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Abstract: A key enabler of intelligent maintenance systems is the ability to predict the remaining
useful lifetime (RUL) of its components, i.e., prognostics. The development of data-driven prognostics
models requires datasets with run-to-failure trajectories. However, large representative run-to-failure
datasets are often unavailable in real applications because failures are rare in many safety-critical
systems. To foster the development of prognostics methods, we develop a new realistic dataset of
run-to-failure trajectories for a fleet of aircraft engines under real flight conditions. The dataset was
generated with the Commercial Modular Aero-Propulsion System Simulation (CMAPSS) model
developed at NASA. The damage propagation modelling used in this dataset builds on the modelling
strategy from previous work and incorporates two new levels of fidelity. First, it considers real flight
conditions as recorded on board of a commercial jet. Second, it extends the degradation modelling
by relating the degradation process to its operation history. This dataset also provides the health,
respectively, fault class. Therefore, besides its applicability to prognostics problems, the dataset can
be used for fault diagnostics.

Dataset: https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/

Dataset License: CC0 1.0

Keywords: CMAPSS; run-to-failure; prognostics

1. Introduction

Failures of safety-critical systems such as aircraft engines can cause significant eco-
nomic disruptions and have potently high social costs. The prediction of the system’s
failure time is therefore of great importance for maintaining the functionality of safety-
critical systems and society. The problem of predicting how long a particular industrial
asset is going to operate until a system failure occurs, i.e., predicting RUL, is also referred to
as prognostics [1]. Deploying successful prognostic methods in real-life applications would
enable the design of intelligent maintenance strategies to determine with a sufficiently long
lead time before failure when interventions need to be performed. Such maintenance strate-
gies have the potential of reducing costs, machine downtime, and the risk of potentially
catastrophic consequences if the systems are not maintained in time.

In light of their superior learning capabilities in a wide range of application fields,
Machine Learning (ML), in general, and Deep Learning (DL), in particular, are promising
candidates to tackle the challenges involved in the design of intelligent maintenance
approaches [2]. This idea has been reinforced by the recent availability of large volumes
of condition monitoring (CM) data from critical assets. As multiple research studies have
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pointed out [3–7], the CM data provide an untapped potential to develop data-driven
algorithms for various predictive maintenance applications.

The development of data-driven prognostics models requires the availability of
datasets with run-to-failure trajectories. These trajectories need to be comprised of a
set of time series of CM data along with the corresponding time-to-failure labels. While CM
data are often available in abundance, they typically lack the corresponding time-to-failure
labels due to the rarity of occurring failures in safety-critical systems and the excessive
preventive maintenance. Moreover, due to the sensitive nature of failures and the potential
legal implications, manufacturers and operators have been reluctant to share prognostics
datasets of their assets openly. As a result, over the last decade, only a very limited number
of datasets have been made available to the scientific community for the development
of prognostics models. At present, most of the available datasets are synthetic datasets
generated with simulators or developed in a lab environment for simple systems by govern-
mental and academic institutions [8,9]. While the availability of even such limited datasets
is one of the most relevant contributors to the considerable progress of the prognostics
and health management (PHM) in the last decade, these datasets lack important factors of
complexity that are present in real systems. As a consequence, the developed data-driven
prognostics algorithms are often not transferable to real applications.

Since its release as PHM Challenge [10] in 2008, the CMAPSS dataset [11] has been
one of the most widely used prognostics datasets. Some recent examples that are also
among the best performing prognostics models applied to the CMAPSS dataset are deep
learning based methods such as convolutional neural network (CNN) [12,13], long short-
term memory networks (LSTM) [14–19] or hybrid networks combining CNN and LSTM
layers [20,21]. The CMAPSS dataset provides simulated run-to-failure trajectories of a
fleet comprising large turbofan engines. However, the represented flight conditions are
restricted to six snapshots during a standard cruise phase, and the onset of an abnormal
degradation (i.e., presence of a fault signature) is not dependent on the past operating
profile. Therefore, the onset of the fault cannot be predicted; only the evolution of the
fault can. Consequently, there is a fidelity gap in the dataset as the simulated degradation
trajectories lack important factors of complexity that are present in real engines. Bringing
higher fidelity to the degradation and the operating conditions represented in the CMAPSS
dataset could improve the usability and the transferability of the developed data-driven
models to real-world applications.

In this work, we introduce improvements and further developments to the original
CMAPSS dataset with respect to two main aspects. First, we simulate complete flights as
recorded on board a commercial jet, covering climb, cruise and descend flight conditions
corresponding to different commercial flight routes [22]. Second, we increase the fidelity of
degradation modelling by relating the onset of the degradation process to the operation
history. To further extend the applicability of this dataset for a range of different case
studies, we also include the health condition (i.e., healthy or faulty) in the dataset. We refer
to the new CMAPSS dataset as N-CMAPSS. The procedure for generating this dataset is
shown schematically in Figure 1 and described in detail in the Methods section.

