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Abstract: To predict the future behavior of a system, we can exploit the information collected in the
past, trying to identify recurring structures in what happened to predict what could happen, if the
same structures repeat themselves in the future as well. A time series represents a time sequence
of numerical values observed in the past at a measurable variable. The values are sampled at
equidistant time intervals, according to an appropriate granular frequency, such as the day, week,
or month, and measured according to physical units of measurement. In machine learning-based
algorithms, the information underlying the knowledge is extracted from the data themselves, which
are explored and analyzed in search of recurring patterns or to discover hidden causal associations
or relationships. The prediction model extracts knowledge through an inductive process: the input
is the data and, possibly, a first example of the expected output, the machine will then learn the
algorithm to follow to obtain the same result. This paper reviews the most recent work that has used
machine learning-based techniques to extract knowledge from time series data.

Keywords: time series data; machine learning; classification; regression; review

1. Introduction

Time series are used in various fields of application to understand and analyze the
evolution of a phenomenon over time [1,2]. A characteristic of these data is the dependence
between successive observations, which we try to capture using suitable models. The
need to understand past characteristics translates into the much more difficult phase of
forecasting the possible future trend of the studied series. The most obvious purpose of
the forecast is to try to dominate randomness and uncertainty to exploit them to one’s
advantage. This task is particularly difficult because the analysis is carried out on very
unpredictable data [3,4].

In this context, the measurement of the phenomena that evolve over time is carried
out with the aim of observing, and possibly predicting, the future dynamics of the phe-
nomenon under study [5]. One of the objectives of the time series analysis is to identify
the components that determine the evolution of the phenomena of time. A time series can
be defined as a succession of numerical data in which each datum is associated with a
particular instant or time interval. If only one phenomenon is observed at each point or
time interval, the series is called univariate. If the observed variables are more than one,
the series is called multiple or multivariate [6,7].

The first step in the study of temporal data is to understand the link between the
variable and time: the values are realized with the passage of time intervals and these are
therefore the units on which the variable of interest is observed [8]. In a time series, the
order of the data is substantial and not accidental as in the case of a random sample of
observations, and the recognition of this order is one of the most important characteristics
of the series itself. It can be assumed that there is a kind of dependence between successive
observations and that it is linked to the position of the observation in the sequence: the
data detected at a given instant t are more like those detected at instant t − 1 rather than
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in epochs distant [9]. The study of this dependence and the consequent possibility of
exploiting it for forecasting purposes represent the heart of the analysis of the time series.
The time parameter, which defines the ordering of the data, belongs to a parametric set that
can be continuous or discrete. The timing with which to observe a phenomenon depends
on the nature of the phenomenon itself. The most used time intervals are days, weeks,
months, quarters, and years [10,11].

Most of the time series is, however, of the stochastic type, in the sense that the
future is determined by the past only partially, thus making it impossible to draw up
completely error-free forecasts [12,13]. A stochastic process is a family of random variables
ordered with respect to a parameter. Being a finite set of observations relating to a certain
phenomenon, ordered in time, a time series can therefore be a finite realization of a
stochastic process. The objective of the time series analysis is therefore to use the observed
data to identify the generating stochastic process to be used to make future predictions.
Stationary stochastic processes enjoy probabilistic properties, which are useful for modeling
many time series encountered in practice [14,15].

In real cases, the trend of a phenomenon over time is probabilistic, that is, its future
movement cannot be predicted without errors, unlike what happens for deterministic
temporal trends [16,17]. The study of time series can highlight some recurring behaviors
so that the process can be decomposed into random parts and deterministic parts with
which to elaborate a future forecast [18–20]. The problem of prediction without a priori
knowledge of a model of the system requires suitable investigation methods that identify
the structures and characteristics underlying the time series. Methods that capture these
constructs inductively are those based on machine learning [21–23]. Machine learning
is a branch of artificial intelligence that studies algorithms capable of improving their
performance by refining knowledge and increasing the notions learned through experience.
At the basis of the technique lies the belief that even a machine can constantly learn and
improve its performance during construction by drawing knowledge from experimental
data and analytical observation of the facts [24,25].

Machine learning distorts the traditional paradigm that assumes an output from
the input data and an algorithm that explains how to use it. In new systems, however,
knowledge is an inductive process: the input is the data and, possibly, a first example of the
expected output, so it will be the machine that will learn the algorithm to follow to obtain
the same result [26,27]. The information underlying the knowledge is literally extracted
from the data themselves, which are explored and analyzed with data mining techniques in
search of recurring patterns or to discover hidden causal associations or relationships [28].
Machine learning techniques can be used for classification through supervised learning:
the computer processes a rule for assigning the input data classes, after training the model
with an already labeled training set [29–31].

In this work we will analyze and describe methods based on machine learning for
the extraction of knowledge from times series data. The paper is structured as follows:
Section 2 describes the times series data in detail, analyzing its characteristics and peculiar-
ities that make mathematical modeling extremely complex. Section 3 analyzes the most
popular methods of analysis of the Stoic series based on machine learning. Finally, Section 4
summarizes the results obtained in applying these methods to real cases, highlighting their
advantages, and listing their limits.

2. Times Series Analysis

Often the detected values constitute, from a statistical point of view, the observations
of a random sample of independent random variables. The analysis of the time series
is based on the nature of the dependence between the members of the sequence. This
approach modifies the treatment of many phenomena as randomly distributed over time
around a substantially stable average. The study of time series must be centered on the
concept of memory or persistence or hysteresis [32,33].
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2.1. Time Series Background

The tool we use to model the observed time series is the stochastic process. An
intuitive definition of a stochastic process sees it as an infinitely long sequence of random
variables, or a random vector of infinite size [34,35]. A sample of t consecutive observations
over time is therefore not thought so much as a realization of t distinct random variables,
but rather as part of a single realization of a stochastic process, whose memory is given by
the degree of connection between the random variables that make it up [36,37].

The classical approach to time series assumes that the process includes a deterministic
part and a random disturbance component [38,39]. We can therefore represent the data of a
time series as the sum of two contributions as follows:

Yt = f (t) + w(t), (1)

In Equation (1),

• f (t) is the deterministic component;
• w (t) is the random noise component.

The deterministic component is responsible for the temporal evolution of the phe-
nomenon according to a certain law, while the random component contains a set of in-
formation of negligible entities [40,41]. This random component is attributed to chance
and assimilated to a series of accidental errors. We can therefore consider it a stochastic
component generated by a white noise process, that is, by a sequence of independent and
identically distributed random variables of zero mean and constant variance. In the classical
approach, the study focuses on the deterministic component, while the random component
is considered a process with unrelated components and therefore negligible [42,43].

In a time series, time is the parameter that determines the sequence of events, and it
cannot be neglected, so it is also necessary to know the position of the observation along
the time dimension. To represent the pair of values (time and observation), a Cartesian
diagram with a solid line graph is used as if the phenomenon was detected continuously.
Figure 1 shows the trend of milk production monitored from January 1962 to December
1975 [44].
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From the analysis of Figure 1, it is possible to notice regular trends or fluctuations
and other systematic trends over time. The previous graph shows the annual data with a
systematically increasing trend in the long term. It returns a zig-zag trend, and since the
data are monthly, we can clearly distinguish the phenomenon called seasonality. In fact, it
can be noted that high peaks are always recorded in those months in which the calving of
cows is expected.

The time series show oscillations around a long-term trend, which are called compo-
nents of the series [45–47]. Four main types of components can be distinguished (Figure 2):

• Trend (T): monotonous, long-term underlying trend movement, which highlights a
structural evolution of the phenomenon due to causes that act systematically on it.
For this reason, it is usual to assume that the trend values are expressible through
a sufficiently regular and smooth function, for example, polynomial or exponential
functions. If it is assumed that the function to be used is monotonous, then the
trend can be an increasing or decreasing function of the phenomenon in the analyzed
period [48].

