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Abstract: Acacias are widely distributed in tropical and subtropical regions of the world and have
both economic as well as medicinal value. The estimation of genome size is very important as
it changes due to the change in noncoding DNA sequence as well as genome duplication among
organisms for their evolutionary aspects. Three potential species of the genus Acacia including Acacia
etbaica, Acacia johnwoodii and Acacia origena, which are threatened and nearly endemic to Saudi Arabia,
were collected. The present study was carried out to determine the genome size (2C DNA contents),
total phenolic content (TPC), total flavonoid (TFC) and some bioactive compounds in these species
for their comparison. The genome size ranged from 1.91 pg (A. etbaica) to 2.45 pg/2C (A. origena)
among the Acacia species, which correspond to genome sizes 1843.15–2364.25 Mbp, respectively. The
variation was observed in genome size within Acacia species as nuclei were extracted using different
extraction buffers except for GB and MB01 buffers. The FTIR analysis revealed the presence of various
functional groups in compounds that might be responsible for different types of phytochemicals in
these Acacia species. Total flavonoid content (TFC) ranged from 0.647 (A. origena) to 1.084 mg QE/g
DW (A. etbaica), whereas the total phenolic f content (TPC) ranged between 15.322 (A. origena) to
28.849 (A. johnwoodii) mg/g DW of GAE. HPLC analysis revealed the presence of quercetin 3-β-D-
glucoside and luteolin 7-rutinoside in the leaves of all three Acacia species in considerable amounts,
and these might have good health-promoting effects. This is our first study on genome size (2C
DNA content) using flow cytometry and phytochemical profiling on these Acacias. Thus, estimated
genome size and phytochemical study of these species could help to understand the biosynthesis of
secondary metabolites under various genes and the evolutionary relationships among them.

Keywords: bioactive compounds; C value; flavonoid; FTIR; medicinal plants; phenolics; propidium
iodide

1. Introduction

Acacia species (approx. 1380 species) are distributed in tropical and subtropical parts
of the world, including large areas of the Arabian Peninsula, deserts of Africa and the
Middle East, and two-thirds are native to Australia [1–4]. Acacia, also known as Acacias
(family: Fabaceae; subfamily: Mimosoideae), is considered an important shrub and tree.
Different species of Acacia are found in Western, Northern and Eastern parts of Saudi Arabia
and grow in various types of soils [5,6]. Some species of Acacia, viz., Acacia johnwoodii
Boulos, Acacia origena Hunde and Acacia etbaica Schweinf, have been reported from Saudi
Arabia. According to Al-Mefarrej [7], A. origena and A. etbaica are found in the Al-Baha and
Aseer regions of Saudi Arabia. Acacias have various uses as these are potential sources
of firewood, forage, timber, gum, fiber, tannins, folk food, and medicine; moreover, these
species are used as useful for soil, environmental protection and water conservation.
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Genome size is an invariable feature of an individual and is generally invariable within
a species. The amount of nuclear DNA, a set of simple multiples of its basic quantity, is
named ‘C-values’. The amount of DNA in the unreplicated gametic nucleus of an organism
is known as the 1C value (holoploid genome size) [8], which is termed genome size.
Genome size (nuclear DNA content) varies approx. 2400-fold in angiosperms as a result
of changes in the amount of genome duplication and noncoding DNA sequences [9]. In
seed plants genome size varied from 0.13 to 254.8 pg [10,11]. Comparative studies have
suggested that large genome size is maladaptive through its constraints on plant physiology
in plants [12,13]. At present, duplications of whole-genome have clearly had a main effect
on genome size in plants.

The use of flow cytometry (FCM) in the determination of DNA ploidy level, cell
cycle analysis and assessment of nuclear DNA content have arisen as its most widespread
applications [11,14]. Flow cytometry has been commonly used at the population level
to identify alterations in nuclear DNA contents, i.e., cytotype and intraspecific variation,
which is often one of the results of hybridization, as reported in Sorbus and Viola [15] [16,17].
Undoubtedly, this method is simple, low cost and has become a complementary means
to infer output data from population genetics (i.e., allelic frequencies). There are various
protocols available in the literature for the extraction of nuclei for genome size estimation
as developed by researchers [18–22].

A large group of plant polyphenols known as flavonoids is found in different plant
species. Flavonoids have a wide range of health-promoting properties due to their antioxi-
dant nature. Natural flavonoids and phenolic compounds have been used to cure various
human diseases [23]. These flavonoids act as shielding compounds to protect the plant
against damage from high levels of solar radiation, particularly ultraviolet (UV) radiation.
The flavonoid quercetin is a major constituent in plants which is found in abundance in its
glycoside form [24]. Quercetin compounds have various biological and pharmacological
activities, including anti-inflammatory, antiviral, antibacterial and anticarcinogenic [25–27].
Flavonoid glycosides participate in the prevention of cancer, atherosclerosis, and chronic
inflammation in humans by deacceleration of oxidative degradation and treatment of
amyotrophic lateral sclerosis [23,28]. The flavonoid rutin has multiple pharmacological
activities and protects plants against pathogens or ultraviolet radiation and also used to
inhibit the side effects of some diseases such as hypercholesteremia diabetes, and cancer
treatments [29,30]. Among the various secondary metabolites, phenolics compounds have
several beneficial effects to humans particularly in the cure of diseases such as neurodegen-
erative disorders, cancer and cardiovascular [31–34].