The new prognostics dataset as proposed here will help to facilitate the development
of deep learning algorithms for predictive maintenance applications that are more easily
transferable to real applications.
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Figure 1. Generation process of the new CMAPSS dataset (i.e., N-CMAPSS) based on the real flight data. First, we define
the flight data as recorded on board of a commercial jet. Second, the degradation of the engine components is imposed.
Third, the resulting degraded flight is simulated. Fourth, the health condition is evaluated and the unit continues flying
with increasing degradation until the health index of the engine has reached zero i.e., HI = 0, which defines the end-of-life.
Finally, sensor noise is added to the simulated engine response.

2. Data Description
2.1. CMAPSS Model

An important requirement for the generation of realistic run-to-failure trajectories is
the availability of a suitable system model that allows variations of health conditions at
sub-system level and the simulation of the output sensor measurements. The CMAPSS
dynamical model is a high fidelity computer model for simulation of a realistic large
commercial turbofan engine. Figure 2 shows a schematic representation of the engine
along with the corresponding station numbers as defined in the CMAPSS model docu-
mentation [23]. In addition to the engine thermodynamic model, the package includes an
atmospheric model capable of operation at (i) altitudes from sea level to 40,000 ft, (ii) Mach
numbers from 0 to 0.90, and (iii) sea-level temperatures from –60 to 103 ◦F. The package
also includes a power-management system that allows the engine to be operated over a
wide range of thrust levels throughout the full range of flight conditions.
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Figure 2. Schematic representation of the CMAPSS model as depicted in the CMAPSS documentation [23].

The CMAPSS system model has the form of a coupled system of nonlinear equations.
The inputs of the system model are divided into scenario–descriptor operating conditions
w and unobservable model health parameters θ. The outputs of the system model are
estimates of the measured physical properties xs and unobserved properties xv that are not
part of the condition monitoring signals (i.e., virtual sensors). The nonlinear system model
is denoted as:

[x(t)s , x(t)v ] = F(w(t), θ(t)) (1)

The unobservable model health parameters θ are model tuners and fall in the class
referred to as quality parameters (i.e., component efficiencies, flow, input scalars, output
scalars, and/or adders). These model parameters are used to simulate the deteriorated
behaviour of the system. Concretely, in our work, all the rotating sub-components of the
engine i.e., fan, low pressure compressor (LPC), high pressure compressor (HPC), low
pressure turbine (LPT) and high pressure turbine (HPT) can be affected by degradation in
flow and efficiency. In this work, we extended the number of sub-components that can be
affected by the degradation from two to five.

2.2. Flight Data

Real flight conditions as recorded on board of a commercial jet were taken as input
to the CMAPSS model (i.e., w). We divided the flight conditions in three flight classes
according to the flight length. Table 1 shows exemplary the flight length range and the
number of different flights in the DASHlink—Flight Data For Tail 687 [22]. It is assumed
that each flight of the fleet only operates a particular flight class. Therefore, the assignation
of a flight class to each unit is done only once.

Table 1. Overview of the flight data in DASHlink—Flight Data For Tail 687 [22].

Flight Class Flight Length [h] Number of Flights [#]

1 1 to 3 18
2 3 to 5 149
3 >5 185

Figure 3 (left) shows the kernel density estimations of the simulated flight envelopes
given by the scenario–descriptor variables w: altitude (alt), flight Mach number (Mach),
throttle–resolver angle (TRA) and total temperature at the fan inlet (T2) for dataset DS02.
An example of a typical single flight cycle given by traces of the scenario–descriptor vari-
ables is shown in Figure 3 (right). Each flight cycle contains recordings of varying lengths,
covering climb, cruise and descend flight conditions (with alt >10,000 ft) corresponding
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to different flight routes operated by the aircraft. The remaining units of the fleet follow
similar flight traces.

Figure 3. (Left) Kernel density estimations of the simulated flight envelopes given by recordings of altitude, flight Mach
number, throttle–resolver angle (TRA) and total temperature at the fan inlet (T2). The complete run-to-failure trajectories of
the nine units in DS02 are shown. Six training units (2, 5, 10, 16, 18 & 20) and three test units (11, 14 & 15) are represented.
(Right) Single flight traces of altitude, flight Mach number (XM), throttle–resolver angle (TRA) and total temperature at the
fan inlet (T2) for Unit 5 in DS02. Climb, cruise and descend flight conditions (alt >10,000 ft) are covered.

