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Abstract: The occurrence of arsenic in water is a global problem for public health. Several removal
technologies have been developed for arsenic removal from water, and adsorption onto iron oxy-
hydroxides is the most widely used technique. Granular ferric hydroxide (GFH) has been used
mainly for As(V) removal, but it has the disadvantage that it can create a problem with the residual
concentration of iron in the water. Moreover, graphene oxide (GO), which contains a large amount of
reactive oxygen, exhibits high adsorbing capacity. In this study, the combined use of GO and GFH
as adsorbent materials in different molar ratios was investigated in order to achieve the maximum
As(III) removal from aqueous solutions. The effect of the adsorbent’s dosage, pH value, contact time,
initial As(III), and different molar ratios of GO/GFH was examined. As depicted, the presence of
GFH enhances the use of GO. In particular, the molar ratio of GO/GFH 2:1 (i.e., 0.2 g/L GO and
0.1 g/L GFH) is chosen as optimal at pH value 7.0 ± 0.1, while the removal percentage increased
from 10% (absence of GFH) to 90% with the simultaneous addition of GFH. Freundlich isotherm and
pseudo-second-order kinetic models described the experimental data adequately and the highest
adsorption capacity that was achieved was 22.62 µg/g.

Keywords: arsenic; GFH; graphene oxide; adsorption

1. Introduction

Arsenic belongs to the metalloid elements and appears in water with two oxidation
states, found as oxyanions, as arsenate [As(V)] (H3AsO4, H2AsO4

−, HAsO4
2−, or AsO4

3−),
or arsenite [As(III)] (H3AsO3, H2AsO3−, and HAsO3

2−) [1], with As(III) being about
60 times more toxic than As(V) [2]. According to the World Health Organization (WHO),
the maximum permissible concentration of As in drinking water is 10 µg/L [3], while
extended consumption of arsenic-containing waters leads to several health effects, such as
cancer of skin, lungs, and bladder [3].

Therefore, because arsenic is hazardous to human health and occurs in large concen-
trations, above WHO drinking water standard limits, in many regions around the world,
such as India, Bangladesh, Pakistan, Cambodia, Argentina [4–6], and others, the need to
remove it from water becomes imperative. Several removal technologies [7] have been
developed for arsenic removal from water, such as adsorption with activated carbons [8],
coagulation [9], membranes [10,11], molecularly imprinted polymers (MIPs) [12], etc. Iron
coagulation—filtration and adsorption onto iron oxy-hydroxides are the most widely used
techniques [9,13–17]. In many cases, there is a need for a peroxidation step to oxidize As(III)
into As(V). Hence, chemical oxidants such as chlorine, hydrogen peroxide (H2O2), ozone
(O3), permanganate, hypochlorite, monochloramine, and persulfate-based systems were
frequently employed to oxidize As(III) to As(V) [18–21]. On the other hand, iron oxides and
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oxy-hydroxides (FeOOH) have been intensively studied as adsorbents for several years for
the purification of water [18–23].

Granular ferric hydroxide (GFH), a usual porous iron adsorbent, is commercially
available and commonly considered for arsenic removal [16,24,25] under both laboratory-
scale and full-scale water treatment plants [24]. Several times, a powdered-sized fraction of
iron-oxide-based adsorptive material was deposed on the surface of a microfiltration (MF)
membrane [16]; however, this application might be increasing the cost of processing with
the use of membrane.

Although GFH has a lot of applications, some disadvantages cannot be avoided while
using it, such as the addition of iron to water and the relative residual concentration.
When iron is present in water in higher concentrations than the limits (0.2 mg/L) [26], this
has impacts on water quality, such as (a) giving water a reddish color when exposed to
air, (b) giving water a nasty metallic taste, and (c) domestic pipes being clogged by iron
precipitates [27]. In addition, kinetic studies with GFH suggested slow kinetics from 3 to
415 days, leading to a diffusion-controlled transport process that limits the rate of arsenic
adsorption [28].

On the other hand, graphene, a two-dimensional structure, since its discovery in
2004 [29], has attracted researchers [30–33] while exhibiting a flexible, porous structure and
high chemical stability. Oxidation of graphite leads to the eventual formation of graphene
oxide (GO), which contains a large amount of reactive oxygen due to the presence of epoxy,
carboxyl, and hydroxyl groups [34]. The benefits of using GO as a reactant in aqueous
solution are its hydrophilicity because of these groups and its adsorbing capacity of several
contaminants onto the benzene ring by the strong π–π interaction [35].

