtration and the average polymor-
phism information content for V. paradoxa subsp. nilotica.

Chromosomes All SNPs a Filtered SNPs Chr b Size (Mbs) PIC c Gene Div d

1 2893 805 82 0.262 0.32
2 3450 960 74.5 0.260 0.32
3 1545 430 38.6 0.261 0.32
4 1527 425 37 0.258 0.31
5 2336 650 56.5 0.261 0.32
6 2210 615 58 0.259 0.31
7 2088 581 57.3 0.262 0.32
8 2318 645 48 0.260 0.32
9 2124 591 56.5 0.262 0.32
10 2803 780 50 0.265 0.32
11 1791 498 47.1 0.265 0.32
12 1978 550 46.9 0.269 0.33

Total/Mean 27,063 7530 652.4 0.260 0.32
a Single Nucluotide Polymorphism; b Chromosome; c Polymorphic information content and d gene diversity.

3.3. Marker Association for the Studied Traits

The association analysis was performed on shea seed-related traits and 16 significant
markers were identified on chromosomes 1, 2, 3, 5, 6, 7, 8, 9, 10, 11 and 12 (Table 4
and Figure 3). Quantile-Quantile plots produced by displaying −log10 p-values against
individual p-values revealed suitability of GWAS for the trait’s connection in the shea tree
genotypes. The association analysis was performed for percent oil content of each shea
tree line in a location using the V. paradoxa reference genome (https://bioinformatics.psb.
ugent.be/orcae) (accessed on 8 March 2022). There were differences between the observed
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and expected values of the target traits, indicating a link between the phenotypic and SNP
markers as indicated in Quantile-Quantile plots.

The seven SNP markers linked to shea nut oil yield (S1_60237300, S3_14843482,
S4_32032310, S5_6275145, S8_41696703, S9_32689981 and S11_43126044) were located on
chromosomes 1, 3, 4, 5, 8, 9 and 11 (Table 4) and were associated with high nut percent oil
content estimated on dry matter basis. These seven loci explained an overall phenotypic
variance of 12.4%, however, makers S8_41696703 and S9_32689981 had negative effects on
seed oil content, although they explained the most (13.31% and 11.52% respectively) of
phenotypic variation.

This current study revealed six significant SNP markers linked with shea kernel length
(S3_11153087, S5_15524578, S6_46530240, S8_11121701, S11_8320549 and S12_32853547) lo-
cated on chromosomes 3, 5, 6, 8, 11 and 12 (Table 4; Figure 3). The proportion of phenotypic
variance explained by significant QTNs ranged from 6.5% in marker S5_15524578 to 14.6%
in S6_46530240. The total phenotypic variance expressed by the trait was 0.095.

The GWAS revealed 8 genomic regions that were significant associated with ker-
nel width. The 8 significant SNP markers linked to shea kernel width (S1_32402910,
S2_47786838, S2_64059706, S7_3025298, S9_43700743, S10_50604452, S12_32853547 and
S12_7613999) were located on chromosomes 1, 2, 7, 9, 10 and 12 (Table 4). Marker
S12_32853547 contributed most (13.14%) of the phenotypic variation compared to the
rest (ranging from 4.5%to 9.75%) (Table 4). The total phenotypic variation explained by the
trait was 0.17.

In two significant SNPs (S1_30720144 and S8_43605016) located on chromosomes 1 and
8. Marker S8_43605016 contributed most (15.79%) of the phenotypic variation compared to
S1_30720144 (9.21%) (Table 4). The total phenotypic variance in this trait was 0.061 Table 4:
Figure 3).

Table 4. List of significant markers in a panel of 374 Vitellaria paradoxa genotypes indicating the
genomic regions associated with studied traits.

