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Abstract: This study focused on monitoring phosphorus (P) concentrations in the water of the Ramsar
site, Lake Vembanad, with a special focus on the mouths of the river bodies draining into the lake,
a known hotspot for eutrophication. Four phosphorus fractions—total reactive phosphorus (TRP),
total acid hydrolysable phosphorus (TAHP), total organic phosphorus (TOP), and total phosphorus
(TP)—were monitored during the pre-monsoon and post-monsoon seasons. The results revealed
high levels of all monitored phosphorus fractions, with an average concentration exceeding 300 ppb
P across both seasons, indicating a highly eutrophic state. Notably, TRP, TOP, and TP showed high
concentrations in both the pre-monsoon and post-monsoon periods. These data suggest significant
phosphorus input into the lake’s surface water, potentially triggering excessive algal growth and
threatening the biodiversity of this rich wetland ecosystem.

Keywords: Vembanad Lake; adjoining rivers; eutrophication; phosphorus speciation; inorganic and
organic phosphorus

1. Introduction

Wetlands represent vital ecosystems, where land and water converge to provide
invaluable benefits to both humanity and wildlife [1,2]. Serving as natural filters, they
enhance water quality by absorbing excess nutrients and pollutants, while also regulating
water levels to mitigate floods and protect coastal areas from erosive forces [3]. Despite their
critical role, wetlands face a mounting threat from human activities, leading to widespread
degradation and loss [4].

One of the most pressing challenges to wetland health is eutrophication, a process
driven by the accumulation of nutrients like phosphate and nitrate [5]. This nutrient
overload disrupts the delicate balance of aquatic ecosystems, triggering harmful algal
blooms, oxygen depletion, and biodiversity loss [6]. The root causes of eutrophication
are manifold, including agricultural runoff, urban development, and untreated waste
discharge, which have led to a surge in nutrient levels in rivers and lakes worldwide [7].

Of particular concern is the role of phosphorus, a key nutrient in freshwater environ-
ments, in fuelling eutrophication [8]. Even slight increases in phosphorus concentrations
can have profound consequences, stimulating rapid plant and algae growth, reducing
oxygen levels, and disrupting aquatic ecosystems. Phosphorus enters water bodies through
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various pathways, including fertilizers, manure, and industrial waste, exacerbating eu-
trophication in vulnerable ecosystems [9].

Understanding the complex dynamics of phosphorus cycling within aquatic systems
is essential for assessing and managing eutrophication [10]. Phosphorus exists in multiple
forms, including orthophosphate, inorganic phosphates, and organic phosphates, each
with distinct transformations and interactions with water and sediment [11]. These pro-
cesses, influenced by physicochemical and biological factors, govern the distribution and
availability of phosphorus in aquatic environments [12,13].

Against this backdrop, the Lake Vembanad emerges as a critical case study, repre-
senting one of India’s largest and most ecologically significant wetland ecosystems [14].
Designated as a Ramsar Site for its rich biodiversity [15,16], the lake faces mounting pres-
sures from human activities, including agricultural runoff and industrial pollution [17].
Numerous studies on the health of Vembanad Lake have been carried out over the years
because of its ecological significance as a Ramsar site. The majority of the studies were
limited to the northern Vembanad, where pollution is mostly caused by urbanization and
industrialization [18,19]. The fractionation of phosphorus in the sediments of the northern
Vembanad Lake has been the subject of several research projects [15,16]. A study in this
region demonstrated that in the Cochin estuary (northern Vembanad Lake), surface sedi-
ments can serve as an internal supply of phosphorus [19]. However, there have not been
many discussions on the phosphorus speciation in the water of the southern Vembanad
Lake, which receives the majority of its runoff from agricultural lands.

In the southern area, agriculture practices, especially in low-lying fields, heavily
rely on fertilizers, pesticides, and herbicides, contributing significantly to phosphorus
loading [20,21]. This southern region has become a focal point for nutrient accumulation
and the proliferation of invasive species. Additionally, the construction of the Thanneer-
mukkom Bund (which divides the lake, with the southern portion dominated by freshwater
and the northern portion by saltwater), designed to regulate the water exchange between
the Arabian Sea and the freshwater habitats, exacerbates these issues by accumulating agri-
cultural residues and promoting the rapid spread of harmful aquatic vegetation [22]. Such
degradation poses significant threats to public health and environmental sustainability,
underscoring the urgent need for comprehensive monitoring and management strategies.