2.3. Data Records

The N-CMAPSS dataset provides synthetic run-to-failure degradation trajectories
of a fleet of turbofan engines with unknown initial health states subject to real flight
conditions. At present, the N-CMAPSS dataset contains eight sets of data from 128 units
and seven different failure modes affecting the flow (F) and/or efficiency (E) of all the
rotating sub-components. Table 2 provides an overview of flight classes and failure modes
for each of the sets of data provided. Each set of data are stored in a Hierarchical Data
Format version 5 (HDF5) file1. The dataset is accessible publicly at the repository: https:
//ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/. Scripts in the
form of Jupyter notebooks are available also in the data repositories to demonstrate how to
load the data, reproduce the analysis of this manuscript and to apply simple analysis to
subvolumes of data. The online dataset will be updated when new degradation trajectories
are computed.

Each data file provides two sets of data: the development dataset and the test dataset.
Each of them contains six types of variables: the operative conditions w, the measured
signals xs, the virtual sensors xv, the engine health parameters θ, the RUL label and the
auxiliary data (i.e., the unit number u and the flight cycle number c, the flight class Fc and
the health state hs). In addition, the name of the variables within w, xs and xv, θ and the
auxiliary data are provided. Table 3 shows an overview of the 17 variables stored in the
.h5 file.

1 DS08 is provided in five separate files i.e., DS08a-DS08e for easier handling.

https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
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Table 2. Overview of the datasets

Name # Units Flight Failure Fan LPC HPC HPT LPT
Size

Classes Modes E F E F E F E F E F

DS01 10 1, 2, 3 1 X 7.6 M
DS02 9 1, 2, 3 2 X X X 6.5 M
DS03 15 1, 2, 3 1 X X X 9.8 M
DS04 10 2, 3 1 X X 10.0 M
DS05 10 1, 2, 3 1 X X 6.9 M
DS06 10 1, 2, 3 1 X X X X 6.8 M
DS07 10 1, 2, 3 1 X X 7.2 M
DS08 54 1, 2, 3 1 X X X X X X X X X X 35.6 M

Table 3. Variable names in .h5 files.

Development Data (D)

Name Description

W_dev Scenario descriptors—w
X_s_dev Measurements—xs
X_v_dev Virtual sensor—xv

T_dev Health Parameters—θ
Y_dev RUL [in cycles]
A_dev Auxiliary data

Test Data (DT ∗)
Name Description

W_test Scenario descriptors -w
X_s_test Measurements—xs
X_v_test Virtual sensor—xv

T_test Health Parameters—θ
Y_test RUL [in cycles]
A_test Auxiliary data

Variables Name

Name Description

W_var w variables
X_s_var xs variables
X_v_var xv variables

T_var θ variables
A_var Auxiliary variables

Tables 4–8 provide the name, description and units of each input variable in the
dataset. The variable symbol corresponds to the internal variable name in the CMAPSS
model. The descriptions and units are derived from the model documentation [23]. RUL is
provided in units of cycles.

Table 4. Scenario descriptors (i.e., flight data)—w.

# Symbol Description Units

1 alt Altitude ft
2 Mach Flight Mach number -
3 TRA Throttle–resolver angle %
4 T2 Total temperature at fan inlet ◦R
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Table 5. Measurements—xs.

# Symbol Description Units

1 Wf Fuel flow pps
2 Nf Physical fan speed rpm
3 Nc Physical core speed rpm
4 T24 Total temperature at LPC outlet ◦R
5 T30 Total temperature at HPC outlet ◦R
6 T48 Total temperature at HPT outlet ◦R
7 T50 Total temperature at LPT outlet ◦R
8 P15 Total pressure in bypass-duct psia
9 P2 Total pressure at fan inlet psia
10 P21 Total pressure at fan outlet psia
11 P24 Total pressure at LPC outlet psia
12 Ps30 Static pressure at HPC outlet psia
13 P40 Total pressure at burner outlet psia
14 P50 Total pressure at LPT outlet psia

Table 6. Virtual sensors—xv.

# Symbol Description Units

1 T40 Total temp. at burner outlet ◦R
2 P30 Total pressure at HPC outlet psia
3 P45 Total pressure at HPT outlet psia
4 W21 Fan flow pps
5 W22 Flow out of LPC lbm/s
6 W25 Flow into HPC lbm/s
7 W31 HPT coolant bleed lbm/s
8 W32 HPT coolant bleed lbm/s
9 W48 Flow out of HPT lbm/s

10 W50 Flow out of LPT lbm/s
11 SmFan Fan stall margin –
12 SmLPC LPC stall margin –
13 SmHPC HPC stall margin –
14 phi Ratio of fuel flow to Ps30 pps/psi

Table 7. Model health parameters—θ.