Trait Pσ a Marker Chr b Position (bp) Alleles QTN Effect LOD Score −log10 c r2 d MAF e

Oil
content

S1_60237300 1 60237300 AA 0.83 3.39 4.11 6.61 0.12
S3_14843482 3 14843482 AA −1.06 5.67 6.49 11.80 0.14
S4_32032310 4 32032310 AA 0.74 3.07 3.77 6.76 0.19

4.03 S5_6275145 5 6275145 AA 0.68 3.21 3.92 5.11 0.15
S8_41696703 8 41696703 TT −1.06 5.93 6.76 13.31 0.17
S9_32689981 9 32689981 CC −1.22 5.38 6.19 11.52 0.09
S11_43126044 11 43126044 CC 0.81 4.28 5.05 8.18 0.31

kernel
length

S3_11153087 3 11153087 TT −0.13 3.44 4.16 8.19 0.12
S5_15524578 5 15524578 AA 0.10 3.37 4.09 6.51 0.32
S6_46530240 6 46530240 TT −0.25 4.71 5.49 14.55 0.05

0.095 S8_11121701 8 11121701 GG −0.14 3.16 3.87 9.08 0.10
S11_8320549 11 8320549 CC −0.13 3.74 4.48 7.28 0.10
S12_32853547 12 32853547 CC −0.18 3.96 4.71 9.31 0.06

kernel
width

S1_32402910 1 32402910 CC −0.19 4.42 5.20 9.75 0.12
0.169 S2_47786838 2 47786838 CC 0.16 4.99 5.79 9.01 0.26

S2_64059706 2 64059706 AA 0.17 4.73 5.52 8.28 0.13
S7_3025298 7 3025298 CC 0.15 3.22 3.92 5.29 0.10
S9_43700743 9 43700743 AA −0.18 3.30 4.01 7.77 0.11
S10_50604452 10 50604452 GG 0.19 3.81 4.55 8.69 0.10
S12_32853547 12 32853547 CC 0.29 7.02 7.89 13.14 0.06
S12_7613999 12 7613999 TT 0.12 3.44 4.17 4.47 0.20

kernel
weight

S1_30720144 1 30720144 CC −0.08 3.06 3.76 9.20 0.22
0.061 S8_43605016 8 43605016 CC −0.11 3.29 4.00 15.70 0.18

a Phenotypic variance b Chromosome, c the negative logarithms (−log10) of the p-values d squared correlation
coefficient e minimum allele frequency.
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Figure 3. Genome-wide association of Kernel dry matter oil content in a panel of 374 Vitellaria
paradoxa genotypes with 7530 SNP markers for kernel length (A); kernel width (B); kernel weight
(C), and kernel dry matter oil content (D). The y-axis representing the p-value of the marker-trait
association on a −log10 scale and the x-axis relates to the 12 shea tree chromosomes. The dots above
the horizontal 5% Bonferroni threshold light dotted line indicates SNPs associated with QTL that
condition the kernel traits.

Variations in the seed traits explained by the individual SNP markers (r2) varied from
4.47% in kernel width to 15.79% in kernel weight for the significant SNPs, indicating that
they represent major QTLs associated with oil yield and kernel physical parameters Alleles
‘A’ of marker S1_60237300; ‘T’ of marker S11_43126044; ‘A’ of markers S4_32032310 and
S5_6275145 in oil yield, had the highest positive QTN effect (0.8255, 0.8098, 0.737 and 0.683
respectively) revealing higher association with increasing oil yield. Although most of the
seed related traits indicated negative QTN effects, the allele which had the highest (0.2942)
positive QTN effect was allele ‘C’ in marker S12_32853547.
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3.4. Potential Candidate Genes

A total of 23 candidate genes were identified by linking the significant SNP regions
with the V. paradoxa genome (Table 5). The annotation result revealed six putative genes
associated with seed length traits. Among these were: Protein metabolism and gluconeoge-
nesis on chromosome 12 and Protein translocation on chromosome 11. The proteins are
well known to play important role in mediating plant seed oil biosynthesis [34] and early
seedling morphogenesis and development.