Given this context, our focus was on specifically examining the influence of phos-
phorous loading from the four rivers that drain into the southern part of Vembanad Lake,
which pass through vast agricultural fields. The confluence points of these rivers within
the lake system serve as hotspots for phosphorous loading. This study has been carried out
to understand the influx of phosphorus species into the lake system.

In summary, the health of Vembanad Lake can serve as a model for the broader
challenges facing wetland ecosystems worldwide. This study aims to provide essential
insights for the preservation and sustainable management of this natural resource by
elucidating the intricate temporal dynamics of phosphorus species and its implications for
eutrophication.

2. Materials and Methods
2.1. Study Area

The study area is situated in Kerala, located in the southwestern part of India, which
is characterized by a network of 44 rivers, with 41 flowing westward and the remaining
3 flowing eastward. These westward-flowing rivers terminate either in a lake or merge
with the sea on the western coast. Our research specifically delved into the phosphorous
speciation in Vembanad Lake, a designated Ramsar site and the largest estuarine system in
Kerala, covering approximately 256 km2 spanning latitudes 9◦30′–10◦20′ N and longitudes
76◦13′–76◦50′ E (Figure 1). The lake is renowned for its elongated axes running parallel
to the sea coast and features two permanent openings, Azhikod and Cochin, facilitating
direct connections to the Arabian Sea and contributing to its status as a highly productive
estuary system [23].
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Figure 2. This is a wide figure.Figure 1. Map of the sampling location along the Vembanad Lake and adjoining rivers.

Vembanad Lake receives nourishment from seven major rivers, five of
which—Muvattupuzha, Meenachil, Manimala, Pamba, and Achankovil—originate from
the south, while the remaining two—Periyar and Chalakudi—originate from the north of
the Thanneermukkom Bund. Notably, Manimala, Achankovil, and Pamba flow into the
lake’s southernmost part at Alappuzha, while Meenachil joins the eastern portion of the
lake after passing through the Thannermukkom Bund. Collectively, these rivers contribute
an estimated 297,010 m3 of fresh water annually [24], along with an annual sediment
flow from catchments totaling around 329,106 tons [25]. Influenced predominantly by the
monsoon, these rivers contribute approximately 71% of yearly precipitation [26].

Our research specifically focuses on the effects observed at the mouths of four rivers:
Meenachil, Manimala, Pamba, and Achankovil. These rivers traverse through the agricul-
tural lands of Kuttanad, resulting in extensive agricultural runoff that may be enriched
with phosphorus content.

2.2. Sample Collection and Preservation

Water samples were collected from 16 distinct sampling points in the southern arm of
Vembanad Lake over the period from March to December 2019, encompassing both the
pre-monsoon and post-monsoon seasons. These samples were obtained from different
rivers before their convergence with the lake system, with additional samples gathered
from locations where rivers merge with the lake. Additionally, a representative sample of
the entire lake was collected from the middle of the lake (Figure 1). Samples from the lake
points were collected by reaching the sites by boat. At some points in the river, we used a
boat to reach the sampling location, while at other points samples were obtained directly.
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In order to ensure the accuracy of the analysis, surface water samples were collected
using polypropylene containers that were thoroughly rinsed with river water prior to each
sampling. The samples were then stored in PTFE bottles pre-cleaned with phosphate-free
detergent and rinsed with double-distilled water [27]. Subsequently, the samples were
transported to the laboratory in an ice box and preserved at 4 ◦C prior to analysis.

2.3. Sample Analysis

The collected water samples underwent comprehensive analysis for various physico-
chemical parameters, including temperature, pH, conductivity, total dissolved solids (TDS),
total hardness (TH), salinity, dissolved oxygen (DO), and both anions and cations. Real-time
measurements of temperature, pH, conductivity, TDS, salinity, and DO were conducted
using the Aquaprobe AP 5000 plus. Total hardness was determined using the titration
technique, while ion chromatography (Dionex ICS 1100 plus) was employed to analyze
major ionic composition such as chloride (Cl), nitrate (NO3), sulphate (SO4), sodium (Na),
potassium (K), magnesium (Mg), calcium (Ca), and ammonium (NH4). The identification
of anions was performed using an AS12A/AG12A column with an ASRS suppressor, while
major cations were analyzed using a CS12A/CG12A column and CSRS suppressor.

The phosphomolybdate blue colorimetric method, in combination with a UV–visible
spectrophotometer, was utilized to quantify different phosphorus species [28]. Total reactive
phosphorus (TRP) (unfiltered sample) was obtained from the non-digested water sample
and total acid hydrolysable phosphorus (TAHP) (unfiltered) was obtained from the digested
water sample. The difference between TRP and TAHP provided the TAHP concentration.
Additionally, total phosphorus (TP) and total organic phosphorus (TOP) samples were
digested for 2 h using potassium persulfate on a hotplate. TOP was calculated as the
difference between TP and the sum of TAHP and TRP [29].