Based on many applications of secondary metabolites in humans, as reported in the
literature, our main objective is to study the phytochemical profiling of the leaves of Acacia
species, including A. johnwoodii, A. etbaica and A. origena, since a comparative phytochemical
study has not been reported till date. The estimation of genome size (2C DNA content) of
these Acacia species is important as they have a narrow geographical range, low density
and small population size and grow under extreme environmental conditions. Therefore,
in the present study, different extraction buffers were used for the extraction of nuclei from
cotyledons of germinated seeds of Acacias for genome size estimation and a comparative
study was performed among them.

2. Materials and Methods
2.1. Seeds Collection

The seeds of Acacia species were collected in the month of June 2021 from Abha
province of Saudi Arabia. The seeds were identified by a taxonomist, and voucher specimen
for Acacia johnwoodii (21635), Acacia origena (23066) and Acacia etbaica (23811) was deposited
at the Department of Botany and Microbiology, College of Science, King Saud University,
Riyadh, Saudi Arabia. After collection, the seeds were stored at room temperature, and
further, they were air-dried to a minimum moisture content before storage. The collection
of Acacia species and their information are given in (Table 1).
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Table 1. Acacia species status, collection place, seed size and leaf size (plant grown in a pot in
a growth chamber).

Acacia Species Accession
Number

Species Status in
Saudi Arabia

Collection
Place

Seed Diameter (cm)
(Mean ± SD)

Seed Length (cm)
(Mean ± SD)

Leaf Length
(cm)

Acacia johnwoodii
(Boulos) Ragup.,
Seigler, Ebinger

& Maslin

KSUSB95 Threatened Dhi Ain
(Abha) 0.62 ± 0.012 a 1.1 ± 0.100 a 4.7 ± 0.55 a

Acacia etbaica
(Schweinf.)

Kyal. & Boatwr
KSUSB99 Near endemic Wadi Khaytan

(Abha) 0.43 ± 0.007 c 0.518 ± 0.01 c 2.47 ± 0.34 b

Acacia origena
(Hunde) Kyal.

& Boatwr
KSUSB92 Near endemic Dhi Ain (Abha) 0.52 ± 0.025 b 0.630 ± 0.01 b 1.53 ± 0.152 c

a,b,c indicates significant difference according to Duncan’s test (p < 0.05).

2.2. Pot Experiment

The Acacias seeds were sterilized with minor modifications, as followed by Al-
Qurainy et al. [35]. The collected mature seeds were washed with tap water for 30 min,
followed by doubled distilled water to remove microbes and dust. The washed seeds were
treated with 50% bleach for 10 min for surface cleaning, and thereafter, they were washed
with distilled water 3–4 times. The sterilized seeds were sowed in the pot containing
soil consisting of peat moss and pearlite (3:1). The seedlings of all Acacias were raised in
a growth chamber adjusted the conditions as 16-h/8-h, 25 ± 1 ◦C Day/night cycle. The
cotyledons (20 days after sowing) were harvested for the genome size estimation. The
young leaves were harvested from 3 months old plants for phytochemical profiling and
bioactive compound estimation.

2.3. Buffer Preparation for Nuclei Extraction

Galbraith’s buffer [18] (45 mM MgCl2; 30 mM sodium citrate; 20 mM MOPS; 0.1%
(v/v) Triton X-100; pH 7.0)

LB01 buffer [21] (15 mM Tris; 2 mM Na2EDTA; 0.5 mM spermine.4HCl; 80 mM KCl;
20 mM NaCl; 15 mM β-mercaptoethanol; 0.1% (v/v) Triton X-100; pH 7.5)

MB01 [22] (20 mM MOPS; 25 mM Na2EDTA; 0.7 mM spermine.4HCl; 80 mM KCl;
20 mM NaCl; 1% (w/v) PVP; 0.5% (v/v) β-mercaptoethanol; 0.2% (v/v) Triton X-100; pH 7.4

Tris-MgCl2 buffer [19] (200 mM Tris; 4 mM MgCl2.6H2O; 0.5%(v/v) Triton X-100; pH 7.5)