In the present study, the main aim was to combine the two materials, i.e., graphene
oxide and the commercially available GFH to develop a hybrid-type treatment, in which
the advantages of both materials will be combined. As a first application of this treatment
type, in the present study, As(III) removal from waters will be examined in order to
evaluate the efficiency of the treatment and to gain data, which will be useful for further
applications, such as in combined removal of arsenic with other contaminants, inorganic
and mainly organic, for which graphene oxide has a great affinity [36]. Considering the
aforementioned advantages of GO and GFH, in this study, the combined use of these
two adsorbent materials in different molar ratios was investigated in order to achieve the
maximum arsenic removal from aqueous solutions. To the best of our knowledge, this is
the first research paper combining the use of GFH with graphene oxide for As(III) removal
in water treatment applications.

2. Materials and Methods
2.1. Materials

All reagents used were of analytical grade. Sodium metarsenite (AsNaO2) (Merck
KGaA, Darmstadt, Germany) solution was used for the preparation of simulated arsenic
water. As(III) stock solution (100 mg As(III)/L) was prepared by dissolving 0.1733 g
AsNaO2 in 1000 mL deionized water and stored in 4 ◦C for further use in the experiments.
The GFH material was supplied by GEH–Wasserchemie GmbH & Co. KG, Osnabrück,
Germany. The GFH material is predominantly ß-FeOOH and Fe(OH)3, with a particle size
of 0.2–2.0 mm and specific surface area (BET) of ~300 m2/g [37]. The GO was previously
synthesized and used by the authors [33] according to the modified Hummer’s method [38],
as improved by Debnath et al. (2014) [39], with a theoretical specific surface area of
~890 m2/g [34]. pH was properly regulated by utilizing HCl solution of 37% (Panreac
Quimica SLU, Barcelona, Spain) or NaOH ACS reagent ≥97.0% pellets (Sigma-Aldrich
St. Louis, MO, USA) solutions of appropriate concentrations in the range of 0.01–0.1 M.
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2.2. Analytical Determinations

For the determination of residual arsenic concentration, atomic absorption spec-
troscopy coupled with graphite furnace (Varian Zeeman AA240Z with GTA 120; Hansen
Way Palo Alto, CA, USA), which has a detection limit of 1 µg/L, was used.

2.3. Adsorption Experiments

Adsorption experiments have been conducted by introducing a predetermined quan-
tity of adsorbent in 15 mL Falcon tubes (10 mL is the volume of solution) containing arsenic
solutions at indicated initial concentrations. Experiments were performed at a constant
temperature. The suspension was agitated using a Trayster overhead shaker and Loopster
rotator (IKA®-Werke GmbH & Co. KG, Staufen, Germany) at a constant stirring speed
(80 rpm). The following experimental variables were examined: the pH value of the solu-
tion in the range 4.0–9.0 ± 0.1, the initial As(III) concentration in the range 25–500 µg/L,
the adsorbent dose (0.2–2.0 g/L), and contact time (10–360 min for kinetics and 24 h for
equilibrium). Following the adsorption experiment, the collected water samples were fil-
tered through 0.45 µm pore size nylon filter and the examined parameters were determined
in the filtrate. The results represent the mean value of results obtained by three replicated
experiments. The percentage removal (%R) As(III) was determined from the following
Equation (1):

R (%) =

(
C0 − Cf

C0

)
× 100% (1)

where Co is the initial As(III) concentration (µg/L) and Cf is the final As(III) concentration
(µg/L) after treatment.

The adsorption capacity of adsorbents (Qe) (µg/g) was calculated from the following
Equation (2):

Qe =
(C0 − Ce)× V

m
(2)

where Ce is As(III) concentration (µg/L) at equilibrium, V (L) is the volume of solution,
and m (g) is the mass of the adsorbent used.

2.3.1. Equilibrium Experiments

For the isothermal experiments, a fixed amount of adsorbent sample (g) was added to
10 mL of As(III) solution (25–500 µg/L) in 15 mL falcon tubes. The adsorption experimental
results were fitted to the Langmuir and Freundlich isotherm models.

The Langmuir model associates the solid-phase adsorbate concentration (Qe) and the
uptakes to the equilibrium liquid concentration and is expressed as Equation (3):

Qe =
QmKLCe

1 + KLCe
(3)

where Qm is the theoretical monolayer/maximum adsorption capacity (µg/L) and KL is
related to the energy of As(III) (L/µg) adsorption.