• Seasonality (S): consisting of the movements of the phenomenon during the year,
which, due to the influence of climatic and social factors, tend to repeat themselves in
an almost similar manner in the same period (month or quarter) of subsequent years.
These fluctuations originate from climatic factors (alternation of seasons) and/or social
organization [49].

• Cycle (C): originating from the occurrence of more or less favorable conditions, of ex-
pansion and contraction, of the context in which the phenomenon under examination
is located. It consists of fluctuations or alternating upward and downward move-
ments, attributable to the succession in the phenomenon considered of ascending and
descending phases, generally connected with the expansion and contraction phases of
the entire system. The difference with respect to seasonality, which from a numerical
point of view is equal to cyclicality, is the fact that the first is in the order of years for
long-term cycles, while the second is in the order of months or at most one year [50].

• Accidentality or disturbance component (E): is given by irregular or accidental move-
ments caused by a series of circumstances, each of a negligible extent. It represents
the background noise of the time series, that is, the unpredictable demand component,
given by the random fluctuation of the demand values around the average value
of the series. The random fluctuation is detected after removing the three regular
components of the time series, that is, having isolated the average demand. It should
be noted that the random component is not statistically predictable. However, if it is
numerically relevant, it is possible to apply linear regression models in which several
independent variables are tested on the time series with only the random compo-
nent. This is useful for identifying correlations between the random component and
measurable input variables for which prediction for future values is also available [51].

The components we have described can be combined in different ways, so we
can represent the time series as a function of those components, as represented by the
following equation:

Yt = f (Tt, Ct, St, Et), (2)

In Equation (2),

• Tt is the trend component;
• Ct is the cycle component;
• St is the seasonality component;
• Et is the accidentality component.



Data 2021, 6, 55 5 of 30
Data 2021, 6, x FOR PEER REVIEW 5 of 31 
 

 

 

Figure 2. Times series components: (a) trend; (b) seasonality; (c) cycle; (d) disturbance. 

The components we have described can be combined in different ways, so we can 

represent the time series as a function of those components, as represented by the follow-

ing equation: 

𝑌𝑡 = 𝑓(𝑇𝑡 , 𝐶𝑡 , 𝑆𝑡 , 𝐸𝑡), (2) 

In Equation (2), 

• 𝑇𝑡 is the trend component; 

• 𝐶𝑡 is the cycle component; 

• 𝑆𝑡 is the seasonality component; 

• 𝐸𝑡 is the accidentality component. 

Once the trend as well as the cyclical and seasonal components have been identified, 

the classic approach allows you to automatically determine the data of the time series 

without a random component. In this approach, time is treated directly or indirectly as an 

independent variable. In fact, it is with the passage of time that the trend evolves, that the 

cycle assumes an oscillating trend, and that the seasonal component, if present, assumes 

regular trends. Time is therefore the fundamental variable for the origin of the forces that 

determine the data, and for this reason, it is the main variable that explains the phenom-

enon [52]. 

The modern, or stochastic, approach proposed by Box and Jenkins [8,53,54] has as its 

final objective the understanding of the probabilistic structure underlying the data and to 

attempt to reproduce the stochastic process that is supposed to have generated the time 

series, that is, the set of forces that contributed to producing the data according to proba-

bilistic laws. In the modern approach, it is assumed that the deterministic component is 

missing or has already been eliminated. The focus is on the stochastic component, which 

is assumed to be a process with controlled components. The stochastic process can never 

be identified exactly since we have a finite set of observations available, what we can do 

is try to simulate it through a model [55]. 

However, to be able to identify with a good approximation a model that simulates 

the data-generating process, it must have some characteristics: stationarity, invertibility, 

the process must be Gaussian, and it must also be possible that, from the time series, it is 

Figure 2. Times series components: (a) trend; (b) seasonality; (c) cycle; (d) disturbance.

Once the trend as well as the cyclical and seasonal components have been identified,
the classic approach allows you to automatically determine the data of the time series
without a random component. In this approach, time is treated directly or indirectly as
an independent variable. In fact, it is with the passage of time that the trend evolves,
that the cycle assumes an oscillating trend, and that the seasonal component, if present,
assumes regular trends. Time is therefore the fundamental variable for the origin of the
forces that determine the data, and for this reason, it is the main variable that explains the
phenomenon [52].

The modern, or stochastic, approach proposed by Box and Jenkins [8,53,54] has as its
final objective the understanding of the probabilistic structure underlying the data and
to attempt to reproduce the stochastic process that is supposed to have generated the
time series, that is, the set of forces that contributed to producing the data according to
probabilistic laws. In the modern approach, it is assumed that the deterministic component
is missing or has already been eliminated. The focus is on the stochastic component, which
is assumed to be a process with controlled components. The stochastic process can never
be identified exactly since we have a finite set of observations available, what we can do is
try to simulate it through a model [55].

However, to be able to identify with a good approximation a model that simulates
the data-generating process, it must have some characteristics: stationarity, invertibility,
the process must be Gaussian, and it must also be possible that, from the time series, it is
possible to obtain the properties of the whole process, such as the moments calculated on
the sample must converge to those of the entire population [56].

2.2. Times Series Datasets

To apply machine learning-based algorithms for the processing of forecast scenarios
on time series, it is necessary to have a quality data archive. For the algorithms to be able
to identify recurring behaviors so that the process can be broken down into random parts
and deterministic parts, it is necessary to have data distributed over a consistent time
window. The collection of information must be carried out in a timely manner, and the
data obtained must undergo an adequate validation process. Various archives are available
in the literature that contain time series datasets on the most diverse fields of application.
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We have already referred to this data store in the previous section (Figure 1): I am
referring to the Time Series Data Library (TSDL) [44] created by Rob Hyndman, a professor
of statistics at Monash University, Australia. From this library we have extracted data
relating to milk production. It represents a collection of datasets that the author has
extracted from textbooks or that were sent directly by the creators. The library collects 648
datasets on time series data covering 24 fields of applications, ranging from agriculture to
physics through finance and health, just to name a few.

The UCR time series archive [57] collects 128 datasets. This repository is available for
free and has a web page to support all the datasets made available [58]. The archive has
already been used in numerous studies published in various scientific journals. Some of
these studies have formulated numerous criticisms on the quality of the data contained in
the repository, and for this reason, the authors in the paper responded to these criticisms
by proposing updates and corrections to some datasets.

Kleiber et al. [59] have collected numerous time series datasets contained in the AER
package [60] available for the r platform. The package contains approximately 100 datasets
taken from a wide variety of sources suitable for processing time series models. Here
are some datasets: Consumer Price Index in Argentina, Monthly Averages of the Yield
on a Moody’s Aaa-Rated Corporate Bond, Real National Income in China per Section,
Properties of a Fast-Moving Consumer Good, Dow Jones Index Time Series computed at
the end of the week, and TV and Radio Advertising Expenditures Data.

Numerous datasets on financial time series are also contained in the R package called
FinTS [61] edited by Spencer Graves. It is a collection of datasets, functions, and script files
supporting the book by Ruey S. Tsay [11]. The datasets are many and concern different
financial fields, we mention only a few to frame the topics: Simple daily and monthly
returns for financial Time Series extracted from IBM, Microsoft, Intel, SP (Standard &
Poors), and EW, starting from 2003 Cisco Daily Register Returns for Each Dealing Day in
1999; IBM transactions data; Change series of weekly US 3-year maturity interest rates.

Another substantial source of data is contained in the R Ecdat package [62]. These
are datasets for econometrics, including political science. The collection consists of about
120 datasets arranged in alphabetical order concerning very different fields, just to name a
few: Accountants and Auditors in the US Labor Force 1850–2016, Air Quality for Califor-
nian Metropolitan Areas, Computer Security Violations of Medical Records of 500 or More
People as of 27 June 2014, and Seasonally Incorrect Quarterly Data on Available Income
and Expenses.