2.4. Nuclei Extraction and Staining

The nuclei were extracted using the protocol as developed by authors [18–21] with
slight modification in PVP (2%, w/v) and β-mercaptoethanol (0.6%, v/v) concentrations in
nuclei isolation buffer. For each species, three replicates were taken for nuclei extraction
as well as analysis. All necessary equipment used in the nuclei extraction was cleaned
thoroughly. The whole nuclei extraction process was performed on ice. The cotyledon was
used from the germinated seeds of all Acacias for the extraction of nuclei. The harvested
cotyledons were washed with distilled water three times to remove soil, bacteria and fungi.
Before extraction of the nuclei, the cotyledons were kept in doubled distilled water to get
fully turgid cells for easy chopping and releasing of nuclei in the buffer. The young and
fresh cotyledons of germinated seeds (25 mg for each) were chopped with a sharp razor
blade into 0.4–0.5 mm size in cold nuclei isolation buffer (500 µL buffer). The released
nuclei in the extraction buffer were passed through a double nylon mesh (pore size, 20 µm,
purchased from Macrokun (Shijiazhuang, China). The final volume of filtered nuclei
suspension was made to 750 µL. The nuclei suspension was stained with 50 µg/mL of
PI dye (Propidium iodide) and incubated at 4 ◦C for 10 min. The same process was used
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for the extraction of nuclei from the standard plant (Solanum lycopersicum) with the same
extraction buffer. Relative 2C nuclear DNA content (genome size) of each Acacia was
estimated by comparing them with plant DNA standards (Solanum lycopersicum) provided
by Dr. Jaroslav Dolezel.

2.5. Flow Cytometric Analysis

Nuclear DNA content (2C DNA content) in all Acacia species was calculated according
to Doležel et al. [21]. A minimum of 5000 propidium iodide-stained nuclei was estimated
using a flow cytometer FACS Muse cell analyzer (Sigma, St. Louis, MO, USA). A minimum
flow rate (0.12 µL/s) of the capillary was set to ensure the accuracy of the results. Solanum
lycopersicum (2C = 1.96 pg) was kindly provided by Dr. Jaroslav Dolezel, Laboratory of
Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Czech Republic,
for the estimation of the genome size of Acacia species. The histograms generated in the
Muse cell analyzer were computerized, and further analysis was performed for genome
size estimation. The sample 2C DNA content was calculated according to the formula:

2C DNA content (Acacias) =
Fluorescence mean intensity of Acacias

Fluorescence mean intensity of standard
× 2C DNA content of standard

The number of base pairs per haploid genome was calculated based on the equivalent
of 1 pg DNA = 965 megabase pairs [36].

2.6. Extraction of Phytochemicals

Plant samples (leaves harvested from 3-month-old plants grown in pots) were washed
properly and dried in the shade at room temperature (25 ◦C). The fine, coarse powder was
made from dried leaves. 5 g of leaf powder was used for the extraction of phytochemicals
in 100 mL methanol. The mixture was kept in a rotatory shaker for 12 hrs, and thereafter,
it was filtered through Whatman filter paper No. 1. The filtrate was concentrated and
dried under reduced pressure at 40 ◦C using a rotary vacuum evaporator. The concentrated
samples (extract) were dissolved in methanol for analysis and kept at 4 ◦C until used.

2.6.1. Determination of Total Phenolic Contents (TPCs)

The total phenolic content in the methanolic leaf extract of A. etbaica, A. johnwoodii and
A. origena was measured using Folin–Ciocalteu reagent using the method developed by
Ainsworth [37]. The reaction was set up in a final volume of 2 mL (50 µL of leaf extract,
50 µL of Folin–Ciocalteu reagent and 1.9 mL of deionized water) and kept for 8 min. The
above mixture was neutralized with 20% Na2CO3 solution and incubated for 30 min. The
standard curve of gallic acid (1 mg/mL, dissolved in the methanol stock solution) was
prepared for the estimation of TPCs in the samples. After adding all the reagents to the
reaction tube and incubation, the samples were read at 765 nm wavelength as the color
developed in the reaction mixture using a UV-visible spectrophotometer (SHIMADZU,
UV-1800, Tokyo, Japan). The total phenolic content was estimated from the linear equation
of a standard curve prepared with gallic acid (y = 0.0017x − 0.0289 with R2 = 0.9807). The
calculated TPCs were expressed as mg/g gallic acid equivalent (GAE) of dry weight sample.

2.6.2. Determination of the Total Flavonoid Content (TFCs)

Estimation of the total flavonoid content in the leaf of A. etbaica, A. johnwoodii and
A. origena was performed using the protocol developed by Ordonez [38]. In 2 mL of Ep-
pendorf tube, 0.2 mL of 2% AlCl3 and 0.2 mL of plant extract were added and incubated
at room temperature for 1 h. After incubation, deionized water (0.4 mL) was added to
the above mixture. The absorbance was taken at 420 nm using a UV-visible spectropho-
tometer (SHIMADZU, UV-1800, Kyoto, Japan). A calibration curve was prepared using
the quercetin reference standard compound. Total flavonoid content was calculated as
quercetin (mg/g DW) using the following equation (Y = 0.031x + 0.137 with R2 = 0.9893),
as generated from calibration curve.
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2.6.3. Estimation of Bioactive Compounds, Quercetin and Rutin in Methanolic Leaf Extract
of Acacias Using HPLC

