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Abstract: This data descriptor introduces data on healthy food supplied by supermarkets in the
city of Amsterdam, The Netherlands. In addition to two neighborhood variables (i.e., share of
autochthons and average housing values), the data comprises three street network-based accessibility
measures derived from analyses using a geographic information system. Data are provided on
a spatial micro-scale utilizing grid cells with a spatial resolution of 100 m. We explain how the data
were collected and pre-processed, and how alternative analyses can be set up. To illustrate the use of
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1. Introduction

Spatial accessibility to healthy food is important for people’s health [1]. In that respect, supermarkets
play an essential role by offering healthy and fresh foods at more competitive prices than smaller grocery
stores or convenience stores [2]. However, supermarket access is not constant, but varies significantly
across cities, resulting in dietary inequalities across urban neighborhoods. The body of knowledge thus
far suggests that particularly people residing in socially-distressed neighborhoods (i.e., having a low
socioeconomic status) as well as those neighborhoods where predominantly ethnic minorities live have
poorer spatial supermarket accessibility. Such areas are often denoted as “food deserts” [3].

While food deserts seem to be omnipresent in the U.S., evidence concerning their existence in
Canadian or European cities is mixed and far from conclusive [1]. Reasons for divergent findings include
the applied methodology, which is mainly based on geographic information systems (GIS) to compute
accessibility indicators, and the applied statistical models [4]. Present studies are often conceptually
simple, applying a single accessibility measure on a less detailed analytical scale (e.g., administrative units).
Therefore, multidimensional accessibility indicators combining proximity to, and density and variety
of, supermarkets are suggested [5–7]. Although promoting a straightforward operationalization, food
deserts are frequently identified by means of descriptive approaches (e.g., quartiles), disregarding that both
accessibility and neighborhood characteristics are key for food desert mapping which calls for multivariate
data clustering [4]. Finally, to the best of our knowledge, the conducted studies do not make the underlying
research data (e.g., primary data, secondary data, and derived measures) available to the public, even
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though the reproducibility of findings on which knowledge is built is imperative, and a fundamental aspect
in scientific investigations. Brunsdon [8] critically highlights several benefits when methods and data
repositories are shared. The benefits include clear documentation, transparency concerning pre-processing,
and the possibility to validate results, to apply alternative analytical approaches, to serve as a basis for
follow-up studies, etc. All these issues will ultimately lead to more reliable research.

This data descriptor addresses the aforementioned research gaps by describing in detail and
sharing the data related to the research article Food Deserts? Healthy Food Access in Amsterdam [9].
It describes both the data collection and the procedures used in pre-processing the data, and gives
an overview of how the data can be used. Note that the interpretation of the results is given in the
companion article. The provided data is not only relevant to map healthy food accessibility but is also
of relevance for other studies dealing with, for example, the analyses of health behavior and can be
linked to on-going area-based or register studies in Amsterdam.

2. Data Description

Table 1 summarizes key characteristics of the dataset.

Table 1. Metadata specification.

Key Features Description

Subject area Health, nutrition, geography, transportation

Data source location Amsterdam, The Netherlands

Data acquisition Derived attributes and official data (Statistic Netherlands)

Type and format R object (SpatialPolygonsDataFrame), ESRI™ shapefile

Spatial resolution cells with 100 m widths

Dimension 5242 × 8

Projection and reference system EPSG code: 28992

Attributes

Proximity (PROX) Numeric, distance to the closest supermarket from each cell (in meters)

Density (DENS) Numeric, number of stores within a 1000 m street network buffer around each cell

Variety (VARI) Numeric, mean distance to three supermarkets of three different chains from each cell (in meters)

Ethnicity (NATI) Numeric, proportion of native Dutch within a cell in the year 2014 (converted to the following
numeric values: 5 = 90%, 4 = 75%–90%, 3 = 60%–75%, 2 = 40%–60%, 1 = 40%)

Housing (HOUS) Numeric, average housing price per cell in the year 2011/12 (in €1000)

ID Unique identifier

Version 1 1.0
1 In case the data will be updated, the version number will be changed. Older versions will be archived.