From the kernel width, eight putative genes were discovered, of which three (Zinc Fin-
ger Transcription Factor located in chromosome 3, protein binding located on chromosome
9 and Protein metabolism and gluconeogenesis located on chromosome 12) had linkage
with shea seed oil biosynthesis pathways. Zinc Finger has been associated with playing
a key role in plant seed oil biosynthesis and accumulation [35]. All the two identified
genes (ATP hydrolase located on chromosome 1 and Protein Kinase on chromosome 8) in
kernel weight trait are important in the biochemical pathways of plant seed oil synthesis
(Table 5). The hydrolysis process is performed by the FATB acyl-ACP thioesterase or by
3-ketoacyl-ACP synthase II (KASII).

Table 5. Gene annotation for the significant SNPs for shea seed related traits.

Traits Marker Chr a Pos b Gene ID GO. c Function

Kernel length

S3_11153087 3 11153087 Vitpa03g07900 IPR006968 UVB-sensing and in early seedling
morphogenesis and development

S5_15524578 5 15524578 Vitpa05g09840 GO:0005515 ion transportation and signal
transduction

S6_46530240 6 46530240 Vitpa06g28930 PTHR23155 Disease resistance (R)

S8_11121701 8 11121701 Vitpa08g10570 GO:0004017 Predicts residues in protein
biosythesis

S11_8320549 11 8320549 Vitpa11g07160 PTHR33052 Protein translocation

S12_32853547 12 32853547 Vitpa12g19540 GO:0003824 Protein metabolism and
gluconeogenesis

Kernel width

S1_32402910 1 32402910 Vitpa01g21080 GO:0005515 Consensus disorder prediction
S2_47786838 2 47786838 Vitpa02g27300 GO:0043190 Glutathione synthetase ATP-binding
S2_64059706 2 64059706 Vitpa02g39460 Zinc finger
S7_3025298 7 3025298 Vitpa07g02460 GO:0005515 Calcium signaling
S9_43700743 9 43700743 Vitpa09g19440 PTHR14859 Protein binding
S10_50604452 10 50604452 Vitpa10g25960 GO:0003677 Chromosome cohesion

S12_32853547 12 32853547 Vitpa12g19540 GO:0003824 Protein metabolism and
gluconeogenesis

S12_7613999 12 7613999 Vitpa12g07520 GO:0055114 Catalyze the oxidation of alcohols to
aldehydes and ketones

Kernel weight
S1_30720144 1 30720144 Vitpa01g20620 GO:0003676 Hydrolyze ATP

S8_43605016 8 43605016 Vitpa08g25310 GO:0004672 Predict protein residues as
disordered

a Chromosome, b Marker chromosome position and c Gene ontology.

This study further identified seven gene/protein families associated with the percent
dry matter oil content in shea nuts: Acyl-ACP Thioesterase Fat B (FATB); Acyl-CoA-binding
protein (ACBP); Long Chain Acyl-CoA Synthetase (LACS); Fatty acid exporter (FAX2);
(3-ketoacyl-ACP synthase II (KASII) and Fatty acid desaturases (FADs) on chromosomes 1,
3, 8, 9, and 11 (Table 6).

Acyl-CoA-binding protein (ACBP) was identified on chromosomes 3 at loci S3_14843482
and chromosome 5 at loci S5_6275145 that govern plant seed oil accumulation (Table 6).
The genes are 1 Mbs from their respective SNPs. Candidate Gene (CG) selection for shea
nut oil accumulation is presented (Supplementary Table S2). The genes were annotated
with protein-coding genes, using GO.OBO v2.1. The functions of these genes in enhancing
shea oil content are explained in Table 6.
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Table 6. Gene annotation for the significant SNPs for oil content traits.