2.4. Data Analysis

In the data analysis phase, two main software tools were utilized: Microsoft Excel
2016 and IBM SPSS Statistics 22. These tools provided the necessary functionalities for
conducting a comprehensive examination of the collected data.

Various statistical tests were employed to assess different aspects of the data. The
Shapiro–Wilk test and Kolmogorov–Smirnov test were utilized to assess the normality
of data distributions. These tests help to determine whether the data follow a normal
distribution, which is essential for certain statistical analyses.

The Spearman correlation test was conducted to evaluate the relationships between
different variables in the dataset. This non-parametric test assesses the strength and
direction of monotonic relationships between variables, providing insights into potential
associations among water quality metrics [30].

Additionally, a one-way ANOVA (Analysis of Variance) test was performed to compare
the means across multiple groups. This test allowed for the examination of potential
differences in water quality metrics among different sampling sites or seasons.

Principal component analysis (PCA) was employed to identify underlying patterns
and extract relevant information from the dataset. PCA is a multivariate statistical technique
used to reduce the dimensionality of data by transforming correlated variables into a smaller
set of uncorrelated variables called principal components. By doing so, PCA helps uncover
hidden elements influencing surface water quality and facilitates the interpretation of
complex datasets [31].

Furthermore, hierarchical cluster analysis (HCA) was utilized to identify groups of
similarity among sampling sites and/or water quality metrics. HCA is a technique used
to classify objects or variables into homogeneous groups based on their similarities or
dissimilarities. By clustering similar sampling sites or water quality metrics together, HCA
provides valuable insights into the overall structure of the dataset and helps identify distinct
patterns or trends [32].
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3. Results and Discussions
3.1. pH, Water Temperature, Conductivity, TDS, Salinity, and Total Hardness

The physicochemical parameters of the surface water samples collected from Vem-
banad Lake and its adjoining rivers in the pre-monsoon (PRM) and post-monsoon (POM)
seasons are presented in Figure 2 and Table 1. The pH values of the samples ranged between
5.1 to 7.8 and 5.3 to 7.2 in the PRM and POM seasons, respectively. However, there was no
significant variation (p > 0.05) in the pH between the seasons. A significant difference in the
water temperature (p < 0.05) between the seasons was noticed, with temperatures ranging
between 28.5 to 32.2 ◦C and 26.8 to 30.8 ◦C in the PRM and POM seasons, respectively.
Higher conductivity was recorded in the samples in the PRM (mean: 2128.75 µS/cm)
than in the POM (mean: 669.45 µS/cm) season, with a significant variation (p < 0.05) in
conductivity during these seasons. Furthermore, there was a significant deviation (p < 0.05)
in the total dissolved solids (TDS) of samples between the seasons, whereas salinity did
not vary significantly. The TDS in the water samples ranged from 41 to 3003 ppm and 32.2
to 1970 ppm in the PRM and POM seasons, respectively. The salinity varied from 20 to
2460 ppm and from 28.2 to 1420 ppm during the PRM and POM seasons, respectively, with
a higher salinity in the samples recorded during the PRM season. The total hardness in
the samples varied between 18.0 to 526.0 ppm in the PRM season and 16.0 to 252.0 ppm in
the POM season. The hardness was higher in the PRM season (mean: 220.56 ppm) than in
the POM season. Furthermore, a significant deviation in hardness levels was also noted
between the seasons (p < 0.05).

Hydrology 2024, 11, x FOR PEER REVIEW 5 of 19 
 

 

helps uncover hidden elements influencing surface water quality and facilitates the in-
terpretation of complex datasets [31]. 

Furthermore, hierarchical cluster analysis (HCA) was utilized to identify groups of 
similarity among sampling sites and/or water quality metrics. HCA is a technique used to 
classify objects or variables into homogeneous groups based on their similarities or dis-
similarities. By clustering similar sampling sites or water quality metrics together, HCA 
provides valuable insights into the overall structure of the dataset and helps identify 
distinct patterns or trends [32]. 