The quantification of flavonoid compounds was conducted using HPLC analysis with
a UV-Vis diode array detector (DAD). The methanolic extract of the samples was analyzed
using a Waters system (Agilent Technologies 1290 Infinity system, Santa Clara, CA, USA)
coupled to a diode array detector with a 200–400 nm detection range and mobile phase
for HPLC, as followed by Al-Qurainy et al. [35] with minor modification. The separation
was performed in a ZOBRAX RX-C18 column (4.6 × 150 mm) in which the mobile phases
were pumped at a flow rate of 0.800 mL/min (quercetin 3-β-D-glucoside) and 1 mL/min
(luteolin 7-rutinoside) with a run time of 5 min and injection volume of 1 µL. The flavonoid
standard solutions (quercetin-3-β-D-glucoside and luteolin 7-rutinoside) and samples were
injected into the system using an auto-injector. Various mobile phases were checked at
different flow rates with the same column temperatures in order to find a suitable separation
method for the standards. Finally, the mobile phase (methanol and acetonitrile) was set up
in the ratio of (65:35) for better separation of quercetin-3-β-D-glucoside, and for luteolin
7-rutinoside separation, methanol and 0.6% acetic acid (v/v) in HPLC grade water in
the ratio of (65:35) was used. Both flavonoids (quercetin-3-β-D-glucoside and luteolin
7-rutinoside) were estimated at a wavelength (λ) = 274 nm. The standard compound,
quercetin-3-β-D-glucoside and luteolin 7-rutinoside, were purchased from (Sigma–Aldrich,
St. Louis, MO, USA) for estimation in samples by comparing their retention times (quercetin-
3-β-D-glucoside, 1.54 min, and luteolin 7-rutinoside, 1.34 min) and absorbance spectra.
Calibration curves were constructed with standard solutions (quercetin-3-β-D-glucoside) of
0.1, 0.2, 0.3 and 0.4 µg/µL and content in the samples were calculated with linear-squares
y = 1244x + 23.5 using Microsoft Office Excel software with correlation values of ≥0.9956.
Similarly, luteolin 7-rutinoside was calculated using the linear regression equations obtained
from standard curve: Y = 5260X-2, (R2 = 0.9965, Y: peak area, X: rutin content). All samples
were examined in triplicate to ensure the accuracy of the results.

2.7. Functional Groups Characterization by FTIR

Fourier transform infrared spectrophotometer (FTIR) is the most powerful technique
for the identification of the nature of chemical bonds (functional groups) present in com-
pounds. All the Acacias extracts were analyzed in triplicates for the reproducibility of the
results. The wavelength of light absorbed by the functional group present in the compound
can be seen in the spectrum. The scanning was achieved at wavelength 400–4000 cm−1,
and results were shown in the % transmission analysis. The functional groups of the
compounds were separated according to peak ratio (peak values in IR radiation region).

2.8. Statistical Analysis

The statistical analysis was carried out in SPSS software by one-way analysis of
variance (ANOVA) followed by Duncan’s test for the estimation of genome size and
phytochemicals. The fluorescence histograms were resolved into G0/G1 (2C), S and G2/M
(4C) cell-cycle compartments. The mean fluorescence intensity of G0/G1 was used for the
calculation of the 2C DNA content of Acacia species. Different letters were used on bars
which represent the significant difference at p ≤ 0.05.

3. Results

The morphometric traits, including seed length and diameter, were measured among
three species of Acacias. Both traits of seed were found to be highest in A.johnwoodii than
the other two species, A. etbaica and A. origena (Table 1). Seed shape was also varied among
them, as given in Figure 1. The seeds were sowed in the pot in the growth chamber to
get the cotyledon for genome size estimation. The morphology and size of leaves varied
among the Acacia species (data taken in pot experiment) (Figure 1). The largest variation
in leaf length was observed in A. johnwoodii, followed by A. etbaica and A. origena, under
normal conditions. The cotyledons of germinated seeds (20 days after sowing) were used
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for the estimation of genome size. The excised cotyledons from germinated seeds were
washed with double distilled water before chopping them into the extraction buffer. The
extracted and stained nuclei (propidium iodide) were scanned with a Muse cell analyzer.
The cell cycle phase (G0/G1) was found to be highest in nuclei extracted using the MBO1
buffer in all Acacias, followed by GB, Tris-MgCl2 and LB01, respectively (Figures 2–4). The
sharp peak of the histogram that corresponds to the G0/G1 phase (2C level) of the cell
cycle was detected in all species (Figures 2–4), and the mean intensity of this phase was
used for the calculation of genome size (2C DNA content). The peaks corresponding to the
G2 + M (M = mitosis) phase (4C level) were also detected in all species.
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The data represented in the table is the mean of three replicates ±SD. The significant
differences between the Acacia species are shown by different letters in the table. Duncan’s
test at p < 0.05 was used for the analysis.

The genome size (2C DNA content) was compared among and within Acacia species
in different extraction buffers. The estimated genome size using different extraction buffers
ranged from 1.91 to 2.21 pg (A. etbaica), 2.07–2.19 pg (A. johnwoodii) and 2.09–2.45 pg
(A. origena), respectively (Table 2). Among the three species of Acacia, the highest genome
size was found to be 2.45 pg/2C in A. origena with LB01 buffer, whereas the lowest was
1.91 pg/2C in A. etbaica with GB and MB buffers, respectively. Genome size remained the
same within species in MB and GB buffer in all three Acacia species. However, it varied
among species. No significant difference was found in genome size within A. origena, when
nuclei were extracted with buffers (GB, MB and Tris buffers). All three species showed
variation in genome size with Tris-MgCl2 and LB01 buffers. Significant differences were
found in the genome size of A. etbaica and A. johnwoodii with Tris-MgCl2 and LB01 buffers.