Traits Marker Chr a Pos b Gene ID c GO. d Function

Oil content S1_60237300 1 62536299
Vitpa01g27780
(Acyl-ACP Thioesterase
Fat B (FATB))

GO:0004553 Consensus disorder prediction

S3_14843482 3 14843482
Vitpa03g10720
(Acyl-CoA-binding protein
(ACBP))

GO:0005515 Protein binding

S4_32032310 4 32032310
Vitpa04g14070
Long Chain Acyl-CoA
Synthetase (LACS))

G3DSA Oxidoreductase activity

S5_6275145 5 6275145
Vitpa05g04280
(Acyl-CoA-binding protein
(ACBP))

GO:0000160 Transcriptional regulation of
oil biosynthesis in seed plants

S8_41696703 8 41696703
Vitpa08g23790
(Fatty acid exporter
(FAX2))

GO:0008168 methyltransferase activity

S9_32689981 9 32689981
Vitpa09g14250
(3-ketoacyl-ACP synthase
II (KASII))

GO:0004672 Early noduling

S11_43126044 11 43126044 Vitpa11g24760 (Fatty acid
desaturases (FADs)) abiotic stress reduction

a Chromosome, b Chromosome position, c Gene identification and d Gene Ontology.

3.5. Linkage Disequilibrium (LD)

The distance of the first part of the LD decay before correlation coefficient, r2 values
reach zero was 2,312,772 bp, comprising of 375,037 marker pairs (Table 7). The r2, decayed
within 1–2 Mbps to a value < 0.01.

Chromosome 2 had the highest (46,764 marker pairs) LD followed by chromosome 1
(39,461 marker pairs), while chromosome 4 had the lowest (21,698 marker pairs). The total
number of significant marker pairs was 11,940, with chromosome 2 having the most (1330)
marker pairs and chromosome 4 (626) having the list.

Table 7. Distribution of LD marker pairs according to chromosomes.

Chromosome Chr1 Chr2 Chr3 Chr4 Chr5 Chr6 Chr7 Chr8 Chr9 Chr10 Chr11 Chr12

# marker pairs 39,461 46,764 22,990 21,698 34,482 30,834 28,187 32,786 30,232 35,784 24,736 27,091

“#” in Table 7 represents the word “number”.

The association analysis of the 374 highly heterozygous shea trees and the 7530 quality
SNPs resulted in two most significant SNPs. Variations in the seed traits explained by the
individual SNP markers (r2) varied from 4.47 to 15% for the significant SNPs. Allele ‘A’ of
S1_60237300 marker had the highest allele effect (0.83) revealing higher association with
increasing oil yield in shea tree, followed (0.81) by allele C in marker S11_43126044 and allele
A (0.68) in S5_6275145 marker. Furthermore, for kernel width, allele ‘C’ in S12_32853547
also had a moderate effect (0.29). None the less, allele ‘T’ in marker S6_46530240 revealed the
highest (−0.25) negative effect for the studied traits. The LD of significant SNP loci revealed
six loci, three each on chromosomes 1 and 8, indicate that the markers had higher LD (r2 > 0.8).
The markers in the rest of the chromosomes had a considerably low LD (r2 < 0.5).

4. Discussion
4.1. Phenotypic Data

Shortening juvenile maturity period for early fruiting and increasing oil yield per acre
and quality aspects in shea oil are the major concerns in the shea industry. This study
aimed at selecting shea parent materials for future breeding programme and bring about
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farmer solutions by establishing Multi-location Breeding Seed Orchards as a short-term
remedy to quality source of shea tree planting materials.

There was variation in the seed trait characteristics in the shea accessions. The results
for seed traits indicated a significant variation within the populations and a non-significant
variation among the populations. Such non-significant variation observed among the
populations is important in breeding for varieties that can easily be adapt across all the
geographical range in Uganda. Furthermore, any newly bred variety shall be acceptable
by all the communities within the shea parkland in Uganda. With the reliable heritability,
selecting traits with marker association for high oil yield in shea tree will result in good
genetic progress of the species. Earlier studies by Gwali et al. [36] and Okullo et al. [37]
reported similar oil content (52.26%) in the species with this study (53.5%). The results of
this study were slightly higher due to the participatory selection which suggests a potential
genetic gain from selection given several genotypes with known higher yield (69.77%).
Such results can be important in assessing the G × E interactions for some traits.

4.2. Candidate Gene Scan in the Oil Content Traits

The shea genome revealed associated SNP markers, important for identification of
QTL regions controlling the variations of the quantitative traits [1]. Most important of
this was the identification of the seven significant SNPs located close to genes that encode
different proteins related to plant metabolic mechanisms and transport of biosynthetic
products and materials.