3. Materials and Methods

3.1. Study Area and Analysis Scale

The study area was the city of Amsterdam, The Netherlands. The city is located at 52◦22′ N, 4◦53′ O.
Figure 1 shows the location of the study area. We selected Amsterdam because the health monitor [10] reported
distinct differences in overweight and obesity prevalence. For example, 40% of the residents are overweight,
and 75% of the adults do not consume the recommended amount of fruit and vegetables. Significant spatial
variation in overweight prevalence exists as well. With 22% pronounced overweight, prevalence can be found
in the central areas and the rates increase even further in the northern parts of Amsterdam.

In contrast to most food desert studies, we tried to circumvent methodological complications
arising from the application of census areas (e.g., an uneven size). In order to go beyond administrative
units, we overlaid the study area with a grid in which each cell had a spatial resolution of 100× 100 m.
Thus, information is available for 5242 cells in total. Note that the data provided here only includes
cells where people reside; cells without a residential population were queried and excluded from
further analyses. Furthermore, an ID (e.g., E1281N4931) introduced by Statistic Netherlands [11] was
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attached to each cell, allowing a straightforward linkage with other administrative data. The grid cells
are provided as an ESRI™ shapefile and R data object (see Section 4).
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3.2. Data Sources and Pre-Processing

3.2.1. Supermarket Data

The initial search for all supermarket chains operating in The Netherlands was guided by
an overview published in Wikipedia [12] and the newspaper Levensmiddelen Krant [13]. The number
of stores per supermarket chain located within the administrative unit of Amsterdam, including
those within a buffer zone of two kilometers around the city, were collected. The consideration of
a buffer zone was necessary to avoid edge effects for the accessibility measures. Due to theoretical
considerations, organic supermarkets and “to go” stores were disregarded. Each company’s webpage
was queried to obtain the store addresses (i.e., the street name and the building number). A total of
144 supermarkets were identified during the data collection phase in November 2015; of them, 122 are
located within the administrative area of Amsterdam. Table 2 provides some information about the
stores. The Dutch cadastral data Basisregistraties Adressen en Gebouwen [14] and ArcGIS Online
were then used to convert the individual store addresses into geographic coordinates, which were
then projected onto the local coordinate system (i.e., EPSG code 28992). A detailed description of the
projection is given in Section 4.

Table 2. Supermarket chains.

Chain Number of Stores Chain Number of Stores

Albert Heijn 79 Coop 3
Dirk 15 Plus 4

Jumbo 15 Spar 3
Lidl 10 Dekamarkt 2
Aldi 5 C1000 1
Deen 6 Boni 1
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3.2.2. Accessibility Measures

For the accessibility measures, the coordinates of the centroid of each cell, serving as origin, were
computed, while the supermarket locations served as destinations. The accessibility indicators were
calculated on the basis of the street network provided by ESRI (version 2008) as input and a function
iterated over all origins (cells).

Based on a literature review (e.g., [4,5]), three complementing supermarket accessibility measures
were considered. The first indicator is based on the network distance (in meters) from cell i to the
closest supermarket j of any chain (proximity measure). For the second measure, we first computed
a street network buffer (service area) of 1000 m around each cell centroid, and then applied GIS-based
point-in-polygon analyses to determine the number of available stores within this area (density
measure). The threshold distance is based on a review of the literature and represents a 12-min
walk for an adult [4]. The final accessibility measure differentiates between supermarket chains,
and represents the mean network distance (in meters) from each centroid i to the three nearest
supermarkets j from k different chains (variety measure). The variety measure considers that different
chains offer different products.

To derive these measures, the ArcGIS 10.3 network analyst extension was used with the centroids
as incidents and the supermarket locations as facilities. For all analyses, all the routing restrictions
were disabled (e.g., one-ways).

3.2.3. Neighborhood Data

We extracted neighborhood information for two variables for each cell from the raster dataset
(vierkanten) maintained by Statistics Netherlands (www.cbs.nl) [11].

The first variable represents ethnicity and is based on the municipal personal records database
(Structuurtelling Gemeentelijke Basisadministratie). The variable ethnicity represents the proportion
of autochthons, that is, the proportion of people whose parents were born in The Netherlands,
irrespective of their country of origin [11]. The variable was originally coded as follows: (1) ≥90%
autochthons; (2) 75%–90% autochthons; (3) 60%–75% autochthons; (4) 40%–60% autochthons;
and (5) <40% autochthons. In order to perform statistical analyses, the initial classes were reclassified
from a string data type to integer values ranging from 1 (i.e., ≥90% natives) to 5 (i.e., <40%).