Table 2. Genome size (2C DNA content) of Acacia species as nuclei isolated with different nuclei
extraction buffers with slight modification (0.6% β-mercaptoethanol and 2% PVP).

Plant Species Extraction Buffers

GB Buffer
(Mean ± SD)

MB01 Buffer
(Mean ± SD)

Tris MgCl2 Buffer
(Mean ± SD)

LB01 Buffer
(Mean ± SD)

Acacia etbaica
(Schweinf.)

Kyal. & Boatwr
1.91 ± 0.00 c 1.91 ± 0.02 c 2.21 ± 0.02 a 2.11 ± 0.02 b

Acacia johnwoodii
(Boulos) Ragup.,

Seigler,
Ebinger & Maslin

2.19 ± 0.04 a 2.19 ± 0.00 a 2.07 ± 0.07 b 2.12 ± 0.00 ab

Acacia origena
(Hunde)

Kyal. & Boatwr
2.09 ± 0.00 a 2.09 ± 0.01 a 2.10 ± 0.18 a 2.45 ± 0.05 b

a,b,c indicates significant difference according to Duncan’s test (p < 0.05).

3.1. Determination of Total Flavonoids (TFCs), Total Phenols (TPCs), and Bioactive Compounds

Total flavonoids and phenols were measured using the UV-visible spectrophotometer
following the methods used by Ordonez [38]; Ainsworth [37]. The total flavonoids and
phenols were calculated using the quercetin and gallic acid (GA) standard compounds
curve as generated by plotting the absorbance of different concentrations of quercetin and
gallic acid. The TPC content was varied in Acacia species, and highest was to be detected in
A. johnwoodii (28.84 ± 1.79 mg GAE/g DW), followed by A. etbaica (19.49 ± 1.87 mg GAE/g
DW) and A. origena (15.32 ± 0.94 mg GAE/g DW), respectively (Figure 5a). In contrast
to TPC, the TFCs content was found to be highest in A. etbaica (1.084 ± 0.30 mg QE /g
DW), followed by A. johnwoodii and A. origena (Figure 5b). The bioactive compounds
quercetin 3-β-D-glucoside (QBDG) and luteolin 7-rutinoside were detected in HPLC in
considerable amounts in all Acacia species (Figures 6 and 7). The quercetin 3-β-D-glucoside
(QBDG), which is a flavonoid glycoside, was observed to be highest in A. johnwoodii
(1.53 ± 0.04 mg/g DW) than the other two species of Acacia which had a low concentration
of this compound (Figure 8a). The content of quercetin 3-β-D-glucoside content varied
non-significantly between A. etbaica and A. origena. In contrast to quercetin 3-β-D-glucoside,
the content of luteolin 7-rutinoside was detected in the highest concentration in A. origena
(0.399 ± 0.01 mg/g DW), followed by A. johnwoodii (0.252 0.02 mg/g DW) and A. etbaica
(0.202 ± 0.01 mg/g DW), respectively. However, a significant difference was observed in
the content of luteolin 7-rutinoside among the species of Acacia (Figure 8b).
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Figure 7. HPLC chromatogram of bioactive compound (Luteolin 7-rutinoside) extracted from young
leaves of Acacia species; (a) Standard compound, Luteolin 7-rutinoside; (b) A. johnwoodii; (c) A. origena;
(d) A. etbaica.
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3.2. Fourier Transform Infrared Spectrometer (FTIR) Spectrum Analysis

Fourier Transform Infrared Spectrometer (FTIR) spectrum analysis was used to illus-
trate the functional group of bio-compounds based on the peak value in the infrared region
(Figure 9) and assigned their functional groups (https://www.sigmaaldrich.com/SA/en/t
echnical-documents/technical-article/analytical-chemistry/photometry-and-reflectomet
ry/ir-spectrum-table, accessed on 5 July 2022). The more intense band occurring at
3363.62 cm−1, 2943.79 cm−1, 2834.06 cm−1, 1642.96 cm−1, 1642.96 cm−1, 1451.85 cm−1,
1028.52 cm−1 and 794.26 cm−1 corresponding to different functional groups for related
compounds in A. origena (Table 3).

In A. etbaica, the intense band was observed at 3375.47 cm−1, 2947.10 cm−1, 2076.89 cm−1,
1637.10 cm−1, 1398.89 cm−1, 1022.61 cm−1 and 794.46 cm−1 corresponding to various
functional groups present on different compounds (Table 4). Similarly, the peak value
detected for the functional group for compounds present in A. johnwoodii at 3368.71 cm−1,
2944.93 cm−1, 2833.19 cm−1, 1648.33 cm−1, 1452.43 cm−1 and 793.82 cm−1, respectively
(Table 5).

https://www.sigmaaldrich.com/SA/en/technical-documents/technical-article/analytical-chemistry/photometry-and-reflectometry/ir-spectrum-table
https://www.sigmaaldrich.com/SA/en/technical-documents/technical-article/analytical-chemistry/photometry-and-reflectometry/ir-spectrum-table
https://www.sigmaaldrich.com/SA/en/technical-documents/technical-article/analytical-chemistry/photometry-and-reflectometry/ir-spectrum-table
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Figure 9. Fourier Transform Infrared Spectroscopy (FTIR) analysis for the methanolic extract of Acacia
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Table 3. Fourier Transform Infrared Spectrometer (FTIR) spectrum analysis for the methanolic extract
of A. origena.