GWAS can increase detectability of genomic association in plants [38]. In fact, GWAS
has gained increasing popularity as a tool for analysing complex traits in plants [39]. It
has been used to reveal the genes controlling polygenic traits including the genetic loci
associated with the trait of interest in fruit trees [20]. Kumar et al. [40] used Mixed Linear
Model statistical model for GWAS to study six commercial fruit traits in apple seedlings
suggesting the potential of the tool in shortening the breeding cycle of tree species like shea.

The advances in omics technologies have enabled researchers to identify candidate
genes that promote improvement of associated traits of commercial importance in plants.
Earlier very few studies were conducted in determining these functional genes in shea
tree [6,41,42]. However, recent sequencing of shea reference genome [8] and identification
of genes in shea tree [1], has paved new avenues of genomic studies in the species. Studies
for biochemical pathways of oil synthesis in plant seeds have been advanced [43] and
several gene expression and enzyme activities in plant seed oil accumulation fronted [44].
Interestingly, 45 seed oil biosynthesis genes were reported in shea tree genome [8]. This
study discovered 23 such genes that are potentially associated with shea nut oil biosynthesis
pathways (Tables 5 and 6). Of all, acetyl-CoA carboxylase (ACC) is notably the major
enzyme catalyst in shea oil biosynthesis [1]. Earlier studies revealed 9 gene copies of
Ketoacyl-ACP synthase (KAS) in shea, 6 of these were also reported in Theobroma cacao,
suggesting their contribution to the increased lipid content in shea than in cocoa. Other
genes with higher number of copies in shea include: FAD2, FAD3, and LACS genes [34].
The biological effect of LACs genes discovered on chromosome 4 includes modification of
fatty acids chain lengths along the plant oil biosynthesis pathways [45].

The validity of the interrelations among the traits of study was assessed using correla-
tion matrix. It was observed that oil content in V. paradoxa was only moderately correlated
with kernel width. As observed in the biochemical functions of the genes conditioning the
seed related traits that condition seed development and seedling germination. In concor-
dance with this study, Jasinski et al. [46] reported that plant seed oils in angiosperms act as
an important reserve of carbon and energy soon after seedling germination until it starts
photosynthesis. The presence of proteins suggests their role in promoting shea bioactive
functions that condition high oil yield in the species. Previous studies in shea by Lovett
and Haq [3] revealed similar proteins that play a major role in oil biosynthesis pathways in
oil plant seeds. In fact, Wei et al. [1] predicted presence of more genes associated with oil
metabolism in the shea tree genome. Another study Hale, et al. [8] predicted expansion
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of gene families involved in stearic acid biosynthesis in shea tree which agrees with this
current study.

The significant candidate gene for oil content in this study, Acyl-CoA-binding protein
(ACBP) was located on chromosome 3 and 5 associated to markers S3_14843482 and
S5_6275145 with annotated transcriptional regulation of oil biosynthesis in seed plants.
The enzyme plays a role during early fruit formation and play multiple functions such
as: tissue growth, cellular trafficking, and physiological processes [47]. The enzymes are
usually in the nucleus, are expressed predominantly in developing seeds during maturation.
Similar findings were also reported in Arabidopsis thaliana seeds [35]. Moreover, the strong
association with annotated function and Acyl-CoA-binding protein (ACBP) genes could be
taken advantage of to breed for high oil yield shea tree varieties in Uganda. The biological
effect of ACBP includes lipid metabolism, cellular signalling for stress management and
disease resistance in plants [48]. This gene encodes metal ion binding enzyme, mostly
carbonic anhydrase and alcohol dehydrogenase enzymes that contain zinc as part of their
molecule. This zinc finger gene family has been reported to play a major role in oil
biosynthesis pathways in the oil palm [48].