# Symbol Description Units

1 fan_eff_mod Fan efficiency modifier -
2 fan_flow_mod Fan flow modifier -
3 LPC_eff_mod LPC efficiency modifier -
4 LPC_flow_mod LPC flow modifier -
5 HPC_eff_mod HPC efficiency modifier -
6 HPC_flow_mod HPC flow modifier -
7 HPT_eff_mod HPT efficiency modifier -
8 HPT_flow_mod HPT flow modifier -
9 LPT_eff_mod LPT efficiency modifier -

10 LPT_flow_mod HPT flow modifier -
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Table 8. Auxiliary data.

# Symbol Description Units

1 unit Unit number -
2 cycle Flight cycle number -
3 Fc Flight class -
4 hs Health state -

3. Methods

The method used for generation of the N-CMAPSS dataset follows the methodology
delineated in [11] and depicted in Figure 1. In brief, the method corresponds to the
following process:

1. Define flight conditions. Real flight conditions as recorded on board of a commercial
jet (i.e., NASA DASHlink [22] data) are taken as input to an engine simulator.

2. Impose degradation. Degradation of the engine components is imposed at each flight.
3. Simulation of a degraded flight. Complete flight covering climb, cruise and descend

conditions is simulated with the CMAPSS dynamical model [23].
4. Flight until failure. As a result of the degradation of the engines’ components, the

health state of the engine decreases. The simulation of full flights (steps 1–3) with
increasing degradation continues until the health index of the engine has reached
zero i.e., HI = 0; which defines the end-of-life.

5. Add sensor noise. Sensor noise is added to the simulated data to account for the
variability of real sensor readings.

In the following, we describe the key steps of the data generation process outlined
above in more detail.

3.1. Degradation Model

The degradation of each engine is modelled as the combination of three contributors:
an initial degradation, a normal degradation and abnormal degradation. The dataset
generation process assumes failure modes exhibiting a continuous degradation of the main
rotating engine sub-components: fan, LPC, HPC, HPT and LPT. The degradation effects are
modelled by adjustments of flow capacity and efficiency of these engine sub-components
(i.e., the engine health parameters θ).

Initial degradation. Due to manufacturing and assembly tolerances, each unit of the
fleet has sightly different initial wear at the engine sub-component. Degradation due to
this initial wear is not considered abnormal but can make a difference in useful operational
life of a component. Following the original work, this initial wear is modeled by variations
in flow and efficiencies of the various sub-component. An uniform random distribution
U(0, 0.01) is assumed for each of the sub-components. The magnitude of such variations is
relatively low, resulting in a health index within the range [0.9 to 1.0]. We denote the initial
degradation as δ0.

Normal degradation. In addition to the initial wear, the system’s components also
experience degradation due to wear and tear resulting from usage. This type of degradation
is considered normal and is modelled as linear decreasing trend given by:

δn(t) = an(t) + δ0 ∀ t ≤ ts (2)

where an = −0.001 is the slope of the degradation, and t refers to the time in units of cycles,
i.e., flights.

Transition from normal to abnormal degradation. Some time during an engine’s
life, its health state might transition to an abnormal state resulting from the presence of a
particular failure mode. That is, at a point in time, ts, the corresponding fault leads to an
abnormal condition and to an eventual failure at tEOL (i.e., end-of-life). We model the onset
of a fault as a stochastic process governed by past operation history. While the detailed
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computation of the micro-level processes leading to a degraded state was not within the
scope of this analysis, we capture the macro-level degradation characteristics leading to
a fault by computing the energy balances around each sub-component. Concretely, it is
assumed that each sub-component can only withstand certain excitation energy before
reaching a state of abnormal degradation. We denote the maximum excitation energy
of sub-component θ as thEθ

, which we model as a Gaussian distribution to represent
variability on the material properties of each unit. The fault onset time corresponds to the
point in time at which the total amount of energy E that a component has been exited with
from an initial time t = 0 to a time t exceeds max Eθ . i.e., ts = tE(t)>max Eθ

. The excitation
energy experienced by a sub-component in the time interval t = [0, t] is given by:

E(t) =
∫ t

t=0
P(t)dt (3)

where P(t) is the power consumed or produced by each component.
Abnormal degradation. The evolution of the abnormal system degradation with time

follows the modelling of the original work. In brief, the abnormal degradation model
assumes the degradation of each system sub-components flow and efficiencies (i.e., θ) is
governed by the following model:

δa(t) = 1− exp(atb) + δn(ts) + ξ (4)

where a = U(0.001, 0.003), b = U(1.4, 1.6) and ξ = N(0, c) is the process noise with
c = 0.001 when θ corresponds to an efficiency and c = 0.002 to a flow capacity.

Since a, b and ξ are random variables, the evolution of the abnormal degradation with
time is stochastic. The degradation process follows an exponential behaviour common
in multiple damage propagation models (e.g., Arrhenius, Coffin–Manson, and Eyring
models). Concretely, the modelling assumes a generalized equation for wear, w = AeB(t),
which ignores micro-level deterioration processes but retains macro-level degradation
characteristics. The between-flight maintenance is not explicitly modeled but is considered
by the process noise. This allows the engine health parameters (flow and efficiency) to
improve within allowable limits at any point and hence the loss in efficiency or flow is not
locally monotonic (see step 2 in Figure 1).