The Langmuir theory assumes that the adsorbent has a limited adsorption capacity
(Qm), while the adsorbate forms a monolayer on the adsorbent surface and that there is a
lack of interface between the adsorbed molecules [40].

The Freundlich model [41] outlines the inter-relation between As(III) equilibrium
concentrations (µg/L) with the uptake capacities, Qe (µg/g) of adsorbent, and is expressed
as Equation (4):

Qe = KFC1/n
e (4)

where KF is a constant related to adsorption capacity, while 1/n is a constant related to
the intensity of adsorption or surface heterogeneity; 1/n = 0 is for heterogeneous phase;
1/n < 1 is for a normal Freundlich isotherm; and 1/n > 1 indicates a co-operative adsorption.
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2.3.2. Kinetics Experiments

Two widely used models, i.e., the pseudo-first-order (PFO) and pseudo-second-order
(PSO) kinetics models, were investigated to fit the kinetics of As(III) adsorption. The
calculated adsorption kinetic parameters were further analyzed to estimate the adsorption
rates, as well as to determine the potential reaction mechanism. The pseudo-first-order
model used for the data analysis is as shown below as Equation (5):

Qt = Qe

(
1 − e−k1t

)
(5)

where Qe is the amount of As(III) adsorbed at equilibrium (µg/g), Qt is the amount of
As(III) adsorbed at time t (µg/g), k1 is the rate constant of the PFO model (1/min), and t is
time (min).

The pseudo-second-order model used for the data analysis is as shown below as
Equation (6):

Qt =
k2Q2

et
1 + k2Qet

(6)

where Qe is the amount of As(III) adsorbed at equilibrium (µg/g), Qt is the amount of
As(III) adsorbed at time t (µg/g), k2 is the rate constant of the PSO (g/(µg min), and t is
time (min).

3. Results and Discussion
3.1. Batch Adsorption Experiments
3.1.1. Effect of Adsorbent Dose

Figure 1a shows the effect of GO and Figure 1b the effect of GFH dose on As(III) %
removal, applying an initial As(III) concentration of 100 µg/L.
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Figure 1. Comparison and effect of adsorbent dose on As(III) R% removal (a) on GO and (b) on
GFH; initial As(III) concentration 100 µg/L, pH 4.0, 6.0, 7.0 ± 0.1, T = 298 K, contact time 24 h, in
deionized water.

As illustrated in Figure 1a, by applying GO dosage, as the dosage of the adsorbent
increased, so did the removal of As(III), especially at neutral pH values at which the
efficiency is significantly higher. In particular, while in pH 4 and 9 with 2 g/L of GO,
the removal reached 20%, in pH 7, it almost doubled. However, at all pH values, As(III)
removal by applying only GO as the adsorbent material was low and, therefore, GO alone
cannot be considered an efficient adsorbent for As(III) removal.

On the other hand, in Figure 1b, it is observed that GFH was effective in all applied
doses, especially in basic pH values. Therefore, it follows that a combined use with GO in
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the appropriate molecular ratio would be of interest to study to examine the effectiveness
of the combined use of materials as regards As(III) removal.

3.1.2. Effect of the Dose Ratio of GO/GFH to the Removal of As(III) from Waters

The effect of different dose ratios of GO and GFH on the removal of As(III) is shown
in Figure 2 with an initial As(III) concentration of 100 µg/L by applying several doses of
GO at room temperature (298 K) at different doses of GFH (0.1, 0.2, 0.5, and 1.0 g/L) at pH
4.0 ± 0.1; 7.0 ± 0.1; and 9.0 ± 0.1. As depicted, the presence of GFH enhances the use of
GO at all pH values. Even with the application of a small amount of GFH (0.1 g/L), the
change in the removal efficiency of As(III) is very important. In particular, the dose mass
ratio of GO/GFH 2:1 (i.e., 0.2 g/L GO and 0.1 g/L GFH) was chosen as optimal, as it was
shown that, at a pH value 7.0 ± 0.1, the removal percentage increased from 10% (absence of
GFH) to 90% with the simultaneous addition of 0.1 g/L GFH and 0.2 g/L GO. In addition,
it is worth noting that the performance of the GFH was also enhanced, from 82% without
the addition of GO and reaching 92% with their combination. In all experiments, the
residual iron concentration was measured and was found to be well below the maximum
permissible concentration of 200 µg/L, which is the limit of iron in drinking water.
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Figure 2. Effect of GO dosage on As(III) % removal with combined addition of several doses of GFH
(a) 0.1 g/L, (b) 0.2 g/L, (c) 0.5 g/L, (d) 1.0 g/L; initial As(III) concentration 100 µg/L, pH 4.0, 6.0,
7.0 ± 0.1, T = 298 K, contact time 24 h, in deionized water.