The third significant candidate gene was Ketoacyl-ACP synthase (KAS) gene. The
gene plays a major role in lipid biosynthesis pathways in shea nuts, thereby increasing oil
content in the species [8]. Similar findings on Chinese seed oil shrub, Paeonia lactiflora have
been advanced [49]. KAS II for example is key in the biosynthesis pathways of fatty acids
in plant seeds [50] and early nudling. The Fatty acid exporter (FAX2) genes play a major
role in biosynthesis transportation and significantly increases oil content in shea tree. In
another study, Janik et al. [51] reported the involvement of FAX in Chlamydomonas reinhardtii
oil synthesis, similar to this current study. On the other hand, Acyl-ACP Thioesterase
Fat B (FATB) was also discovered in other plants like Koelreuteria paniculata known to
be involved in the synthesis of saturated fatty acids in the species [52], which is in line
with this current study. Further still, FADS genes reported in this study, is responsible
for the synthesis of unsaturated fatty acids and important for plant development and
response to biotic and abiotic stresses [53]. The report therefore confirms the findings in
this current study for the role played by the genes in significantly controlling high oil yield
in V. paradoxa Subsp. nilotica.

4.3. Candidate Gene Scan within the Seed Related Traits

The seed related traits with significant SNPs under this study were having linkage
with oil yield in shea nuts. The proteins responsible for oil biosynthesis identified in kernel
length trait was associated to marker S8_11121701 in chromosome 8. In kernel width trait,
S1_32402910 marker discovered on chromosomes 1 had proteins which are linked with
processes involved in plant seed oil biosynthesis pathways [24]. For kernel weight trait,
S1_30720144 and S8_43605016 markers in chromosomes 1 and 8 were associated with the
proteins responsible for oil biosynthesis. In fact, Wei et al. [1] reported similar results with
QTLs identified at different locations of shea tree genome. The proteins play a major role
in ATP hydrolysis and prediction of protein residues as disordered, during plant seed oil
biosynthesis processes. The first evidence was reported by Botha et al [54] linking the
functions of the genes to seed development and early seedling growth in Ricinus communis
oil seeds. The genes reportedly play a major role during seed drying by concentrating
inorganic phosphate while de-concentrating the extracellular pyrophosphate which inhibits
formation of minerals [55].

4.4. Linkage Disequilibrium (LD)

The LD reveals the evolutionary and demographic events of a population and in map-
ping genes that are associated with quantitative traits. The implication of this association is
that the marker loci contain a causal variant in LD with the identified marker by GWAS.
This is further revealed by the small blocks in heat map where the causal variant(s) can be
sought. Therefore, it is important to increase our understanding of co-evolution of linked
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sets of genes. A wide range of LD (r2 > 0.2) in the shea tree population used in this study,
was also found in citrus [56]. Such a range of LD is expected in heterozygous outcrossing
species like shea tree [56]. The mean r2 (0.2) in the shea tree population indicated that the
markers in the shea tree population is sufficient for genomic selection as LD is maintained
by selection. This study describes the potential candidate genes associated with oil yield in
shea tree. It further describes the locations of these significant genes in the chromosomes
for any further verification. The significant association was discovered on chromosome
1 and 8 for seed related and oil yield traits, explaining 58% of the phenotypic variation.

Inbreeding creates LD owing to the recent common ancestry by increasing the co-
variance between alleles at different loci. This, therefore, offers opportunities to design
association studies and allele transfer using marker-assisted selection [57,58]. LD therefore
presents an opportunity in this study in that if an upper positive selection of preferred
traits in shea tree is conducted, it will accelerate the frequency of alleles conferring the
preferred trait during breeding. This is because as the linked loci strongly remain in LD
with that allele.

4.5. Marker Assisted Selection in Shea Tree

The oil content candidate genes identified in this present study will be cross validated
in the established multi-locational trials in NgetaZARDI and NASARRI to determine the
ideal molecular markers for enhanced shea tree oil content breeding programs in the
country. This is possible by stacking the novel genes into the shea tree genotypes with
high oil content using marker-assisted selection. A combination of novel QTLs can further
enhance oil content in the shea tree. Furthermore, determination of the allelic status at the
markers with significant alleles for oil content will enable the selection of those significant
markers for shea oil yield improvement in Uganda. The variations observed in the traits
within the location but not across confirms that the species is highly outcrossing [42]
or segregating population. The Analysis of variance (ANOVA) in Table 3 indicates a
significant variation within the population and this further re-affirms the level of variation
in the species. The result of this study points to potential QTNs that explain the genetic
variations in the population. In this study, the putative major QTN for oil content explains
up to 58% of the phenotypic variance in the species.