3. Results and Discussions 
3.1. pH, Water Temperature, Conductivity, TDS, Salinity, and Total Hardness 

The physicochemical parameters of the surface water samples collected from Vem-
banad Lake and its adjoining rivers in the pre-monsoon (PRM) and post-monsoon (POM) 
seasons are presented in Figure 2 and Table 1. The pH values of the samples ranged be-
tween 5.1 to 7.8 and 5.3 to 7.2 in the PRM and POM seasons, respectively. However, there 
was no significant variation (p > 0.05) in the pH between the seasons. A significant 
difference in the water temperature (p < 0.05) between the seasons was noticed, with 
temperatures ranging between 28.5 to 32.2 °C and 26.8 to 30.8 °C in the PRM and POM 
seasons, respectively. Higher conductivity was recorded in the samples in the PRM 
(mean: 2128.75 µS/cm) than in the POM (mean: 669.45 µS/cm) season, with a significant 
variation (p < 0.05) in conductivity during these seasons. Furthermore, there was a sig-
nificant deviation (p < 0.05) in the total dissolved solids (TDS) of samples between the 
seasons, whereas salinity did not vary significantly. The TDS in the water samples ranged 
from 41 to 3003 ppm and 32.2 to 1970 ppm in the PRM and POM seasons, respectively. 
The salinity varied from 20 to 2460 ppm and from 28.2 to 1420 ppm during the PRM and 
POM seasons, respectively, with a higher salinity in the samples recorded during the 
PRM season. The total hardness in the samples varied between 18.0 to 526.0 ppm in the 
PRM season and 16.0 to 252.0 ppm in the POM season. The hardness was higher in the 
PRM season (mean: 220.56 ppm) than in the POM season. Furthermore, a significant de-
viation in hardness levels was also noted between the seasons (p < 0.05). 

  

Hydrology 2024, 11, x FOR PEER REVIEW 6 of 19 
 

 

  

  

 

 

Figure 2. Spatial and temporal variations in physicochemical parameters in the study area. 

Table 1. Variations in hydrographical parameters in the study area. Results of ANOVA also pre-
sented. 

Parameter 
Seasonal Variations 

ANOVA-p Value 
(Seasonal) Pre-Monsoon Post-Monsoon 

Range Mean Range Mean 
Temperature (°C) 28.5–32.2 31.01 26.8–30.8 29.2 0.000 

pH 5.1–7.8 6.43 5.3–7.2 6.47 0.862 
Conductivity (µS/cm) 64–4618 2128.75 46.1–2760 669.45 0.014 

TDS (ppm) 41–3003 1382.75 32.2–1970 475.71 0.017 
Salinity (ppm) 20–2460 1092.5 28.2–1420 332.23 0.051 

DO (ppm) 1.6–8.7 6.45 2.3–7.8 5.26 0.094 

Figure 2. Cont.



Hydrology 2024, 11, 70 6 of 19

Hydrology 2024, 11, x FOR PEER REVIEW 6 of 19 
 

 

  

  

 

 

Figure 2. Spatial and temporal variations in physicochemical parameters in the study area. 

Table 1. Variations in hydrographical parameters in the study area. Results of ANOVA also pre-
sented. 

Parameter 
Seasonal Variations 

ANOVA-p Value 
(Seasonal) Pre-Monsoon Post-Monsoon 

Range Mean Range Mean 
Temperature (°C) 28.5–32.2 31.01 26.8–30.8 29.2 0.000 

pH 5.1–7.8 6.43 5.3–7.2 6.47 0.862 
Conductivity (µS/cm) 64–4618 2128.75 46.1–2760 669.45 0.014 

TDS (ppm) 41–3003 1382.75 32.2–1970 475.71 0.017 
Salinity (ppm) 20–2460 1092.5 28.2–1420 332.23 0.051 

DO (ppm) 1.6–8.7 6.45 2.3–7.8 5.26 0.094 

Figure 2. Spatial and temporal variations in physicochemical parameters in the study area.

Table 1. Variations in hydrographical parameters in the study area. Results of ANOVA also presented.