3.2. Health Condition

The modelling approach assumes an overall health index of the engine i.e., HI(t). The
health index of the engine is monitored at each flight, and the end of life is declared when
the health index reaches a zero value i.e., HI = 0 or the system has reached more that
100 operative cycles. The overall health index is modelled as aggregation of four normalized
remaining operative margins (hiµ) that characterize the wear/health of the engine:

HI(t) = min(hiµ(t)) (5)

In particular, the surge margins of the fan (SmFan), LPC (SmLPC) and HPC (SmHPC)
and the exhaust gas temperature (T48) computed at reference conditions2 are the operative
margins considered that we denote as µ. Delta differences of these operative margins
between a degraded engine and the corresponding values of a clean new engine are as-
sumed as measures of wear i.e., wµ(t) ∼ µ(t)− µnew. Furthermore, the degradation model
assumes upper wear thresholds, thw, that denote the operational limits beyond which
the engine cannot be operated. Under this assumption, the evolution of the normalized
remaining operative margins with time, hiµ(t), for each of the operative margins monitored
is obtained by subtracting the wear from an upper threshold thw and normalizing it with
respect to the upper threshold:

2 i.e., altitude = 20 Kft, flight match number = 0.7, and throttle–resolver angle = 100%.
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hiµ(t) = 1−
wµ(t)
thw

(6)

3.3. Sensor Noise

Measurement noise is an important source of variability present in real systems. A
typical approach to model it is to add the white noise model to the simulated response. In
this study, since there were no real data available to characterize true noise levels, we added
Gaussian noise to the xs signals with a target Signal-to-Noise Ratio (SNR) target of 65 dB.
With this noise intensity, the resulting noise level is in alignment with the measurement
uncertainties reported in the literature for modern turbofan engines [24,25]. It should
be noted that the flight conditions (w) contain already sensor noise since they are real
flight data.

3.4. Technical Validation

Quality assurance and quality control of the provided data included the following
steps performed by different teams. First, one team checked if the flight profiles were
within the flight envelope of the CMAPSS dynamical model. Second, an independent team
assessed whether the generated degradation profiles from the different dataset showed the
intended characteristics: random initial wear, linear normal degradation, sharp abnormal
degradation and smooth transition from normal to abnormal degradation. Finally, all the
authors checked if the outputs of the engine model follow the expected behavior and are
bounded by physically meaningful upper/lower values. In the following, we provide a
closer look at some of these important aspects of the data generation process.

3.4.1. Examination of the Flight Profiles

All flight data were checked to ensure that only flight conditions within the validity
of the simulation flight envelope of the CMAPSS model were used. Figure 4 shows the
simulated flight envelopes given by the scenario–descriptor variables altitude (alt), flight
Mach number (XM) of ten units in dataset DS01 color coded by the flight class. It is worth
noticing that each of the three flight classes has different operation profiles. In particular,
flight class 1 (green) represents short flights (1–3 h) at low altitude and speed. Fight class 2
(orange) constitutes longer flights (3–5 h) at higher altitudes. Fight class 3 is flights that
have the longest (5–7 h) and highest flights compared to the other flight classes. All the
simulated flights are contained within the operation envelope of the CMAPSS dynamical
model, and, therefore, are valid flight profiles for simulation.

Figure 4. Real flight envelopes given by recordings of altitude and flight Mach number. The complete
run-to-failure trajectories of ten fleet units are shown. The three flight classes are represented:
flight class 1 (green), flight class 2 (orange), and flight (blue), The shaded area (light blue) denotes
the acceptable operation envelope of the CMAPSS dynamical mode according to the CMAPSS
documentation [23].
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3.4.2. Examination of the Degradation Trajectories

The degradation trajectories generated are designed to show three characteristics
present in real systems: random initial wear, linear normal degradation, and abnormal
degradation. Figure 5 shows the resulting evolution of the health index (i.e., HI) in the ten
units of dataset DS01. We can observe that the initial deterioration of each unit is different
and corresponds to an engine-to-engine variability equivalent to a 10% of the health index.
The degradation of the affected system components follows a stochastic process with a
linear normal degradation followed by a steeper abnormal degradation. The transition
from normal to abnormal degradation is smooth. The degradation rate of each component
varies within the fleet.

Figure 5. Evolution of the health index with time as a result of the degradation induced in the HPT
in the ten units of dataset DS01.

3.4.3. Examination of the Transition Times

The transition time (ts) is dependent on the operating conditions i.e., flight profile. To
illustrate the impact of the operative conditions on the onset of the abnormal degradation,
Figure 6 shows the traces of degradation imposed on the high pressure turbine efficiency
(HPT_Eff_mod), low pressure turbine efficiency (LPT_Eff_mod) and low pressure turbine
flow (LPT_flow_mod) on three units of DS02. Each of the selected units correspond to a
different flight class. Unit 11 is long flight unit (i.e., flight class 3), and the onset of the
abnormal degradation occurs the earliest at 19 cycles. Unit 14 is short flight length unit
(i.e., flight class 1) and has an onset at 36 cycles. Finally, Unit 15 is medium flight length unit
(i.e., flight class 2) and has an onset at 24 cycles. We can observe that abnormal degradation
arises later in Unit 14 and consequently can perform more flights.