Frequency (cm−1) Intensity Assignments Compound Group

794.26 Medium C=C bending Alkene

1028.52 Strong C-F stretching Fluro compound

1451.85 Medium C-H bending Alkane

1642.96
medium
medium
medium

C-N stretching
C=C stretching
C=C stretching

Imine/oxime
Alkene

Conjugated alkene

2834.06 Strong, broad
Weak, broad

O-H stretching
O-H stretching

Carboxylic acid
Alcohol

2943.79

Strong, broad
Weak, broad
Strong, broad

Medium

O-H stretching
O-H stretching
N-H stretching
C-H stretching

Carboxylic acid
Alcohol

Amine salt
Alkane

3363.62 Strong, broad O-H stretching Alcohol
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Table 4. Fourier Transform Infrared Spectrometer (FTIR) spectrum analysis for the methanolic extract
of A. etbaica.

Frequency (cm−1) Intensity Assignments Compound Group

794.46 Medium C=C bending Alkene

1022.61 Strong C-F stretching Fluro compound

1398.89 Strong S=O stretching sulfonyl chloride

1637.10 Medium
Medium

C=C stretching
C=C stretching

cyclic alkene
Alkane

2076.89 Strong N=C=S stretching Isothiocyanate

2947.10
Weak, broad

Medium
Strong, broad

O-H stretching
C-H stretching
N-H stretching

Alcohol
Alkane

Amine salt

3375.47 Medium N-H stretching aliphatic primary amine

Table 5. Fourier Transform Infrared Spectrometer (FTIR) spectrum analysis for the methanolic extract
of A. johnwoodii.

Frequency (cm−1) Intensity Assignments Compound Group

793.82 Medium C=C bending Alkene

1113.21
Strong

medium
Strong

C-F stretching
C-N stretching
C-O stretching

Fluro compound
amine

aliphatic ether

1452.43 Medium C=H bending Alkane

1648.33
medium
medium
medium

C-N stretching
C=C stretching
C=C stretching

Imine/oxime
Alkene

Conjugated alkene

2833.19 Strong, broad
Weak, broad

O-H stretching
O-H stretching

Carboxylic acid
Alcohol

2944.93

Strong, broad
Weak, broad
Strong, broad

Medium

O-H stretching
O-H stretching
N-H stretching
C-H stretching

Carboxylic acid
Alcohol

Amine salt
Alkane

3368.71 Strong, broad O-H stretching Alcohol

4. Discussion

Acacias grow in dry, hot environments due to the presence of their xeromorphic
structure. The high-water holding capacity of leaves and well-developed root system
enable Acacias to adapt to their dry, hot environment. To analyze the plant based on such
abiotic stress tolerant character, genome size and phytochemical study are necessary. Plant
genome size influences stress tolerances in plants via plasticity [39]. The genome size has
an impact on various parameters of the plant, such as drought tolerance, various nutritional
growth, and herbivore defense traits [40,41]. Information about the genome size of any
plant is very important as it has a strong correlation to many traits of the plants and their
evolutionary aspects. In the present study, the seeds of all three species were collected from
the same geographical region, time and same environmental conditions for genome size
estimation and phytochemical study. The plants were grown in a growth chamber under
optimum conditions. The morphological traits of Acacia species, including seed shape, size
and leaf morphology, were different from each other (Figure 1). However, seed color was
almost similar among the three species. The largest variation in leaf size was observed
in A. johnwoodii than the other two Acacia species. Overall, the morphological traits were
observed to be superior in A. johnwoodi than A. origena and A. etbaica. Similarly, the genome
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size of A. johnwoodii (2.19 pg/2C DNA content) was higher than A. etbaica (1.91 pg/2C
DNA content) and A. origena (2.09 pg/2C DNA content) in the same extraction buffer.
Variations in seed mass have been more closely associated with variations in genome size
than with divergences in other ecological and morphological variables [42]. The strong
relationship between DNA content, cell division rate and cell size could lead to predictable
morphological differences in plants, including a negative relationship with leaf mass per
unit area [43].

Identification of Acacia species according to phenotypic (morphological) characters
is very difficult as sometimes these markers overlap with each other. Plant genomes pro-
vide knowledge on biosynthetic pathways engaged in the synthesis of phytoconstituents.
Plant phenotypic expression [42,44], cell size, mitotic cell cycle and their constituent or-
ganelles [45] have been correlated to the genome size. The estimated genome size herein in
Acacia species could be used for their identification based on observed variation among
them. The genome size estimated with two buffers, namely MB01 and GB, was found
to be the same within Acacia species and could be used for the identification of these
species. In some study, genome size was stable within an individual and usually within
a species [46,47]; however, there are notable exceptions where variation have been observed
within species [48].