Parameter

Seasonal Variations ANOVA-p
Value

(Seasonal)
Pre-Monsoon Post-Monsoon

Range Mean Range Mean

Temperature (◦C) 28.5–32.2 31.01 26.8–30.8 29.2 0.000

pH 5.1–7.8 6.43 5.3–7.2 6.47 0.862

Conductivity
(µS/cm) 64–4618 2128.75 46.1–2760 669.45 0.014

TDS (ppm) 41–3003 1382.75 32.2–1970 475.71 0.017

Salinity (ppm) 20–2460 1092.5 28.2–1420 332.23 0.051

DO (ppm) 1.6–8.7 6.45 2.3–7.8 5.26 0.094

Hardness (ppm) 18–526 220.56 16–252 74.12 0.035

Chloride (ppm) 8.31–3230.57 936.06 4.01–1168.33 210.92 0.021

Nitrate (ppm) ND–2.11 0.91 ND–4.2 1.45 0.002

Sulphate (ppm) 2.74–420.93 121.25 1.89–116.23 36.53 0.007

Sodium (ppm) 16.34–1449.55 443.85 2.72–413.73 98.69 0.005

Ammonium (ppm) ND–12.55 7.88 ND–12.52 7.44 0.564

Potassium (ppm) 9.49–76.2 41.82 0.81–27.71 14.49 0.000

Magnesium (ppm) 3.26–174.51 54.06 1.01–50.77 15.23 0.023

Calcium (ppm) 10.36–68.17 29.01 2.45–79.88 23.38 0.254
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3.2. Dissolved Oxygen (DO)

The mean dissolved oxygen (DO) concentration was recorded to be greater in the PRM
season (6.45 ppm) than in the POM season (5.26 ppm) (Figure 2). Upon comparing both the
PRM and POM seasons, it was noticed that the distributaries (S1–S5) of the Meenachil river
had a relatively lower DO content, indicative of organic pollution in these locations [33].
The minimum DO concentration was recorded at S1 during both seasons (1.6 and 3.3 ppm
in the PRM and POM seasons, respectively). S1 is a site in the river–lake interface point,
where the excessive salinity load as a consequence of sea water mixing [34], along with
domestic waste effluents, might have led to the reduction in DO content. Interestingly, very
low DO levels were recorded at S11 (a site at the interface point of River Pamba and Lake
Vembanad) during the POM season, which can be attributed to high organic waste disposal
during the pilgrimage season (December to January) at Sabarimala. Previous reports have
also correlated the high degree of contamination in the River Pampa with the pilgrimage
season [35]. Similar drops in DO concentration were noted at S3, S5, and S7, including S1
and S11, during the POM season. These observations were mostly caused by the growth of
aquatic weeds in the surface water at the time of sampling. During the sampling, aquatic
plants like Eicchornia blocked the lake, which may have reduced the water’s ability to
dissolve oxygen [23]. In the case of DO levels, ANOVA analysis revealed no significant
(p < 0.05) seasonal variation among the sampling locations.

In general, higher pH, water temperature, conductivity, TDS, salinity, DO, and hard-
ness levels were recorded in the PRM season. During the PRM season, the site S7 at the
mouth of River Meenachil had the highest conductivity, TDS, salinity, and hardness values
in the PRM season; this is where the primary channels of the River Meenachil drain into
the lake. Meanwhile, Puthankayal (S12), another interface of the River Pamba with the
Lake, exhibited the highest conductivity, TDS, salinity, and hardness levels in the POM
season. Thus, these results clearly highlight the role of the river mouth points in controlling
the water chemistry of the lake. Strong positive correlations were observed between the
conductivity, total dissolved solids, salinity, total hardness, chloride, sulphate, sodium,
magnesium, potassium, and calcium values. Additionally, a strong positive correlation
was observed between the pH and DO. The temperature displayed a moderate positive
correlation among chloride, sulphate, sodium, potassium, magnesium, and DO (Table 2).

3.3. Ionic Levels

In the pre-monsoon (PRM) season, notably high concentrations of sulphate and chlo-
ride were found in water samples collected from Vembanad Lake and its adjoining rivers
(Figure 3). Specifically, sampling points S7 (located at the mouth of River Meenachil) and
S8 (Manimala) exhibited the highest levels of both ions during the PRM season. Con-
versely, during the post-monsoon (POM) season, S12 (Puthankayal), S15 (chloride), and S6
(sulphate) recorded the highest values. The elevated chloride levels in the lower reaches
of River Meenachil during the PRM season could be attributed to saline water intrusion,
with [36] chloride contamination serving as an indicator of chloride-rich sewage effluent
discharge. The decrease in ion concentration during the POM season could be due to
dilution during the monsoon season. In contrast to other parameters, an elevated nitrate
concentration in surface water was observed during the POM season, followed by the
PRM season. Despite being low in both seasons, nitrate concentrations ranged between
0.24–2.11 ppm in the PRM season and 0.38–4.2 ppm in the POM season (Table 1). The
presence of nitrate, although typically not detrimental to health, can lead to eutrophication
and pose harm to aquatic systems [37]. The chloride, nitrate, and sulphate levels exhibited
significant variation between the PRM and POM seasons. Additionally, a strong positive
association between chloride and sulphate suggested a common source of origin (Table 2).
However, there was no association between sulphate and chloride with nitrate levels,
indicating a potentially different source for nitrate contribution.
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Table 2. Correlation matrix for the different physicochemical parameters of surface water measured
in Vembanad Lake and adjoining rivers. * Correlation is significant at the 0.05 level (2-tailed),
** Correlation is significant at the 0.01 level (2-tailed).