The ANES Time Series Study [63] collected data relating to the US presidential elec-
tions from 1948 to 2020. These data are regularly used to analyze public opinion and voting
behavior in the US presidential election. The data were collected through pre-election and
post-election surveys carried out in person or in recent years via the Internet. The surveys
were carried out on an adequately represented population sample.

Schlittgen et al. [64] have developed the tsapp package, which contains more than
40 ready-to-use datasets already loaded, that can be used by simply installing it on our
r platform. The datasets were collected by Rainer Schlittgen and Cristina Sattarhoff to-
gether with the text [64]. In addition, in this case, the fields of application are varied, to
name a few: Monthly Numbers of Road Traffic Accidents with Personal Injury, Alcohol
Demand, UK, 1870–1938, Weekly Number of Births in New York from 1961 to 1966, Annual
Coffee-Consumption USA from 1910 to 1971, Incidences of Insulin-Dependent Diabetes
Mellitus, Temperature and Consumption of Ice Cream, and Annual Amount of Rainfall in
Los Angeles.

Harvard Dataverse [65] is an online data repository open to all researchers, both
inside and outside the Harvard community. Its use makes it possible to share, store, quote,
explore, and analyze research data. In order to use the services of this repository, the
user must use the Dataverse open-source web application, developed at the Institute for
Quantitative Social Science. This application facilitates the provision of data and allows
you to replicate jobs more easily. The data are made visible with the academic credits
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related to the authors. The repository hosts several virtual archives called dataverses, each
of which contains datasets with descriptive metadata, accompanying documentation, and
any code. Harvard Dataverse currently contains over 2000 dataverses, 75,000 datasets,
and 350,000+ files. The repository offers the ability to set a filter that returns only datasets
classified as time series data.

For government datasets, Data.gov [66] allows you to download data from many
US government agencies. Data.gov collects over 1000 different sources of U.S. federal
government open data and also provides access to many nonfederal and local government
open data resources. Data.gov does not host the data directly, but rather aggregates the
metadata about the open data resources in a centralized location. Once an open data source
meets the required format and metadata requirements, the Data.gov team can collect the
metadata directly, syncing that source’s metadata to Data.gov every 24 h.

Another very rich repository of time series datasets is contained in the UCI Machine
Learning Repository [67]. It is a collection of 585 well-structured datasets already divided
by analysis technique and field of application. For each dataset, there are also numerous
references to relevant literature. This archive was created in 1987 so some datasets are
a bit dated, but for algorithm applications they are just fine. To speed up the search,
you can set filters by number of variables, number of cases, and by type of variables
(qualitative, quantitative, or mixed). For each dataset, you will also find references to the
relevant literature. An entire section dedicated to time series is available, which collects
119 datasets, for which the type (univariate or multivariate), the type of variables, the
number of instances, the number of variables, and finally the year are shown.

Cryer et al. [68] collected about 42 datasets on the time series that they used for
the analyses proposed in their book. The data were made available as a package r with
the name TSA [69]. These are data concerning different fields of applications, to name a
few: Monthly U.S. Airline Passenger-Miles, Monthly Carbon Dioxide Levels in Northern
Canada, Electroencephalogram (EEG) Test Data, Monthly U.S. Electricity Generation, Daily
Price of Gold, and Monthly Spot Price for Crude Oil.

In 2018, Google launched Google Dataset Search [70], a service that complements
Google Scholar, created specifically for students, researchers, scientists, and data journalists.
Google has indexed over 25 million datasets, which you can search as you normally would
on the search engine and filter by date, format, topic, usage rights, and whether they are
open and free or not.

Shumway et al. [71] collected a series of time series datasets that they used in the
time series analysis and application examples proposed in their book. The datasets and
numerous scripts for the analysis of the time series were collected in a package called
astsa [72].

Kaggle [73] is an online platform where you can find more than 30,000 datasets of all
sizes and formats taken from real and often recent cases on the issues more varied: from
medicine to sport, from science to economics. Over time, many datasets have generated
real communities where you can find interesting discussions on the possible analyses that
can be carried out with that data and in some cases even the code ready to be created on
software such as R or Phyton. On Kaggle, real competitions are also held periodically in
which the best types of analysis are awarded to solve a complex problem proposed by a
company or a research center. Moreover, in this case it is possible to set a filter that returns
only the datasets classified as time series data.

There are also two interesting packages that contain the data used in Makridakis
competitions. The first Mcomp package [74] collects the data used in the first Makridakis
competition, called M-Competition [75], which was held in 1982 and used 1001 time series.
Furthermore, this package also collects the data used in the third competition, called IJF-M3
competition [76], which used a total of 3003 time series. The time series collected in these
archives have been elaborated, starting from data in different fields of application: micro,
industry, macro, finance, demography, and more. The second package called M4comp [77]
collects about 10,000 time series from the M4 time series forecasting.
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3. Machine Learning Methods for Time Series Data Analysis

Machine Learning-based algorithms autonomously develop their knowledge thanks
to the data patterns received, without the need to have specific initial inputs from the
developer [78]. In these models, the machine can establish by itself the patterns to follow to
obtain the desired result, therefore, the real factor that distinguishes artificial intelligence is
autonomy. In the learning process that distinguishes these algorithms, the system receives
a set of data necessary for training, estimating the relationships between the input and
output data: these relationships represent the parameters of the model estimated by the
system [79] (Figure 3).
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Sometimes, the input data are supplied with the respective output data, that is, the
system receives initial data and is given a precise future realization determined by the
actions taken. In these cases, we speak of supervised learning [80], in the sense that the
input data are provided with a label that represents the output of the model: the system
learns to recognize the relationships that bind the input data to the labels. In other cases,
the data are not labeled, so we speak of unsupervised learning [81], the system receives
only the input datasets without any indication of the outputs to be obtained. The purpose
of this learning method is to trace hidden patterns, or to identify a logical structure in
the input data without having previously been classified. Finally, to the two learning
paradigms just mentioned, a third one is added: the reinforcement learning [82]. In this
paradigm, the system interacts with a dynamic environment and with a system of rewards
and punishments that guide it towards improving its performance. Once the input data are
obtained, the computer must reach a goal that is established on the basis of a value function
that only tells it if the goal has been achieved. In the following subsections, we will analyze
the most common methods based on machine learning that the scientific community has
adopted to solve numerous problems of forecasting time series.

3.1. Artificial Neural Network-Based Methods

Neural computation is inspired by biological neural systems, whose structure it tries
to model to simulate their basic functions. An artificial neural network (ANN), inspired
by biological systems, considers many processors, called artificial neurons, having an
elementary computational capacity connected to other units of the same type [83]. This
model was therefore born as an attempt to emulate and better understand the functioning
of the human brain, organized in biological neural networks. The brain is a highly complex,
nonlinear system capable of processing information in parallel. In this way, it can perform
some functions, such as pattern recognition and movement management, faster than any
modern computer, but above all it can learn from past experience [84].
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A model based on artificial neural networks is therefore made up of neurons, which,
through connections, can transmit signals to nearby neurons. In this structure we can
distinguish between the following:

• Input neurons: they receive information from the environment;
• Hidden neurons: they are used by the input neurons to communicate with the output

neurons or with other hidden neurons;
• Output neurons: they emit responses to the environment.

The mechanism that regulates the functioning of such a system is the transmission of
signals between neurons when the signal they receive exceeds a certain activation threshold.
The activity of an artificial neuron can therefore be summarized through a mathematical
function described by the following equation:

yi = f (xi) (3)

The function f is typically nonlinear and is called the activation function. In Equation (3),
the term xi is represented by Equation (4).

xi = ∑
(
wji + bi

)
(4)

The terms present in Equation (4) are defined as follows:

• wji = connection weights;
• bi = bias.