The second variable is the average housing value per cell, mimicking area-based socioeconomic
status. The housing values are in €1000. To be considered a building, the construction must have
at least 14 m2 of living space, a toilet, a kitchen, etc. For each cell, the average housing value in
the year 2011/12 is given. It represents the average housing value on the basis of the property
register (Woningregister), which includes only houses that serve as main residences and in which no
commercial activities take place. For a detailed discussion, see the original data description [11].

4. Data Usage and Application

To be independent of proprietary software and to facilitate easy use of the data, we compiled the
dataset for the R language and environment for statistical computing [15]. The R software is open-source,
is available for all platforms, can be extended with a myriad of add-on packages, etc. The data is shipped
as zipped shapefile and R data object. The R object represents a SpatialPolygonsDataFrame comprising
both locational information (i.e., cells) and attached attribute information. To access and illustrate the
usage of the data, this section provides R code and briefly shows an alternative analysis.

While the original research paper [9] applied contextual neural gas [16,17] to account for spatial
autocorrelation [18], we complement this spatially explicit approach with a non-spatial analysis using
widely applied self-organizing maps (SOMs) [19,20] (other options can be found in [21]). A SOM
is an unsupervised artificial neural network for data clustering and visualization [19]. However,
the interpretation of the results is beyond the scope of this article and can be found elsewhere [9].
Note that the supermarket location data can also be used to apply, for example, cluster detection
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algorithms [22,23]. To facilitate quick access and use, the first code snippet loads the required R
packages [24–28], sets the workspace, and unzips the data.
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The key strengths of SOMs are their rich visualization capabilities. The SOM training progress in
Figure 2 shows considerable improvements after a few iterations and convergence after approximately
50 training cycles. Moreover, the U-matrix [19] can be plotted to investigate clusters, while the
component planes are useful to discover correlations among the variables. Figure 3 depicts two
component planes as an example.
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> data.som <- as.matrix(data@data[, c("NATI", "HOUS", "PROX", "DENS", "VARI")]) 

> # scale selected variables  

> data.som.sc <- scale(data.som) 

> # create som topology 

> som.grid <- somgrid(xdim = 10, ydim = 8, topo = c("hexagonal")) 

> set.seed(20082014) 

> # train som 

> som.res <- som(data=data.som.sc, grid=som.grid, rlen=100, alpha = c(0.05, 

0.01),  

+                keep.data=TRUE, n.hood="circular") 

> summary(som.res) 

som map of size 10x8 with a hexagonal topology. 

Training data included; dimension is 5242 by 5 

Mean distance to the closest unit in the map: 0.3151507 

The key strengths of SOMs are their rich visualization capabilities. The SOM training progress 
in Figure 2 shows considerable improvements after a few iterations and convergence after 
approximately 50 training cycles. Moreover, the U-matrix [17] can be plotted to investigate clusters, 
while the component planes are useful to discover correlations among the variables. Figure 3 depicts 
two component planes as an example. 

> # set colors 

> coolBlueHotRed <- function(n, alpha = 1) { rainbow(n, end=4/6, 

alpha=alpha)[n:1] } 

> # plot som training progress 
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In the next step, the grid of the SOM is clustered by means of the k-means algorithm. To analyze
an appropriate number of clusters, we loop through between two and ten clusters, and for each
clustering, the within cluster sum of squares is computed. Plotting these values shows an elbow at
seven clusters, referring to a suitable solution.
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Figure 4. Result of the SOM-based clustering. 

Exploring the descriptives of each cluster indicate that cluster 5 could be related to pockets of 
food deserts, even though the corresponding cells are exclusively located in the urban periphery. This 
challenges the classic interpretation of food deserts but confirms differences in spatial accessibility to 
healthy food supplied by supermarkets and area-based socioeconomic characteristics within the city 
of Amsterdam. In conclusion, no empirical evidence was found supporting the notion of pronounced 
inequalities in access to healthy food. 
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