3.1.3. Effect of Initial pH Solution

The effect of pH on the removal of As(III) was studied at different pH values of the
solution ranging from 4.0 ± 0.1 to 9.0 ± 0.1 (contact time 24 h; temperature 298 K). The
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optimum combination of GO/GFH, at a ratio of 2:1, was used as adsorbent. As illustrated
in Figure 3, the addition of GFH enhanced the removal of As(III), particularly at pH 7 ± 0.1.
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Figure 3. Effect of initial solution pH on the adsorption of As(III) onto the combination of GO (0.2 g/L)
and GFH (0.1 g/L); initial As(III) concentration 100 µg/L, pH 7.0 ± 0.1, T = 298 K, contact time 24 h,
in deionized water.

In order to understand and explain the overall achieved removal, the pHpzc measure-
ments of the adsorbents were performed in the pH range of 2.0–10.0 ± 0.1. pHpzc is the pH
value at which the surface charge of the adsorbent changes from positive to negative, with
a potential impact to the interface between the adsorbate and the adsorbent. pHpzc was
calculated by the relative graph of ∆pH vs. pHinitial, as illustrated in Figure 4 by using pH
drift method [42]. It was found that the relative pHpzc values were 6.67 for GO and 7.22
for GFH, resulting in a slightly negatively charged surface of GO and slightly positively
charged surface of GFH at solution pH values (pH 7.0 found in this study) greater and
lower than the pHPZC, respectively. At pH 7.0, As(III) with a pKa1 of 9.22 is mostly present
as nonionic H3AsO3 [43]; thus, at pH 7.0, adsorption of As(III) is less pH-sensitive [44] and
the adsorption of nonionized As(III) takes place only through a Lewis acid–base (ligand
exchange) reaction [45].
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3.2. Adsorption Isotherms

As isothermal adsorption models can describe experimental data and determine the
mechanism of the adsorption process, two common isotherm models, Langmuir and
Freundlich, were applied to describe the experimental results. These models are described
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by two parameters that are used in order to establish the connection between the amount
of arsenic adsorbed onto the combination of GO and GFH. Figure 5 provides the results for
As(III) removal capacity (µg/g), with initial concentration varying from 25 to 500 µg/L,
at pH 7.0 ± 0.1, by applying the combination of 0.2 g/L GO and 0.1 g/L GFH at room
temperature (298 K).
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Figure 5. Langmuir and Freundlich isotherm models for the adsorption of As(III) (25–500 µg/L) onto
the combination of GO (0.2 g/L) and GFH (0.1 g/L), pH 7.0 ± 0.1, T = 298 K, contact time 24 h, in
deionized water.

The calculated parameters from Equations (3) and (4) are shown in Table 1. As shown,
the adsorption isotherm data were best fitted to the Freundlich isotherm model with a
relative higher correlation coefficient (R2 = 0.996), indicating a multi-layer adsorption
process. This model assumes the existence of interactions between adsorbed molecules.
The values of KF (0.7167) and 1/n (0.6349) were calculated from the intercept and slope
of the plots. For values of 1/n in the range 0 < 1/n < 1, adsorption is favorable, so
the corresponding value obtained in this study, i.e., 0.6349, proves that the adsorbent’s
combination of GO/GFH with a molar ratio 2:1 is effective for As(III) adsorption and
the adsorption process can be characterized as favorable. It described a heterogeneous
chemisorption [41].

Table 1. Constants of Langmuir and Freundlich isotherm model for the adsorption of As(III) onto
the combination of GO (0.2 g/L) and GFH (0.1 g/L), pH 7.0 ± 0.1, T = 298 K, contact time 24 h, in
deionized water.

Langmuir Isotherm Model

Qm (µg/g) KL (L/g) R2

22.62 0.0136 0.9868

Freundlich Isotherm Model

1/n n KF (µg/g) (L/µg)1/n R2

0.6349 1.5752 0.7167 0.9962

Table 1 shows the correlation coefficient for Langmuir model, which is lower than
Freundlich. According to Langmuir model, the calculated adsorption capacity was 22.62 µg/g.

3.3. Effect of Contact Time and Adsorption Kinetics

The contact time is an important parameter, expressing the time required for ad-
sorbents to reach adsorption equilibrium. For the evaluation of the adsorption kinetics,



C 2023, 9, 10 8 of 11

relevant experiments were conducted at an initial As(III) concentration of 100 µg/L at pH
7.0 ± 0.1 by applying the combination of 0.2 g/L GO and 0.1 g/L GFH at room temperature
(298 K).