The parameters described in Equations (3) and (4) are fundamental for the success of
analyses based on neural networks, as they summarize the information extracted in the
learning process. During the learning process, the parameters are updated to get closer to
ever more correct and precise prediction models [85].

Neural networks are therefore made up of central blocks called neurons, organized in
layers that, starting from the so-called input layer, can process the information produced
by the intermediate hidden layers to produce the desired output (Figure 4).
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Figure 4. Artificial neural network architecture for time series data. The input dataset is divided into
sequential groups with a fixed number of components. Each of these vectors constitutes a network
input, to which the correct output is matched. Therefore, neuron 1 will be sent the vector that contains
the first k data (from x1 to xk), neuron 2 instead will be sent the vector that contains data from x2 to
xk + 1, and so on (Equation (5)).

Figure 4 shows the architecture of a simple artificial neural network of the feed-
forward type. Feed-forward networks foresee unidirectional connections between neurons
belonging to immediately consecutive layers, with a connection that proceeds forward,
that is, from layer n to layer n + 1. In this architecture, therefore, the inputs are connected
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only to the neurons of the hidden layer (there can also be more than one), which in turn are
joined to the neurons of the output layer [86].

In Equation (4), the weight assumed by the connections is weighted through a simple
linear combination of the input variables. It is understood that such a simple structure
cannot model complex systems with nonlinearity characteristics. This simple discriminant
function can be generalized by transforming the result through a nonlinear function
called activation function. The activation function conditions the relationship between
the input and output neurons when the former receives a signal from the outside, above
a threshold, and propagate it towards the inside of the network. When the activation
threshold is reached, then the neuron is activated and participates in the processing of the
model output [87]. Otherwise, the neuron remains inactive and does not participate in the
construction of the output signal. Depending on the structure used, different activation
functions are distinguished that describe the relationship between the different neurons.
The activation function is a nonlinear but continuous and differentiable function. Nonlinear
because if we want a network to be able to perform a complex mapping of the input
information, nonlinearity characteristics are necessary. The characteristics of continuity
and differentiation are instead necessary for the retro-propagation of the error [88].

After having appropriately chosen the activation function of the neurons and the
architecture of the network, the weights must be adjusted so that the network works
optimally. One method for training a neural network is supervised learning, which presents
as an input a set of inputs, or training set, in which the network tries to understand how the
phenomenon evolves over time to estimate the parameters of the model [89]. The response
obtained with these inputs is then compared with the observed response to calculate the
error committed and subsequently adjust the weights. In this way, the most suitable model
can be tested on a sample, the test set, not used in the training phase to evaluate the
generalization capacity of the neural network [90]. If this network is unable to provide
adequate outputs for inputs never presented, the training phase will have to be repeated
(Figure 5).
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To use a model based on artificial neural networks for the prediction of time series, it
is necessary to proceed in advance with the division of the input data [91]. The approach to
follow is to divide the set of data into sequential groups with a fixed number of components.
Suppose we have a distribution of univariate time series data and denote by xi with
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i = 1, 2, . . . , n the explanatory variable of the phenomenon of interest [92]. Suppose we
want to group the data into subsets of k elements, obtaining the following distribution:

x1
x2
x3
. . .
xk




x2
x3
x4
. . .

xk+1




x3
x4
x5
. . .

xk+2

 . . . . . .


xn−(k−1)
xn−(k−2)
xn−(k−3)

. . .
xn

 (5)

Each of these vectors constitutes an input of the network, to which the correct output
is matched. The output layer of the network is formed by a single neuron, so the first term
of the series not contained in the input data is chosen as the correct value [93]. This means
that, considering the vectors shown in Equation (5), they will be associated with an output
belonging to the following sequence:

xk+1, xk+2, xk+3 , . . . . . . , xn+1 (6)

We denote by ws the window size parameter defined as the number of elements of
each subset plus 1, this value representing the output value. In this way, the training set will
consist of n − (ws − 1) pairs: an input vector, to which the correct output is associated [94].
More briefly, a matrix of input values is constructed, represented by the values expressed in
Equation (5) and a vector containing the correct output values represented in the sequence
of Equation (6).

The architecture of the network will be modulated to have ws − 1 neuron in the first
layer, and a neuron in the last layer. After presenting all the patterns included in the
training set, the weights will be updated, having concluded a complete iteration (epoch).
The number of iterations carried out before finishing learning is an arbitrary parameter, but
in choosing it, you must keep in mind the problems arising from overfitting [95]. Once the
network training process is complete, the model obtained can be used to make predictions.

In recent years, several researchers have used models based on artificial neural net-
works for the prediction of time series. Azadeh et al. [96] adopted a model based on
a supervised multilayer perceptron (MLP) for the prediction of electricity consumption.
Electricity consumption modeling is difficult to predict with conventional methods due to
various seasonal and monthly variations. The authors used the data extracted from the
time series to train the model. This study shows the advantage of the ANN methodology
through the analysis of variance with ANOVA technology [97]. In addition, the actual
data are compared with the ANN and the conventional regression model. Hill et al. [98]
compared the results obtained by modeling time series data with ANNs with those from
six statistical time series methods. The data used in this work were extracted from the first
Makridakis competition, called M-Competition [75]. In the monthly and quarterly time
series, neural networks performed significantly better than traditional methods, proving
particularly effective for discontinuous time series. Zhang [99] instead proposed a hybrid
methodology that combines ARIMA [100] and ANN models to exploit the potential of both
technologies in linear and nonlinear modeling. Experimental results with real datasets
indicate that the combined model can be an effective way to improve the accuracy of
the prediction obtained from one of the models used separately. Jain et al. [101] used a
hybrid methodology capable of exploiting the strengths of traditional time series and ANN
approaches. They first performed trend reduction and deseasonalization using an approach
based on conventional techniques, and the results obtained were used to train the ANN.
The model was tested on monthly data of current flow in part of the Colorado River in the
United States. The model developed proved capable of capturing the nonlinear nature of
complex time series and thus produce more accurate predictions. Tseng et al. [102] have
also adopted a hybrid approach, this time by exploiting the seasonal adjustment potential of
the SARIMA model [103] and the generalization capacity of the ANNs. The hybrid model
was tested on seasonal machinery manufacturing data and soft drink manufacturing data.
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Khashei et al. [104] adopted a hybrid model based on the integrated self-regressive
moving average algorithm (ARIMA) and artificial neural networks. The aim is to improve
the predictive ability of neural networks for time series. The results obtained using real
datasets indicate that the proposed model can be an effective way to improve the accuracy
of the prediction obtained from artificial neural networks. Chaudhuri et al. [105] applied
models based on multilayer feed forward neural network for forecasting the exchange
rate in a multivariate framework. To evaluate its performance, they then compared it
with other models based on traditional statistical techniques. In comparison, the model
based on ANNs proved to be more efficient. Aras et al. [106] proposed a new strategy for
selecting an ANN-based forecasting model. This approach first determines the number of
input and hidden units, then selects a neural network model from various trials caused
by different initial weights considering the validation and training performance of each
neural network model. This approach statistically improves the performance of neural
networks compared to the classical model selection method in simulated and real datasets.
Furthermore, it shows some robustness with respect to the size of the validation dataset.
Doucoure et al. [107] developed a forecasting method for renewable energy sources to
achieve intelligent management of a microgrid system and promote the use of renewable
energy in isolated as well as grid-connected power systems. The proposed method is based
on the multiresolution analysis of time series by wavelet decomposition and the use of
artificial neural networks. Lohani et al. [108] used ANNs to model hydrological time series.
Chicea et al. [109] modeled the time series of dynamic light dispersion with the use of
ANNs. The network was trained with data from simulated time series autocorrelation
series for monodisperse spherical particles with diameters in the range 10–1200 µm. The
accuracy of the neural network output was tested on both simulated and experimental time
series recorded on fluids containing nanoparticles and microparticles. Horák et al. [110]
compared a method of exponential time series alignment with time series alignment using
artificial neural networks as tools for predicting future share price trends. Liu et al. [111]
compared three hybrid models to predict wind speed: wind speed prediction is important
for the safety of wind energy integration. Wang et al. [112] developed a new method of
diagnosing failures in rotating machines using neural network time series analyses.