4.1. Genome Size (2C DNA Content) Variation within and among Acacias

For the first time, the genome size (2C DNA content) was estimated in Acacias,
including A. johnwoodii, A. etbaica and A. origena, which are important species found in the
Kingdom of Saudi Arabia. All three species had shown genome size variation within and
among when nuclei extracted with LB01 and Tris MgCl2 buffer. According to extraction
buffers (MB01 and GB), the genome size within Acacia species was found to be the same;
however, it varied among the species (Table 2). The result obtained in the current study
for genome size (2C DNA content) was supported by the work of other researchers who
worked on various plant species of the same genus and their populations [22,49–51].
Ouarda et al. [52] found genome size variation in Acacia tortilis from 2.95–3.03 pg/2C in
Tunisian, and those originating from Zimbabwe had consistent genome sizes (2C nuclear
DNA = 1.39–1.40 pg).

Various reasons might be possible for genome size variation in studied Acacias, includ-
ing biotic and abiotic factors prevailing in the natural habitat. Secondly, all three Acacias
are different species that belong to the same genus, so this might be the reason for the
variation in genome size. The genome size diversity in plant species is partly related to
variations in chromosome number [53], and polyploidy is recognized as one of the main
reasons for genome size variation [54]. Knight et al. [13] provided a literature review that
covers several factors that have been linked to DNA content variation in plants, such as
species diversity, latitude, altitude, precipitation temperature, generation time, seed mass,
various leaf anatomical traits and growth rate. Some studies have found relationships
between abiotic field conditions and genome size in plant species [45,55]. In another study,
it was observed that climate seasonality and biotic interactions are potential forces shaping
the evolution of genome size [56]. The ecological factors could also be important in shaping
the evolutionary dynamics of genome size [57] and the origins of secondary compounds
through gene duplication events [58].

Extraction buffer has an important role in genome size determination as different
extraction buffers have different chemical compositions, which could help in the extraction
of nuclei from different plant species in different levels of quantity and quality. The purpose
of using different extraction buffers in the present study is to measure the accurate genome
size of Acacias, as one nucleus extraction buffer cannot use for all plant species. In our study,
genome size varied within and among Acacia species significantly and non-significantly in
some buffers (Table 2), whereas it remained the same in some buffers. Different extraction
buffers may give variation in the yield and quality of extracted nuclei, which results in
variation in genome size (2C DNA content), as reported by Sadhu et al. [22].
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The isolation of nuclei in pure form is very important for genome size estimation as the
presence of various secondary metabolites and chlorophyll in the plant cell decreases the
purity of nuclei suspension and further affects fluorochrome fluorescence. Such compounds
exacerbate the problem of nuclei extraction and thus, affecting sample quality and causing
problems in DNA staining [59,60]. According to Noirot et al. [59], caffeine and chlorogenic
acids present in Coffea spp. hinder the PI’s intercalation to the DNA. Similarly, Lycium
species contain numerous cytosolic compounds, such as flavonoids and phenolic acids [61],
which can interfere with the fluorescent staining of nuclear DNA [60,62]. Therefore, sam-
ple selection is very important for the extraction of pure nuclei. We used cotyledons of
germinated seeds of Acacias for the extraction of pure nuclei, which had a low quantity of
secondary metabolites and chlorophyll content as compared to the leaf sample. Extraction
of nuclei from cotyledons was found to be pure as compared to leaf. Initially, we used the
same buffer composition as reported in the literature for the extraction of nuclei; however,
we could not get the sharp peak in FCM and hence were unable to estimate accurate genome
size (data not shown). Therefore, we modified the buffer composition by adding the PVP
(2% w/v) and 0.6% β-mercaptoethanol (v/v), which reduced the compounds’ interaction
with nuclei released from the cell and improved the purity of nuclei as indicated by sharp
peaks in all Acacias (Figures 2–4). The compound β-mercaptoethanol is a reducing agent
and checks the activity of phenolic compounds in the presence of another competitor, such
as PVP, and breaks the hydrophobic interactions [63]. In another study, Sadhu et al. [22]
used 1% of PVP in different extraction buffers, which yielded good-quality nuclei from
plants of different genera of the same family from both root and shoot tissues. In earlier
reports, it has been reported that PVP reduced the effect of polyphenols by changing their
conformational structure, maintaining the cell compounds in a reduced state and making
hydrogen bonds [63–65]. Thus, our result revealed that the two extraction buffers viz., GB
and MB01, could be used for the extraction of nuclei for estimation of genome size as no
variation in genome size within Acacia species has been observed as compared to other
extraction buffers used in this study.