Figure 6. Traces of the degradation imposed on the low pressure turbine efficiency (LPT_Eff_mod) and low pressure turbine
flow (LPT_flow_mod). Three units are shown: Unit 11 (blue triangle), Unit 14 (green square) and Unit 15 (orange circle).
The onset of the abnormal degradation (i.e., tsu ) is indicated with dashed vertical lines.
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In addition to the quality assurance and quality control checks, two of the sets of data
provided have been satisfactorily used in previous works. Specifically, dataset DS01 has
been used for the application of model-based diagnostics [26] and dataset DS02 has been
used for data-driven prognostics [27].

4. Usage Notes

The N-CMAPSS has the potential to facilitate the development of DL algorithms
for predictive maintenance applications that are more easily transferable to real-world
applications. The dataset can also serve as a benchmark enabling a better comparison of
different algorithms and their extensions. Moreover, the N-CMAPSS dataset is a resource
for the machine learning community to test new time-dependent algorithms. It should
be noted that, contrarily to the original CMAPSS work, the N-CMAPSS provides the
degradation trajectories in the form of θ. Therefore, the N-CMAPSS dataset can also be
used to develop new physics-informed machine learning algorithms [28]. We conclude by
providing a brief abstract formulation of prognostics and diagnostics problems aiming at
facilitating the understanding of both problems to a larger scientific audience.

4.1. Prognostics Problem

Multivariate time-series of condition monitoring sensors readings Xsi = [x(1)si , . . . , x(mi)
si ]T

are given and their corresponding RUL i.e., Yi = [y1
i , . . . , ymi

i ]T from a fleet of N units

(i = 1, . . . , N). Each observation x(t)si ∈ Rp is a vector of p raw measurements taken at

operating conditions w(t)
i ∈ Rs. The length of the sensory signal for the i-th unit is given

by mi, which can, in general, differ from unit to unit. The total combined length of the
available data set is m = ∑N

i=1 mi. More compactly, we denote the available dataset as
D = {Wi, Xsi , Yi}N

i=1. Given this set-up, the task is to obtain a predictive model G that
provides a reliable RUL estimate (Ŷ) on a test dataset of M units DT∗ = {Xsj∗}M

j=1, where

Xsj∗ = [x1
sj∗, . . . , x

kj
sj∗] are multivariate time-series of sensors readings. The total combined

length of the test data set is m∗ = ∑M
j=1 k j.

Evaluation Metric

Two common evaluation metrics in CMAPSS prognostics analysis in [11] are proposed
to compare the prognostics results: root-mean-square error (RMSE) and NASA’s scoring
function [11] (s), which are defined as:

RMSE =

√√√√ 1
m∗

m∗

∑
j=1

(∆(j))
2

(7)

s =
m∗

∑
j=1

exp(α|∆(j)|), (8)

where m∗ denotes the total number of test data samples, ∆(j) is the difference between
the estimated and the real RUL of the j sample (i.e., y(j) − ŷ(j)), and α is 1

13 if RUL is
under-estimated and 1

10 , otherwise. The resulting s metric is not symmetric and penalizes
over-estimation more than under-estimation.

4.2. Diagnostics Problem

The formulation of the suggested diagnostic problem is formally introduced in the
following. Multivariate time-series of condition monitoring sensors readings Xsu =

[x(1)su , . . . , x(mu)
su ]T are given from a fleet of N units (u = 1, . . . , N). Each observation x(i)su ∈ Rp

is a vector of p raw measurements taken at operating conditions w(i)
u ∈ Rs. The length of the

sensory signal for the u-th unit is given by mu, which can, in general, differ from unit to unit.
The total combined length of the available data set is m = ∑N

u=1 mu. We consider the situa-
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tion where the CM data correspond to past operating conditions (i.e., t < tau ), where the
system’s health state is healthy and denoted as Hsu = [h(1)su , . . . , h(mu)

su ]T with h(i)su = 1. There-

fore, in compact form, we denote the available unit specific data as DLu = {(x(i)su , h(i)su )}
mu
i=1.

The system’s components experience normal degradation during the healthy state. We
consider the scenario where this normal degradation turns into an abnormal condition at tsu

leading to an eventual failure at tEOLu (i.e., end-of-life). The fault detection task is to detect
as early as possible the onset of the abnormal degradation within an independent test data
set DTu = {(x(j)

su∗}
Mu
j=1 of future operating conditions (i.e., t > tau ). This task comprises,

therefore, the estimation of the true system health state on the test set. In addition, the
diagnostics task involves performing a fault isolation and identifying the subsystem(s)
affected by the fault.