3.2. Time Series Claustering Methods

The theory of prediction is that branch of statistics that tries, starting from completely
or partially known information, to deduce the value of other currently unknown quantities
of interest to us. The way in which this information is deduced characterizes the extraction
process and governs the related methodologies [113]. Previously, we spoke of supervised
learning in the case of a classification of labeled examples that a hypothetical supervisor
has provided us. However, when we face an unsupervised problem, we do not have a set
of labeled examples available. This means that in the training set, there is no target that we
can use as an example. In these cases, we must adopt a different learning paradigm, for
example, we can apply cluster analysis [114].

It is a multivariate analysis technique through which it is possible to group the
statistical units, to minimize the logical distance within each group and to maximize
that between the groups (Figure 6) [115]. The logical distance is quantified by means
of similarity/dissimilarity measures defined between the statistical units [116]. Cluster
analysis therefore tends to identify groups of units like each other with respect to a set
of characters taken into consideration, and according to a specific criterion. The goal is
essentially to bring together heterogeneous units into multiple subsets that tend to be
homogeneous and mutually exhaustive. The statistical units are, in other words, divided
into a certain number of groups according to their level of similarity, evaluated starting
from the values that a series of selected variables assume in each unit [117].
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identified by the algorithm.

Cluster analysis techniques can be divided into two broad categories: hierarchical
analysis and nonhierarchical analysis. In the first type of analysis, each class is part of a
larger class, which is in turn contained in a class of greater size, and so on, progression up
to the class that contains the entire set of data. In the second type of analysis, however, the
groups are not hierarchical, and for this reason the number of groups must be decided a
priori. There are also fuzzy methods for which the assignment of a unit to a group is not
certain and unique. The choice of a clustering algorithm depends on both the type of data
available and the purpose to be achieved. Sometimes, several choices are applicable, and a
priori arguments are not enough to restrict the choice to a single method. In these cases, it
is useful to apply more than one algorithm, carefully analyze and compare the resulting
classifications, making use of their graphical results [118].

Nonhierarchical clustering directly divides objects into a prespecified number of
clusters without a hierarchical structure, while hierarchical clustering groups data with a
sequence of nested partitions, starting from many clusters, each having a single object, up
to having a single cluster with all the objects of the dataset for agglomerative hierarchical
clustering, or vice versa for divisive hierarchical clustering [119]. Both types of hierarchical
clustering methods organize data into hierarchical structures based on the proximity matrix.
The results of hierarchical clustering are usually represented by a binary tree or dendrogram
(Figure 7). The initial node, which is called the root of a dendrogram, represents the entire
dataset, and each leaf is considered as a single object of the dataset. The intermediate
nodes, consequently, describe how similar the objects are to each other, and the height
of the dendrogram expresses the distance between each pair of objects or clusters or the
distance between an object and a cluster. Final clustering results can be obtained by cutting
the dendrogram into different levels [120].

This representation provides very informative descriptions and views of cluster-
ing structures.

Hierarchical analysis techniques can be further distinguished as follows:

• Agglomerative: if they foresee a succession of mergers of the n units, starting from the
basic situation in which each constitutes a group and up to the stage (n − 1) in which
a group is formed which includes them all.

• Divisive: when the set of n units, in (n − 1) steps, is divided into groups that are, at
each step of the analysis, subsets of a group formed at the previous stage of analysis,
and which ends with the situation in which each group is composed of a unit.

• Nonhierarchical analysis techniques can be divided into the following:
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• Partitions: mutually exclusive classes, such that, for a predetermined number of
groups, it is possible to classify an entity into one and only one class.

• Overlapping classes: for which it is admitted the possibility that an entity may belong
to more than one class at the same time.
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The use of cluster analysis poses problems relating to the choice of a metric that
can synthetically express the distance between the elements of the sample that are to be
grouped. In the specific context of time series, the concept of similarity is particularly
complex given the dynamic characteristics of the data [121]. The similarity measures
generally considered in cluster analysis for independent data do not work adequately with
data that have a time dependency because they ignore the interdependent relationships
between values. It is therefore advisable to adopt distance measures that consider the
behavior of the series over time. In the context of time series, however, it is not sufficient
to calculate the Euclidean distance between the different values of the time series over
time [122]. This is because, in this way, we are mistakenly treating temporal observations
as independent variables (Figure 8).

To carry out cluster analysis between time series, it is necessary to introduce measures
specifically designed for this area that consider the intrinsic time dependence in time series
data [123].

The measures present in the literature are often divided into three large groups:

• Model-free approaches, that is, methods that are based only on specific characteristics
of the series;

• Model-based approaches, that is, methods that are based on parametric assumptions
on time series;

• Prediction-based approaches, that is, methods that are based on forecasts of time series.

The model-free approach does not require assumptions on any models for time series.
A first method involves the measurement of distance based on correlation. The classical
concept of correlation was introduced to characterize processes that have a similar course.
Given a set of time series, the correlation or variance–covariance matrix measures, in fact,
the degree of similarity between the time series. This distance now enjoys the typical proper-
ties of a dissimilarity measure. Another model-free approach involves the measurement of
distance based on autocorrelation. Analogous distances can be constructed by considering
partial autocorrelation functions instead of global autocorrelation functions [124].
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In the model-based approach, the evaluation of the measures requires the development
of a statistical model for the description of the observations. The Piccolo distance [125] de-
fines a measure of dissimilarity in the class of invertible ARMA processes as the Euclidean
distance between the coefficients of the AR representation (∞) and the corresponding
ARMA measures. Piccolo argues that autoregressive coefficients convey all useful infor-
mation on the stochastic structure of this type of process. When dealing with historical
financial series, a relevant measure is given of the risk, which can be measured through
the volatility, and therefore through the conditional variance. Otranto et al. [126] pro-
poses an extension of the dissimilarity measure proposed by Piccolo, which considers the
Euclidean distance of the parameters of an autoregressive conditional heteroskedastic-
ity process (GARCH), therefore a function of the values assumed by the process in the
previous instants.

In the prediction-based approach, two time series will be considered similar if their
forecast, for a given time instant, is close. Obviously, a clustering procedure of this type
can produce different results from those generated with model-free hierarchical methods.
For example, two time series from the same generation process will be able to produce
different predictions at prespecified horizons, so these time series may not be grouped
together according to this new dissimilarity criterion [127].

Iglesias et al. [128] applied several similarity measures in the grouping of time series
for the elaboration of energy models for buildings. The aim was to evaluate the effect of
similarity measures in the application of clustering techniques for strongly correlated data.
The authors proposed cluster vector balancing as a validation technique for comparing
clustering performance. Gopalapillai et al. [129] used clustering to support decision-
making in rescue robots management. The authors used a robot equipped with four
sensors, collecting data as it moves along a path in a straight line. Wismüller et al. [130]
applied cluster analysis for self-organized segmentation of time series data derived from
biomedical images.

Guo et al. [131] used clustering techniques for stock data analysis. In a first phase,
the authors transformed the raw data into vectors of smaller features using independent
component analysis (ICA) [132]. In the second phase of the study, they applied the modified
k-mean algorithm [133] to the vectors of the extracted features. Shumway [134] applied
time–frequency clustering to classify earthquakes and mineral explosions at regional
distances. Elangasinghe et al. [135] applied k-means clustering to model PM 10 and PM 2.5
concentration levels in a coastal New Zealand location. The authors exploited the results
obtained with clustering as an input of an ANN-based model, thus obtaining a significant
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improvement in performance. Möller-Levet et al. [136] exploited fuzzy clustering to group
short time series or those with nonequidistant sampling points. Rebbapragada et al. [137]
applied clustering to detect anomalous presences in the light curve data to identify new
classes of astronomical objects.