4.2. Phytochemicals Profiling in Acacias

Phytochemicals are secondary metabolites that defend the plant and are used as
medicine to cure various human diseases. Phytochemical profiling was performed using
the methanolic extract of young leaves of Acacia species for comparative study based on
TFCs, TPCs and bioactive compound contents. The present study was conducted in the
growth chamber for phytochemicals comparison among three Acacia species (A. johnwoodii,
A. etbaica and A. origena). The leaves were harvested from 3-month-old plants for the
extraction of phytochemicals in methanol. Fourier-transform infrared spectroscopy (FTIR)
results showed the presence of different functional groups present on compounds in all
Acacia species. The functional group detected on compounds were almost similar except
for some unique functional groups, as aliphatic ether was detected in A. johnwoodii whereas
isothiocyanate, cyclic alkene and sulphonyl chloride were detected in A. etbaica. However,
functional groups, including Imine/oximes and conjugated alkenes, were not detected in
A. johnwoodii, whereas these were detected in the other two species of Acacia. The obtained
results show that FTIR spectroscopy is a rapid, reliable method for the comparative study
of Acacias. This is one type of analytical method of fingerprinting for the identification and
differentiation of plant species. Such type of fingerprinting method has been used for the
identification of various plant species such as Lycium, some moss species, birch species and
Rhodobryum roseum Limpr. and its adulterants [66–69].

Total flavonoids (TFCs) and phenolic contents (TPCs) were measured by colorimetric
spectrophotometry, and they varied among the Acacia species significantly. Among the three
species of Acacias, the TPCs were observed to be highest in A. johnwoodii (28.84 ± 1.79 mg
GAE/g DW) than the other two species of Acacia (A. etbaica and A. origena) significantly.
However, in contrast to TPCs, the TFCs were found to be highest in A. etbaica. This large vari-
ation in phenolic and flavonoid contents among Acacias might be responsible for different
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levels of medicinal properties. Many species of Acacia have shown medicinal properties and
have been used in different countries. Several species of Acacia have important resources
of bioactive compounds such as phenolics, flavonoids, alkaloids, saponins, terpenoids,
polysaccharides and tannins [70] which are responsible for several pharmacological effects,
including hypoglycemic, antibacterial, anti-inflammatory, anti-platelet aggregation, anti-
cancer, anti-atherosclerotic, anti-hypertensive and analgesic properties [71]. The present
result was supported by other researchers who observed variation in secondary metabolites
(TFCs and TPCs) in different plant species belonging to the same genus, including Iris
species and Monochoria species [72,73].

A high-performance liquid chromatographic method was used for the quantitative
determination of luteolin 7-rutinoside and quercetin 3-β-D-glucoside, which are important
flavonoids in plants. These bioactive compounds were extracted in 100% methanol from
the young leaf of A. johnwoodii, A. origena, and A. etbaica, as methanol is a good solvent for
the extraction of secondary metabolites. Different types of flavonoids are found in plants
as quercetin-3-rutinoside, rutoside, sophorin and luteolin 7-rutinoside [74,75], and they
have different pharmacological activities. The flavonoids, quercitrin and quercetin 3-β-D-
glucoside (QBDG) act as a chemical chaperone for the A4V SOD1 ALS-causing mutant [76].
The concentration of both compounds, including quercetin 3-β-D-glucoside and luteolin
7-rutinoside, varied among the Acacia species. This variability of bioactive compound
content has differentiated the Acacia species from each other as the highest concentration
of quercetin 3-β-D-glucoside was found in A. johnwoodii and Luteolin 7-rutinoside in
A. origena. The compound luteolin glycoside is found in different plant species, such as
artichokes [77] and possesses a varied range of biological activities participating in the
prevention and treatment of various diseases. Luteolin plays a vital role in shielding plants
against ultraviolet radiation [26,78].

Based on the phytochemical study, TFCs, TPCs, luteolin 7-rutinoside and quercetin
3-β-D-glucoside, all three species of Acacia showed variation in a controlled environment,
and these might have different pharmacological activities. The reason behind this variability
of phytochemicals in these Acacia species might be due to the genotype variation (different
species of the same genus) since no stress was imposed on the plant at any stage. However,
the biosynthesis of such compounds, including phenolics, depends on the plant stage [79],
growing conditions, species exclusiveness, vegetation period (altitude, climatic factors
and soil properties) [80–83], and seasonal variation [84]. The variation in the content of
flavonoids and phenolics has been observed in different species of Acacias and in their
different parts [85,86]. Such compounds (flavonoids) could be used in other plant species
effectively to analyze the evolutionary relationships of different plant families and for
their authentication.

5. Conclusions

Estimation of genome size is very important in plant species as it makes whole genome
sequencing easy, which will support carrying out a more comprehensive study of the
evolution and origin. The results of the present study on genome size and phytochemical
study on different species of Acacias are the first time that could be used further for
molecular biology research. Our study shows that genome size (2C DNA content) varied
among the species of Acacias. Among different nuclei extraction buffers, MB01 and GB
proved to be the best buffers for extraction of nuclei for estimation of genomes size and
could be used for other Acacia species as genome size within Acacia species remained the
same. FTIR spectra of leaf extract revealed the presence or absence of diverse functional
groups on a compound, and some are unique to Acacia species. The leaves of Acacias
species showed the presence of quercetin 3-β-D-glucoside and luteolin 7-ritinoside, which
are good antioxidant flavonoids. Further, the research could be performed in natural
habitats for the screening and estimation of phytochemicals during different seasons as
well as under abiotic stress conditions. More detailed studies of the phytochemical profile
and extraction of individual phenolic compounds need to be carried out in the future.
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