5. Discussion

In this work, we provide a new CMAPSS dataset (N-CMAPSS) with run-to-failure
degradation trajectories that incorporate two major fidelity improvements with respect to
previous work. First, it considers real flight conditions as recorded on board a commercial
jet. Second, it extends the degradation modelling by relating the degradation process to its
operation history. The N-CMPASS dataset also provides fault class labels of each failure
mode. Therefore, besides its applicability to prognostics problems, the dataset can be
used for fault diagnostics. However, besides these notable improvements, the degradation
process of turbofan engines can still be improved further and modelled with higher fidelity.
In particular, we have considered an accelerated aging as compared to typical engines
with full operative lifespans on the order of thousands of cycles. In addition, we have
restricted the degradation modelling to certain fault types that can be represented by
flow and efficiency modulation. Therefore, extending the represented fault types and the
onboard sensors (e.g., accelerometers, oil debris monitoring, etc.) are natural extensions of
the work.

Author Contributions: Conceptualization, M.A.C., C.K., K.G. and O.F.; methodology, M.A.C., C.K.,
K.G. and O.F.; software, M.A.C.; validation, M.A.C. and C.K.; formal analysis, M.A.C., C.K., K.G.
and O.F.; investigation, M.A.C. and C.K.; resources, C.K., K.G. and O.F.; data curation, M.A.C.;
writing—original draft preparation, M.A.C.; writing—review and editing, M.A.C., C.K., K.G. and
O.F.; visualization, M.A.C.; supervision, K.G. and O.F.; project administration, K.G. and O.F.; funding
acquisition, O.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Swiss National Science Foundation (SNSF) Grant
No. PP00P2 176878.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in: https://ti.arc.nasa.
gov/tech/dash/groups/pcoe/prognostic-data-repository/.

Acknowledgments: The authors also thank NASA Ames Research Center for hosting a research stay
that allowed development of the N-CMAPSS model and collection of this dataset.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Goebel, K.; Daigle, M.; Saxena, A.; Roychoudhury, I.; Sankararaman, S. Prognostics: The Science of Making Predictions; Createspace

Independent Publishing Platform: Scotts Valley, CA, USA, 2017.
2. Fink, O.; Wang, Q.; Svensén, M.; Dersin, P.; Lee, W.J.; Ducoffe, M. Potential, challenges and future directions for deep learning in

prognostics and health management applications. Eng. Appl. Artif. Intell. 2020, 92, 103678.
3. Lei, Y.; Li, N.; Guo, L.; Li, N.; Yan, T.; Lin, J. Machinery health prognostics: A systematic review from data acquisition to RUL

prediction. Mech. Syst. Signal Process. 2018, 104, 799–834.
4. Hu, C.; Youn, B.D.; Wang, P.; Yoon, J.T. Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful

life. Reliab. Eng. Syst. Saf. 2012, 103, 120–135.

https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/.
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/.


Data 2021, 6, 5 14 of 14

5. Zhang, C.; Lim, P.; Qin, A.K.; Tan, K.C. Multiobjective deep belief networks ensemble for remaining useful life estimation in
prognostics. IEEE Trans. Neural Netw. Learn. Syst. 2016, 28, 2306–2318. [PubMed]

6. Booyse, W.; Wilke, D.N.; Heyns, S. Deep digital twins for detection, diagnostics and prognostics. Mech. Syst. Signal Process. 2020,
140, 106612.

7. da Costa, P.R.d.O.; Akcay, A.; Zhang, Y.; Kaymak, U. Remaining useful lifetime prediction via deep domain adaptation. Reliab.
Eng. Syst. Saf. 2020, 195, 106682.

8. Eker, Ö.F.; Camci, F.; Jennions, I.K. Major challenges in prognostics: study on benchmarking prognostic datasets. In Proceedings
of the 1st European Conference of the Prognostics and Health Management Society 2012, Dresden, Germany, 3–6 July 2012;
Volume 3, p. 8.

9. Prognostics Center of Excellence—Data Repository. 2020. Available online: https://ti.arc.nasa.gov/tech/dash/groups/pcoe/pr
ognostic-data-repository/ (accessed on 23 April 2019).

10. Saxena, A.; Goebel, K. PHM08 Challenge Data Set. 2008. Available online: https://ti.arc.nasa.gov/tech/dash/groups/pcoe/pr
ognostic-data-repository/ (accessed on 23 April 2019).

11. Saxena, A.; Goebel, K.; Simon, D.; Eklund, N. Damage propagation modeling for aircraft engine run-to-failure simulation. In
Proceedings of the 2008 International Conference on Prognostics and Health Management, Denver, CO, USA, 6–9 October 2008;
pp. 1–9. [CrossRef]

12. Li, X.; Ding, Q.; Sun, J.Q. Remaining useful life estimation in prognostics using deep convolution neural networks. Reliab. Eng.
Syst. Saf. 2018, 172, 1–11.