TRP TAHP TOP Cl NO3 SO4 Na NH4 K Mg Ca Temp pH EC TDS Salinity DO TH

TRP 1.000

TAHP −0.232 1.000

TOP −0.067 −0.400
* 1.000

Cl 0.399
*

−0.359
* 0.222 1.000

NO3 −0.054 0.056 −0.133 −0.216 1.000

SO4
0.359

* −0.300 0.216 0.952
** −0.176 1.000

Na 0.424
* −0.348 0.229 0.960

** −0.177 0.934
** 1.000

NH4
−0.352

* 0.288 0.020 −0.395
* 0.059 −0.361

* −0.337 1.000

K 0.375
*

−0.402
* 0.289 0.713

** −0.263 0.708
**

0.833
** −0.223 1.000

Mg 0.469
** −0.322 190 0.953

** −0.069 0.950
**

0.964
**

−0.370
*

0.775
** 1.000

Ca 0.326 −0.035 −0.118 0.682
** 0.111 0.669

**
0.705

** −0.132 0.616
**

0.786
** 1.000

Temp 0.052 −0.313 0.321 0.487
**

−0.399
*

0.519
**

0.469
** −0.105 0.534

**
0.431

* 0.261 1.000

pH −0.043 0.133 −0.033 −0.117 −0.237 −0.146 −0.169 0.280 −0.212 −0.180 −0.156 0.007 1.000

EC 0.317 −0.364
* 0.217 0.960

** −0.187 0.940
**

0.940
**

−0.415
*

0.689
**

0.937
**

0.665
**

0.444
* −0.201 1.000

TDS 0.321 −0.372
* 0.230 0.956

** −0.171 0.941
**

0.935
**

−0.418
*

0.679
**

0.935
**

0.652
**

0.421
* −0.199 0.999

** 1.000

Salinity 0.322 −0.313 0.222 0.941
** −0.107 0.927

**
0.929

**
−0.425

*
0.662

**
0.933

**
0.644

**
0.378

* −0.214 0.984
**

0.988
** 1.000

DO −0.084 −0.020 0.354
* −0.047 −0.257 −0.010 −0.046 0.100 0.056 −0.081 −0.257 0.396

*
0.615

** −0.084 −0.085 −0.087 1.000

TH 0.404
* −0.278 0.202 0.975

** −0.143 0.968
**

0.957
**

−0.386
*

0.707
**

0.974
**

0.727
**

0.442
* −0.155 0.959

**
0.957

**
0.957

** −0.082 1.000
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In terms of cation analysis, concentrations of Na, Mg, K, and Ca peaked during the
PRM season compared to the POM season (Figure 3). Although no significant difference
was observed between ammonium and calcium levels, the maximum concentration of Na,
Mg, Ca, and K during the PRM season was recorded at S1. These ions, particularly Na,
showed higher concentrations near the lake–river interface, primarily due to saline water
intrusion. Moreover, strong positive associations were observed between Na and various
parameters, indicating a common source (Table 2). Notably, a significant seasonal variation
(p < 0.05) in Na concentrations was noted.

Before reaching the Vembanad Lake, the neighboring rivers traverse around the Kut-
tanadu Padashekaram, where paddy cultivation occurs below sea level, a characteristic
feature of this study area. Potassium (K), a key component of many artificial fertilizers,
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exhibited concentrations varying from 9.49 to 76.2 ppm during the PRM season and 0.81 to
27.71 ppm during the POM season. The annual fertilizer input of K into River Pamba is
approximately 6207 tons/year [35]. K displayed significant positive correlations with vari-
ous parameters, indicating a common source. Additionally, significant seasonal differences
were observed for K (p < 0.05).

Significant variations were also observed for the Mg and Ca levels between the two
seasons, with higher concentrations recorded during the PRM season. Mg ions exhibited a
seasonal average value greater than Ca ions during the PRM season, while the opposite
trend was observed during the POM season. In both seasons, the maximum concentrations
for both ions were recorded at S1. The presence of a lime industry near a certain sampling
station (S1) may contribute to the significant loading of Ca ions in both seasons. Strong
positive correlations were observed for Mg and Ca with various parameters, indicating
potential common sources.