Paparrizos et al. [138] proposed two new algorithms based on time series clustering.
These algorithms use a shape-based measure of distance between clusters (SBD) [139], which
represents a normalized version of the measure of cross-correlation. Sardá-Espinosa [140]
compared several algorithms based on time series clustering, creating a specific R package
easily usable by researchers. Zhang et al. [141] proposed a new model based on clustering
for identifying the shapelets of the time series without the effort of labeling. Chen et al. [142]
exploited clustering techniques to generate a risk profile for lane-changing (LC) maneuvers
performed by a car driver. Steinmann et al. [143] addressed the Scenario Discovery problem
using time series clustering. Identifying common properties of the input space between
sets of exploratory model runs represents a widely used methodology in the field of
decision support. Kuschnerus et al. [144] applied time series clustering for the elaboration
of coastal change models using permanent laser scan data. Motlagh et al. [145] applied
clustering techniques to group the customers of electricity supply companies to reduce the
extreme dimensionality of the load time series. Hallac et al. [146] proposed a new method
based on a correlation network, or Markov random field (MRF), which characterizes the
interdependencies between the different observations in a subsequence typical of a specific
cluster. McDowell et al. [147] pooled gene expression time series data using an infinite
Gaussian process mixture model.

3.3. Convolutional Neural Network for Time Series Data

In Section 3.1, we introduced the ANNs specifying that a typical architecture of these
algorithms includes one or more hidden layers. In convolutional networks, in fact, there are
several hidden layers that give the network its depth characteristics. Convolutional neural
networks (CNN) were born in 1990 from the research of Yann LeCun and his team based
on the functioning of the visual cortex of the human brain [148]. Thanks to the excellent
performance that has been achieved especially in the field of image recognition, even today
CNNs are considered the state of the art in terms of pattern and image recognition. Yann
LeCun received the Turing Award in 2018 for his work on deep neural networks. CNNs can
automatically understand the most relevant traits and learn their patterns [149]. For this
reason, normally the layers of CNNs are considered as blocks to detect the traits. The first
layers, those immediately after the entry layer, are considered low-level features extractors,
while the last layers, usually completely connected like those of the ANNs, are considered
high-level features extractors [150].

In the images, the low-level features are, for example, the edges or the blobs that are
reworked to form high-level features, which, once passed to the last layers of the network,
will be able to create, for example, the outlines of houses, dogs, cats, or whatever was
present in the original image [151,152]. CNNs process maps of traits where each element
corresponds to pixels in the original image. To obtain this result it is necessary to carry out
an operation called convolution [153].

There are two concepts behind how CNNs work:

• Sparse connectivity: a single element in the trait map is connected only to small groups
of pixels.

• Parameter-sharing: the same weights are used for different groups of pixels of the
main image.

Replacing a perceptron multilayer type layer with a convolutive one involves a drastic
decrease in the number of parameters within the network and, therefore, an improvement
in the ability to extract relevant traits. CNNs consist of various convolutional layers and
subsampling layers followed by fully connected layers at the end [154]. The convolutional
and fully connected layers have weights and activations like those present in perceptrons,
and these are optimized for learning. On the other hand, pooling layers are not [155].
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The layers that follow one another in a typical convolutional neural network architec-
ture are the following (Figure 9) [156]:

• Input level: represents the set of numbers that make up the image to be analyzed by
the computer.

• Convolutional level: it is the main level of the network. Its goal is to identify patterns,
such as curves, angles, and squares. There are more than one, and each of them
focuses on finding these characteristics in the initial image. The greater the number,
the greater the complexity of the feature they can identify.

• ReLu level (rectified linear units): the objective is to cancel negative values obtained
in previous levels.

• Pool level: allows you to identify if the study feature is present in the previous level.
• Fully connected level: connects all the neurons of the previous level in order to

establish the various identifying classes according to a certain probability. Each class
represents a possible final answer.
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A multivariate time series can be effectively treated with the use of a convolutional
neural network [157]. These algorithms can extract knowledge from spatial and temporal
models with the use of appropriate trainable filters. Such filters, which in traditional
classification models must be processed in a preventive manual supervision phase, in the
case of convolutional networks are learned automatically by the same algorithm [158].
This important function is effectively dealt with in the convolutional layer. Performing the
convolution product means sliding one function over another, making the integral [159]. In
this case, the first function represents the time series. A second function runs on it, which
takes the name of filter, which has the function of identifying structures or patterns within
the first signal (the time series) [160]. Therefore, the function of this network is precisely to
recognize patterns recurring within the input signal, and it is based on what it is possible
to exploit it in the prediction of time series [161].

The first to indicate convolutional networks as an important tool for extracting knowl-
edge from time series was the creator of these algorithms, Yann LeCun [162], who used
CNNs for the classification of extracted time series data from satellite images. The authors
exploited the images detected by modern remote sensing sensors housed on the satellites.
Such images exhibit spatial, spectral, and temporal characteristics. Convolutional layers
applied to the time dimension can automatically learn temporal and spectral characteristics.
Zhao et al. [163] showed how convolution and pooling operations can extract the suitable
internal structure to automatically generate deep characteristics of the input time series.
The network used was trained on eight different datasets extracted from the UCR Time Se-
ries Classification Archive [164]. Liu et al. [165] proposed a model that uses a deep learning
architecture based on a multivariate convolutional neural network. This model was used by
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the authors for the classification of multivariate time series, exploiting the multivariate and
lag-feature characteristics as input to the network. Data extracted from the 2015 PHM Data
Challenge [166] were used to evaluate the model’s performance. Cui et al. [167] presented
a model based on a multiscale convolutional neural networks. The use of this model allows
to obtain the extraction and classification of the characteristics in a single structure. The
model has several branches that perform different transformations of the time series, in
this way, characteristics at different frequencies and time scales are extracted.

Borovykh et al. [168] treated the conditional time series by exploiting the deep con-
volutional WaveNet architecture [169] and adapting it to this type of data. The structure
uses dilated layers of convolutions capturing the history of the data during the forecast.
Furthermore, the activation function ReLU, applied in parallel to the convolutional filters,
allows the exploitation of the correlation structure between the multivariate time series.
The evaluation of the proposed model was performed on financial time series data such as
that of the volatility index, S & P500, and the CBOE interest rate. Yang et al. [170] addressed
the problem of human activity recognition (HAR), where inputs are multichannel time
series signals captured by a series of body-worn inertial sensors and outputs are prede-
fined human activities. The authors used a CNN to automate feature learning from raw
inputs in a systematic way. Two datasets were used to evaluate the proposed technology:
Opportunity Activity Recognition Dataset [171] and the Hand Gesture Dataset [172]. Le
Guennec et al. [173] proposed data-augmentation and a semisupervised approach to train-
ing a CNN. These techniques aim to overcome the problem of the large amount of data
that is required for the training of a convolutional network.

Hatami et al. [174] applied CNN for image recognition. The authors transformed one-
dimensional time series images into 2D texture images using recurrence (RP) plots [175].
Sezer et al. [176] used CNNs for financial trading. The approach followed involves a
conversion of time series data into 2D images, exploiting 15 different technical indicators
applied to a time horizon of 15 days. This returns 15 × 15 images that can be passed as
input to a CNN. Hong et al. [177] exploited CNNs for the diagnosis and explanation of
physiological time series. The methodology is of particular importance given the large
amount of data that can be recorded by smart bracelets or smartwatches. Lu et al. [178]
diagnosed faults in photovoltaic systems by applying CNNs to the time series of electricity
production. The authors first transformed the sequential current and voltage data produced
by the photovoltaic system into two-dimensional electrical time series graphs. These graphs
were proposed as input to CNN with an architecture with nine convolutional layers, nine
max-pooling layers, and a fully connected layer.