13. Yang, H.; Zhao, F.; Jiang, G.; Sun, Z.; Mei, X. A Novel Deep Learning Approach for Machinery Prognostics Based on Time
Windows. Appl. Sci. 2019, 9, 4813. [CrossRef]

14. de Oliveira da Costa, P.R.; Akcay, A.; Zhang, Y.; Kaymak, U. Attention and long short-term memory network for remaining
useful lifetime predictions of turbofan engine degradation. Int. J. Progn. Health Manag. 2019, 10, 034.

15. Listou Ellefsen, A.; Bjørlykhaug, E.; Æsøy, V.; Ushakov, S.; Zhang, H. Remaining useful life predictions for turbofan engine
degradation using semi-supervised deep architecture. Reliab. Eng. Syst. Saf. 2019, 183, 240–251. [CrossRef]

16. Remaining Useful Life Prediction of Airplane Engine Based on PCA–BLSTM. Sensors 2020, 20, 4537. [CrossRef]
17. Shi, Z.; Chehade, A. A dual-LSTM framework combining change point detection and remaining useful life prediction. Reliab.

Eng. Syst. Saf. 2021, 205, 107257. [CrossRef]
18. Wu, J.; Hu, K.; Cheng, Y.; Zhu, H.; Shao, X.; Wang, Y. Data-driven remaining useful life prediction via multiple sensor signals and

deep long short-term memory neural network. ISA Trans. 2020, 97, 241–250. [PubMed]
19. Xia, T.; Song, Y.; Zheng, Y.; Pan, E.; Xi, L. An ensemble framework based on convolutional bi-directional LSTM with multiple

time windows for remaining useful life estimation. Comput. Ind. 2020, 115, 103182.
20. Zhao, C.; Huang, X.; Li, Y.; Yousaf Iqbal, M. A Double-Channel Hybrid Deep Neural Network Based on CNN and BiLSTM for

Remaining Useful Life Prediction. Sensors 2020, 20, 7109. [CrossRef]
21. Xie, Z.; Du, S.; Lv, J.; Deng, Y.; Jia, S. A Hybrid Prognostics Deep Learning Model for Remaining Useful Life Prediction. Electronics

2020, 10, 39. [CrossRef]
22. DASHlink—Flight Data For Tail 687. 2012. Available online: https://c3.nasa.gov/dashlink/resources/664/ (accessed on 23

January 2019).
23. Frederick, D.K.; Decastro, J.A.; Litt, J.S. User’s Guide for the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS);

Technical Report; NASA: Washington, DC, USA, 2007.
24. Kobayashi, T.; Simon, D.L. Evaluation of an Enhanced Bank of Kalman Filters for In-Flight Aircraft Engine Sensor Fault

Diagnostics. J. Eng. Gas Turbines Power 2005, 127, 497–504. [CrossRef]
25. Borguet, S.; Leónard, O. A Generalised Likelihood Ratio Test for Adaptive Gas Turbine Health Monitoring. In Proceedings of the

ASME Turbo Expo 2008: Power for Land, Sea, and Air, Berlin, Germany, 9–13 June 2008.
26. Tian, Y.; Arias Chao, M.; Kulkarni, C.; Goebel, K.; Fink, O. Real-Time Model Calibration with Deep Reinforcement Learning.

arXiv 2020, arXiv:2006.04001.
27. Arias Chao, M.; Kulkarni, C.; Goebel, K.; Fink, O. Fusing Physics-based and Deep Learning Models for Prognostics. arXiv 2020,

arXiv:2003.00732.
28. Willard, J.; Jia, X.; Xu, S.; Steinbach, M.; Kumar, V. Integrating Physics-Based Modeling with Machine Learning: A Survey. arXiv

2020, arXiv:2003.04919.

http://www.ncbi.nlm.nih.gov/pubmed/27416606
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
http://doi.org/10.1109/PHM.2008.4711414
http://dx.doi.org/10.3390/app9224813
http://dx.doi.org/10.1016/j.ress.2018.11.027
http://dx.doi.org/10.3390/s20164537
http://dx.doi.org/10.1016/j.ress.2020.107257
http://www.ncbi.nlm.nih.gov/pubmed/31300159
http://dx.doi.org/10.3390/s20247109
http://dx.doi.org/10.3390/electronics10010039
https://c3.nasa.gov/dashlink/resources/664/
http://dx.doi.org/10.1115/1.1850505

	Introduction
	Data Description
	CMAPSS Model
	Flight Data
	Data Records

	Methods
	Degradation Model
	Health Condition
	Sensor Noise
	Technical Validation
	Examination of the Flight Profiles
	Examination of the Degradation Trajectories
	Examination of the Transition Times


	Usage Notes
	Prognostics Problem
	Diagnostics Problem

	Discussion
	References