Ammonium ions, recognized as good indicators of eutrophication, exhibited a con-
centration variation from 3.52 to 12.55 ppm during the PRM season and 0.04 to 12.52 ppm
during the POM season (Figure 3). The maximum NH4 concentration in the PRM season
was observed at S10, while S14 recorded the highest NH4 concentration in the POM season.
River Pamba contributes dissolved inorganic nitrogen to Lake Vembanad, with chemical
fertilizers and animal waste effluents potentially contributing to the nitric acid pollution
of the water [35,38]. Negative correlations were observed between NH4 and conductivity,
TDS, and salinity, with no significant variation in the NH4 concentration between seasons
(Table 2).

3.4. Phosphorus Speciation in Surface Water

The concentration of total reactive phosphorus (TRP) ranged from 76.66 to 676.66 ppb
during the Pre-Rainy Monsoon (PRM) and 110.0–476.66 ppb during the Post-Rainy Mon-
soon (POM). However, no significant temporal variation was observed across different
seasons (Figure 4, Table 3). Elevated phosphorus levels in lakes typically occur in areas
where there is a significant influx of sediments carrying human and animal waste fertil-
izers into water bodies [39]. Higher concentrations were recorded at S7 (Meenachil river
mouth), where all the distributaries of River Meenachil drain into Lake Vembanad. The
PO4 concentrations were high during the PRM season concerning the POM season. One
factor that might have been involved in raising the phosphate levels is the reduced water
level in the aquatic matrices leading to a concentration of ions. Other factors may involve
the surge in microbial activity and the rise in phosphorus release from sediment at ele-
vated temperatures [40]. Similar trends were observed in the phosphate content in the
Cochin estuary, draining into Vembanad Lake [16], and River Sitalakhya (Bangladesh) [41].
Agriculture runoff carrying fertilizers containing phosphate that had been applied to the
nearby paddy fields was mostly responsible for the phosphate content in the southern
part of Vembanad Lake [23]. The yearly fertilizer use in the Kuttanad agrarian zone was
8409 tons of nitrogen, 5044 tons of phosphorus, and 6786 tons of potassium. Additionally,
approximately 500 tons of pesticides/fungicides/weedicides were used annually [42]. The
direct release of phosphate and nutrients from a variety of sources, including fertilizers
containing the phosphorus used in the agriculture fields of Vembanad Lake and domestic
sewage, was reported by Asha et al. [43]. A soluble reactive phosphate concentration of
over 0.025 ppm is usually considered showing eutrophic conditions [44]. In this context, the
level of PO4 in Vembanad Lake and its tributaries is high enough to support eutrophication.
There was also a significant positive correlation observed between reactive phosphorus,
Cl (r = 0.399), SO4 (r = 0.359), Na (r = 0.424), K (r = 0.375), Mg (r = 0.469), and hardness
(r = 0.404) (Table 2).
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Table 3. Minimum, maximum, and average values of total reactive phosphorus (TRP), total acid
hydrolysable phosphorus (TAHP), total organic phosphorus (TOP), and total phosphorus (TP).

Period of
Sampling

Phosphate
Species Lowest Highest Average Phosphate

Species
ANOVA

(Seasonal)

PRM

TRP (ppb) 76.66 676.66 332.91
TRP 0.567

TAHP (ppb) 100.0 1033.33 475.0

TOP (ppb) 33.33 1243.34 676.04
TAHP 0.064

TP (ppb) 1020.0 2286.66 1483.95

POM

TRP (ppb) 110.0 476.66 303.74
TOP 0.024

TAHP (ppb) 243.33 1276.67 683.12

TOP (ppb) 23.33 890.0 402.29
TP 0.459

TP (ppb) 743.33 1876.66 1389.16

The total acid hydrolysable phosphorus (TAHP) ranged from 100.0 to 1033.33 ppb and
243.33 to 1276.67 ppb in the PRM and POM seasons, respectively (Figure 4, Table 3). TAHP
concentrations were maximum at S8 (River Manimala) and S6 (River Meenachil) during
the PRM and POM seasons, respectively. TAHP levels did not show significant variation
(p > 0.05) among the seasons. In general, TAHP concentrations were noticed to be higher in
the POM season. During the POM season, millions of devotees perform rituals as a part
of their belief in River Pampa. Bathing and laundry activities by the devotees could very
well lead to the substantial influx of polyphosphate into the aquatic matrix. Phosphates are
added to detergents as sodium tripolyphosphate (STPP), and in India, their composition
levels in products vary from 8 to 35% [45]. STPP is an acid hydrolysable phosphorus that
can quickly hydrolyse to orthophosphate in water. The River Manimala basin also receives
significant amounts of inorganic phosphate and other ions through effluents’ discharge
from commercial centers and restaurants [46].