Developing MAS options that use the identified molecular markers linked to traits
of interest is of importance for speeding the selection process in shea tree with high oil
content [59]. The use of significant SNP markers identified through GWAS analysis are
important for performing MAS for shea tree breeding. In fact, the application of MAS in
shea tree breeding is now made easy with the availability of genomic information on the
species [8] coupled with sequencing transcriptome that now makes it possible to align
them with the identified markers of interest [1,8]. The six identified markers (S1_30720144,
S1_32402910, S1_60237300, S8_11121701, S8_41696703 and S8_43605016) in this study could
be applied in MAS for enhanced oil content in V. paradoxa Subsp. niltica. The MAS can
play a very important role in this kind of trait useful for early nursery selection of late
expressing traits in the species, and therefore, by performing MAS at seedling stage (far
earlier than the juvenile maturity) will greatly reduce the breeding circle.

In this current study, the application of MAS will enable the selection of S1_30720144,
S1_32402910, S1_60237300, S8_11121701, S8_41696703 and S8_43605016 markers linked
with high oil content genes in the shea nuts. Selection of genotypes with a combination of
preferred traits accumulated in one accession would therefore augment the process of shea
tree improvement. More value to the communities as an upstream selection would also
require prioritizing the genotypes with significant SNPs but from sweet pulped ethnovari-
ety to meet the community’s food and nutrition requirement [60,61]. The availability of
markers linked to the identified genes will even make it possible to take the advantage of
MAS in identifying heterozygous genotypes and therefore apply positive MAS selection
for the alleles resulting in a very informative phenotypic traits selected for. On the other
hand, MAS could also be applied in negative selection in order to introgress the target trait.
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5. Conclusions

The study of marker trait association presents an important step towards identify-
ing the genomic regions associated with the traits of interest to further marker-assisted
breeding in shea tree. The current study identified 23 putative markers associated with oil
accumulation in shea nut. Candidate genes located on chromosomes 1 and 8 were the most
important genes in oil biosynthesis and accumulation in V. paradoxa. It is important to note
in this study that the position of the seed traits related candidate genes were in agreement
with the locations of the oil yield hotspots on chromosomes 1 and 8. This is in support
of the need for application of MAS in shea tree and presents the first ever breakthrough
in identification of chromosomes 1 and 8 hotspots in the improvement and breeding of
shea tree in Uganda for increased oil yield. This study therefore presents the first ever
genomic information on associated genes responsible for V. paradoxa Subspecies nilotica nut
oil biosynthesis. The results therefore establish the foundation for explaining the molecular
mechanisms of oil biosynthesis for V. paradoxa Subspecies nilotica. The markers and their
linked genes provide a significant resource for improving oil content in the species. The
study therefore sets pace for genomic assisted breeding in V. paradoxa Subsp. nilotica and
also broadens our understanding in the role of genomic approaches in advancing yield
component traits. The findings of this study will contribute to the initiation of shea breeding
for increased oil yield in Uganda. This information could also be used for future gene
pyramiding, increasing genetic gain, trait introgression, marker-assisted selection, and
selection of parental lines for multiplication and generation of putative genotypes for shea
tree breeding programs in Uganda. The study further presents gaps for future validation of
the hot spot regions identified on chromosomes 1 and 8.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/horticulturae9070811/s1, Table S1: Passport data for the selected shea
tree families used in this study, with details of their location, tree identification number, geographical
coordinated and the details of the farmer on whose farm the tree is located. Table S2: Candidate
genes at QTL region searched within approximately ± 20 Kb region of significant SNP markers. The
identified genes is believed to be playing an important part in oil yield variation in shea tree.
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