As shown in Figure 6, the required time for achieving 50% removal of As(III) was
found to be ~60 min, reaching 80% in about 240 min. Moreover, it is observed that the
equilibrium is reached after 360 min.
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Figure 6. Effect of contact time on the adsorption of As(III) onto the combination of GO (0.2 g/L) and
GFH (0.1 g/L); initial As(III) concentration 100 µg/L, pH 7.0 ± 0.1, T = 298 K, in deionized water.

In addition, the kinetics of As(III) adsorption were fitted to kinetic models. Pseudo-
first-order (PFO) and pseudo-second-order (PSO) models have been used for the kinetic
study and the corresponding curves are illustrated in Figure 7. According to the parameters
presented in Table 2, the experimental data fitted better to the pseudo-second-order model,
from which a better correlation was obtained, i.e., R2 = 0.9696 for PSO and only R2 = 0.8708
for PFO. The PSO model constants, calculated from Equation (6), are shown in Table 2,
indicating that the adsorption of As(III) on a combination of GO/GFH (molar ratio 2:1)
was closer to chemical adsorption and, henceforth, there is an exchanging or sharing of
electrons between the adsorbate and the adsorbent [46]. This finding is in agreement
with the respective findings of the application of the isotherm models, from which it
was considered that As(III) removal takes place through chemisorption. In addition, the
change between the calculated equilibrium adsorption capacities (qe,calc) (3.0283) and the
experimental value (qe,exp) (2.7421 mg/g) was not very significant.

Table 2. Pseudo-first-order and pseudo-second-order kinetic parameter model for the adsorption
of As(III) onto the combination of GO (0.2 g/L) and GFH (0.1 g/L), pH 7.0 ± 0.1, dosage 2 g/L,
T = 298 K, contact time 24 h, in deionized water.

Pseudo-First-Order Model (PFO)

Qe.exp (µg/g) K1 (L/µg·min) Qe.cal (µg/g) R2

3.0283 0.0386 2.4621 0.8708

Pseudo-Second-Order Model (PSO)

Qe.exp (µg/g) K2 (L/µg·min) Qe.cal (µg/g) R2

3.0283 0.0181 2.7421 0.9696
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Figure 7. Kinetic models of pseudo-first and pseudo-second order for the adsorption of As(III)
onto the combination of GO (0.2 g/L) and GFH (0.1 g/L); initial As(III) concentration 100 µg/L,
pH 7.0 ± 0.1, T = 298 K, in deionized water.

4. Conclusions

In the present study, GFH, a commercially available porous iron adsorbent, and GO,
containing a large amount of reactive oxygen species due to the presence of epoxy, carboxyl,
and hydroxyl groups, were combined in different dose ratios in order to achieve the
maximum As(III) removal from aqueous solutions. The effect of the adsorbent’s dosage,
pH value, contact time, initial As(III), and different dose ratios of GO/GFH were examined.

According to the results, the main highlights of this manuscript can be summarized as
follows: the presence of GFH enhanced the use of GO at all pH values for As(III) removal.
In particular, the molar ratio of GO/GFH 2:1, by the simultaneous addition of 0.2 g/L
GO and 0.1 g/L GFH, was chosen as optimal at pH value 7.0 ± 0.1, while the removal
percentage increased from 10% (absence of GFH) to 90% with the simultaneous addition
of GFH.

Freundlich isotherm model fitted the experimental data sufficiently with a quite high
correlation coefficient (R2 = 0.996), indicating a multi-layer chemical adsorption process.
In addition, the kinetics of As(III) adsorption on 0.2 g/L GO and 0.1 g/L GFH fitted
well to the pseudo-second-order model, from which a high correlation was obtained, i.e.,
R2 = 0.9696, indicating that the adsorption of As(III) on a combination of GO/GFH (molar
ratio 2:1) was closer to chemisorption and that there is an exchanging or sharing of electrons
between the adsorbate and the adsorbent.

The results showed that combined use of GO and GFH can be an effective combined
treatment approach for removing As(III) from water without the use of chemical reagents
for As(III) oxidation, while the use of GO contributes to the need for smaller quantities of
GFH, thereby reducing the final iron concentrations in the treated water, while it offers the
possibility to be applied for simultaneous organic micropollutant removal, which is the
main prospective of this research.
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