Han et al. [179] developed a CNN-based methodology for the detection of mixed gases.
Data were collected from eight gas sensors with time series characteristics. The authors
applied as many as five CNN architectures, obtaining a final gas recognition rate of 96.67%.
Gao et al. [180] used CNNs to detect time series anomalies. The authors first performed a
decomposition of seasonal trends in the time series data and subsequently applied a convo-
lutional neural network-based algorithm for anomaly detection. Kashiparekh et al. [181]
proposed a pretrained model for classifying time series. This model exploits the poten-
tial of convolutional filters to capture temporal characteristics on multiple time scales.
Tang et al. [182] presented algorithms for identifying features in ARMA time series models.
Such algorithms exploit the potential of CNNs for statistical inference in cases where
classical methods based on likelihood are expensive to implement.

3.4. Recurrent Neural Network

A recurrent neural network (RNN) is a particular family of ANNs in which there
are some feedback connections, or cycles or loops within the network structure [183]: the
presence of cycles allows to analyze time sequences. In other words, they are able to keep
the status in memory from one iteration to the next, using their output as input for the next
step [184]. An RNN then receives the inputs, produces an output, and sends the latter back
to itself (Figure 10). Unrolling it along the time axis, it can be thought of as a concatenation
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of neural networks that take as input values the inputs and also the outputs of the network
at the previous time, in order to also keep memory of the past history of the data [185].
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One of the most used recurrent networks is that of Hopfield conceived in 1982 [186],
able to simulate the capacity of the human brain to remember things and to produce an asso-
ciative memory, suitable for reconstructing distorted images and recovering some missing
information; this type of network represents an example of unsupervised learning [187].

From the point of view of the computational graph, it is possible to perform the
so-called unfolding of the structure to obtain a feedforward version of the network of
arbitrary length that depends on a sequence of inputs (Figure 11) [188]. While the weights
and biases of block S are shared, each output ht depends on the processing by the network
of all inputs xi with i ∈ [0; t]. The number of blocks of the unfolded version essentially
depends on the length of the sequence to be analyzed.
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The major limitation of this type of network, in the case of a learning algorithm based
on backpropagation [189], is however the vanishing/exploding gradient [190]. In the
learning phase, the error gradients are propagated back to the initial layer by passing
through the continuous matrix multiplications, and after a certain number of epochs, the
weights diverge to infinity or converge to zero. In the case of the vanishing gradient, the
weights converge to zero and therefore the network, when it makes the predictions, will
consider only the most recent events, while in the case of an exploding gradient, the value
of the weights explodes, tending to infinity. There will therefore be no past memory and
the gradients will be characterized only by indefinite values.

The long short-term Memory (LSTM) represents a particular recurrent network pro-
posed by Hochreiter and Schmidhuber [191] in order to solve the vanishing and exploding
gradient problem that compromised the effectiveness of RNNs. The principle behind
LSTM is the memory cell, which keeps the state out of the normal flow of the recurring
network. The state in fact has a direct connection with itself as it is simply a sum between
the previous state and the current input processing, modulated through masks so that
only part of them is remembered. Since the activation function for updating the status
is in fact the identity, the derivative will be equal to 1, and therefore the gradient in the
backpropagation will not vanish or explode but will remain constant through all the time
instants of the unfolded network [192].

For the modulation of the data, the implementation of the LSTM foresees the presence
of layers called gates, which apply an activation function of the sigmoid type to the
concatenation of the input and output, obtaining an output vector whose elements belong
to the range (0; 1). This vector can therefore be used as a mask to be multiplied elementwise
by the vectors concerned. Using a sigmoid instead of a simple binary-step is more effective,
both because it is differentiable and because it indicates a quantity of the data to remember
instead of offering a dichotomous output that only indicates whether to remember or not
to remember [193]. From a structural point of view, the standard LSTM network consists of
four fundamental elements:

• Cell status: represents the element that carries the information that can be modified
by the gates.

• Forget gate: represents the bridge where information passes through the sigmoid
function. The output values are between 0 and 1. If the value is closer to 0, it means
forget the information, if it is closer to 1, it means keep the information.

• Input gate: represents the element that updates the state of the cell. The sigmoid
function is still present, but in combination with the tanh function. The tanh function
reduces the input values to between −1 and 1. Then the output of tanh is multiplied
with the output of the sigmoid function, which will decide what information is
important to keep from the tanh output.

• Output gate: represents the element that decides how the next hidden state should
be, which remembers the information on previous inputs to subsequent time cells.
First, the previous hidden state and the current input pass into a sigmoid function,
whose output, that is, the cell state just modified, passes through the tanh function.
This output is then multiplied with the sigmoid output to decide what information
should be contained in the hidden state. The new cell state and the new hidden state
are then carried over to the next time step.

Unlike RNNs, LSTMs, thanks to the use of memory cells and gate functions, which
can be considered as neurons, remember information for long periods. These structures
naturally lend themselves to the processing of data with temporal characteristics such as
those relating to time series [194].

Connor et al. [195] used recurrent neural networks to make predictions on the electric
load time series. The authors first filtered the outliers from the data and then estimated
the parameters from the filtered data. Qin et al. [196] developed a two-phase recurring
network model to address the long-term dependency capture problems of time series and
to select essential elements. Che et al. [197] proposed a model based on recurrent neural



Data 2021, 6, 55 21 of 30

networks for dealing with multivariate time series with missing values. The authors used
partially masked data at different time intervals and modeled it to capture long-term time
dependencies to improve predictions. Chandra et al. [198] used Elman’s recurrent neural
networks [199] for the prediction of chaotic time series. In this work, the RNNs have
been applied through a cooperative coevolution process that breaks down a problem into
subcomponents and employs evolutionary algorithms to solve them. Hüsken et al. [200]
exploited RNNs to classify input sequences into different specified classes. The authors
enhanced the network learning process with auxiliary training and used the network
output to estimate the degree of reliability of the classification result. Hermans et al. [201]
investigated the effect of a hierarchy of recurrent neural networks on time series processing.
The architecture of the model developed provides for a series of levels based on a recurring
network that receives the hidden state of the previous level as input. This model allows
you to perform hierarchical processing on difficult time tasks and to acquire the structure
of time series in a more natural way.

The scientific community has also extensively used LSTMs for the prediction of time se-
ries. Hua et al. [202] used LSTMs for time series prediction, applying stochastic connectivity
to conventional LSTM neurons. Song et al. [203] used LSTMs for forecasting oil production.
To extract useful information on oil extraction from fractured horizontal wells in a volcanic
reservoir, the authors applied the particle swarm optimization (PSO) algorithm to optimize
the essential configuration of the LSTM model. Yang et al. [204] applied LSTM-based algo-
rithms to predict the displacement of landslides. The movement of landslides accumulated
over time has been broken down into a trend term and a periodic term. A cubic polynomial
function was selected to predict the trend shift. Sahoo et al. [205] developed an LSTM-based
model for making predictions of low-flow hydrological time series. The authors applied
this model to the daily downloaded data collected from the Basantapur measurement
station located in the Mahanadi River basin in India. Benhaddi et al. [206] made predictions
of urban air quality by exploiting the potential of recurrent and convolutional networks,
comparing the results. Kong et al. [207] exploited the features of LSTMs to analyze changes
in satellite images. Fires, floods, deforestation, and urbanization can be considered as
disturbances in the slow natural change in the Earth’s surface, and as such can be detected
by an LSTM-based algorithm. Lei et al. [208] applied LSTMs to diagnose wind turbine
failures. The model developed by the authors can capture the long-term dependencies of
the data stored by the turbine, through recurrent behaviors and gate mechanisms.

3.5. Autoencoders Algorithms in Time Series Data Processing

Autoencoder (AE) has played a very important role in the area of machine learning.
Not only in the reduction of dimensionality, but also as an initializer of the weights of deep
neural networks [209]. An autoencoder represents a network made up of two substructures,
an encoder and a decoder: the encoder receives the data in input and produces a com-
pressed representation, the decoder receives the aforementioned representation in input
and reconstructs the source data. The fundamental objective of an autoencoder is therefore
to learn an efficient coding of a set of data, and generally to produce a reconstruction that
respects some fundamental properties. It is an artificial neural network architecture very
similar to that of MLP, the main difference of which is in the hidden layer, where there are
fewer neurons than in the output layer. This type of architecture can have a greater number
of hidden layers but maintain the symmetry [210]. This type of network aims to learn the
compressed and distributed representation of a dataset, in other words, the output is a
reconstruction of the input, but having fewer neurons in the hidden layers compresses
and reduces the dimensionality of the data. To train an autoencoder, the backpropagation
algorithm is used, but in an unsupervised way, therefore, the network receives the data,
compresses it, and brings it back to its size, and the weights are updated taking into ac-
count that the desired outputs are the same inputs, based on global error. In most cases, it
achieves optimal parameter values, which directly influence any subsequent activity. If the
capacity of the autoencoder, specifically of the encoder and decoder, is too large compared
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to that of the latent space, the network could return a good output, but not be able to
extract any information from the data [211]. That is, he would have learned to copy the
input and return it to the output without learning any features of the data. Starting from an
autoencoder, it is possible to define a variation, called denoising autoencoder (DAE) [212],
whose purpose is to learn and eliminate a noise component in the input images.

Variational autoencoders (VAEs) have been found to be one of the most popular
unsupervised learning approaches [213]. They take the name of autoencoder since, like
these, they consist of an encoder and a decoder. This type of network is called generative
model as it allows to obtain a distribution of a model, defined on a set of data in a high-
dimensional space. The goal, however, is not to reproduce exactly the data received, but
to generate many examples that are similar to those already present in the database. The
training of a VAE is fast and is performed through backpropagation.

Mehdiyev et al. [214] have exploited autoencoders (AE) for the classification of time
series data detected in the process industry. This is a study on the multivariate classification
of time series that proposes a framework for extracting functionality in an unsupervised
way. LSTMs and autoencoders are combined for compressed data representation, which is
then sent to a deep feedforward neural network for classification. Corizzo et al. [215] used
autoencoders for gravitational wave encoding. Gravitational waves are detected on a daily
basis, giving rise to a large amount of data that are difficult to analyze with traditional tech-
niques. The authors developed models based on deep autoencoders to analyze these data
and associate a classification label with them. Yang et al. [216] investigated a new method
for classifying arrhythmia in the electrocardiogram based on autoencoders. Arrhythmia
detection is a complex procedure due to the presence of heartbeats that partially cover the
signal. The authors used autoencoders to hierarchically extract high-level functionality
from huge amounts of data. Rußwurm et al. [217] applied autoencoders for the classifica-
tion of land use of the Earth. Modern sensors are capable of detecting a large amount of
data with time series characteristics. The authors developed an encoder-based model with
convolutional recurrent layers to approximate a phenological model for vegetation classes.
The input data were obtained from the images detected by the Sentinel 2 satellite.

3.6. Automated Features Extraction from Time Series Data

Feature extraction is a methodology that returns the best features that solve a specific
problem starting from data. New features are created that encapsulate the central properties
of a dataset and represent it in a low-size space that facilitates the learning process. The
use of this method is necessary in the case of a dataset too large with too burdensome
computational costs. By resorting to the feature extraction, you get a subset of more
manageable data but equally representative of the input variables. The extraction of these
data can help you make better decisions, identifying the connections that led to an output
starting from an input [218].

Feature extraction maps the signals acquired in an M-dimensional space in an N-
dimensional space, with n < m, in order to provide a synthetic representation of the
raw signals, preserving the original structure and content information about it. In this
process, significant signal characteristics that allow the different behaviors of the machine
in question are extracted.

Data mining tools widely used by the scientific community show the obvious limits in
the processing of time series data. In these cases, it is necessary to reduce the dimensions
through techniques of extraction of the characteristics and map each time series in a
lower-dimensional space. For time series, this methodology can be performed using
various data analysis techniques and decomposition. In addition, the characteristics can
be extracted using comparison techniques of sequences and techniques of discovery of
subsequences [219].

The feature extraction procedure is essential in the machine learning-based algorithms.
Effectively identifying the features that best describe the characteristics of the data will
decisively help to extract knowledge from the data. It is to be specified that the deep
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learning-based algorithms do not require the extraction of the features, this is because the
input filters are able to identify effects in an automatic way, identifying those that represent
the best features able to represent the phenomenon under investigation.

4. Conclusions

The use of time series to predict the behavior of a system over time is a consolidated
approach in various sectors of the production world. Time series data show a strong
dependence between successive observations, which can be exploited to predict possible
future trends. In machine learning, knowledge is extracted through an inductive process:
the input provided by the data is combined with some examples of the expected output, so
that in the training phase the machine can learn to recognize patterns from the structures it
receives. The time series shows recurring structures that such models can recognize and
exploit to build predictions about the future behavior of the system.

Over the years, researchers have leveraged machine learning-based algorithms to
extract knowledge about time series data. Algorithms based on artificial neural networks
were initially widely used. It was immediately seen that to take advantage of these
algorithms it is necessary to proceed in advance with the subdivision of the input data:
the set of data is then divided into sequential groups with a fixed number of components.
To improve the model’s performance, researchers have often adopted a hybrid model
that exploits traditional statistical models with ANNs [220]. Subsequently, the focus was
on unsupervised learning models that allow the extraction of recurring structures in the
data without the need for prior labeling. For this type of model, the choice of a method
for measuring the distances between data that can consider the dynamic characteristic
of the data is crucial. The adoption of distance measurement metrics that consider the
interdependence relationships between values is essential.

The development of models based on deep learning has also contributed massively
to the use of these algorithms for the prediction of time series. At first, the researchers
focused on convolutional networks, exploiting these algorithms to extract knowledge
from spatial and temporal models with the use of appropriate trainable filters. These
filters, which in traditional classification models must be processed in a preventive manual
supervision phase, in the case of convolutional networks are learned automatically by the
same algorithm. Subsequently, attention turned to models based on recurring networks.
RNNs are equipped with feedback connections that allow you to analyze time sequences.
The essential feature of these models is the ability to keep the state in memory from one
iteration to the next, using its output as input for the next step. An RNN then receives
the inputs, produces an output, and sends the latter back to itself. This structure made it
possible to develop models that returned time series forecasts with excellent performance.
The accuracy of these methods is very high and depends on the method used and how
the data were preprocessed. In all cases, it is greater than 90%, and in the case of methods
based on CNN and RNN, it reaches even 99%.

The studies presented in this work have highlighted the great potential that the meth-
ods based on machine learning have in the treatment of time series. Scrolling through the
chronology of the researchers’ activities, we could see that these methods have improved
over time, providing more and more precise results. A great contribution to this advance
was provided by algorithms based on deep learning, which relieved researchers from the
onerous task of feature extraction. In fact, in these models, the extraction of the features
takes place automatically, thus succeeding in capturing correlations that would otherwise
be difficult to identify. Future advances will most likely be directed towards the search for
faster learning processes, also given the technological evolution of processors that allow
for a significant reduction in computational times. Another point that may interest scholars
may concern the interpretability of the results provided by these models. Algorithms
based on artificial neural networks have been associated with the concept of the black
box. This is because it was not clear in a mathematical way what was the process that
led to the formation of the output once an input was sent: developing easily interpretable
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models represents a future challenge. Finally, we have seen that several authors have used
hybrid models to exploit the characteristics of different algorithms in order to create a better
performing model. This approach will certainly lead to an evolution of methodologies by
exploiting the potential offered by reinforcement learning and meta-learning.
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