The concentration of the total organic phosphorus (TOP) ranged from 33.33 to
1243.34 ppb in the PRM season and 23.33 to 890.0 ppb in the POM season (Figure 4, Table 3).
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TOP recorded the maximum concentration at S3 in the PRM season and S5 in the POM
season. Both are river mouths of River Meenachil. These stations are at the downstream
portion of the river, which carries significant quantities of organic/inorganic wastes. Pre-
vious records have also highlighted the effects of anthropogenic influences on the River
Meenachil [47–49]. Only a few reports are focused on organic phosphorus in rivers/lakes,
as it was previously believed that organic phosphorus contributes insignificantly to the
phosphate levels in the water. However, recent studies have revealed that orthophos-
phate in agricultural watersheds can be released from particulate organic phosphorus [50].
Bioavailable P, besides orthophosphate, is present in the phosphorus-containing fertilizers
used in agricultural watersheds. Particulate organic phosphorus in the river has a signifi-
cant chance of supplying PO4

3− into the river water [51,52]. This can trigger eutrophication
in water bodies. After flowing across the extensive agricultural region, the tributaries enter
Vembanad Lake, which may carry tons of organic phosphorus into the lake system. In
Kerala, organic fertilizers like animal manure, and bone meal along with chemical fertilizers
are widely applied before the onset of the south-west and north-east monsoon [35]. In
our study, the TOP concentration was greater when the water level was low during the
PRM season. TOP showed a significant (p < 0.05) seasonal difference, and it is positively
correlated with DO (r = 0.354). A significant negative correlation was observed between
TOP and TAHP (Table 4).

Table 4. Correlation between phosphate species, correlation is significant at p < 0.05.

TRP TAHP TOP TP

TRP 1

TAHP −0.232 1

TOP −0.067 −0.400 1

TP 0.11 0.41 0.60 1

The total phosphorus (TP) ranged between 1020–2286.66 ppb in the PRM season
and 743.33–1876.66 ppb in the POM season. We could not notice any significant (p > 0.05)
variation among the seasons (Figure 4, Table 3). The maximum value of the TP was recorded
at S14 (Manimala and Pamba) in the PRM season. With the POM season, the highest values
were recorded at S6 (Meenachil) and S15 (Achankovil). Overall, the sampling stations in
River Meenachil showed unusually higher values for most of the phosphorus fractions.
The concentration gradations of the four phosphorus species observed are TRP > TAHP
> TOP > TP in PRM and TRP > TOP > TAHP > TP in POM. The mean TRP, TOP, and TP
concentrations were high at the PRM season when compared to the POM season. The
absorption of TRP and TP by phytoplankton might be one reason responsible for this
phenomenon [53]. Apart from this, the quantity of diffuse-source phosphorus entering the
adjoining rivers is mostly determined by rainfall, hydrological conditions, and the land
use in their watersheds [54]. The excessive fertilization of the soil with chemical fertilizers
or the growth of algae that are capable to bind directly to PO4

3− from the air are both
responsible for the high amounts of phosphorus [55]. The contaminants accumulated in the
estuaries because of anthropogenic activities, and the dynamics of rivers and lakes may also
have increased the quantities of nitrogen and phosphorus [56]. The landscape surrounding
the Vembanad Lake is mainly agrarian, particularly enriched with paddy cultivation. It
can contribute a large quantity of fertilizers into the aquatic system. The phosphorus
loading in the Vembanad Lake was increased by the excessive and unscientific use of
phosphatic fertilizers and pesticides in Kuttanad agriculture areas [43]. Vembanad Lake
was the recipient of the 47 tons/year of PO4

3− that is transported by the River Pamba [35].
Correlation studies reveal that a strong positive correlation exists between TP and TOP;
however, a moderate positive correlation between TP and TAHP was also noticed. No
correlation existed between TRP with any other phosphate species (Table 4). The variation



Hydrology 2024, 11, 70 13 of 19

of TRP, TAHP, TOP, and TP concentration in water according to the seasons is shown in
Figure 4, respectively.

Aquatic weeds including Eichhornia crassipes, Monochoria vaginalis, and Salvinia
are proliferating unchecked in Vembanad and its interconnecting waterways. This ram-
pant growth serves as a clear indicator of nutrient contamination in the southern part of
Vembanad Lake. Eichhornia crassipes, in particular, is highly prevalent in tropical and
subtropical water bodies due to its high nutrient content. This nutrient abundance stems
from agricultural land runoff, deforestation, and inadequate water treatment processes [57].

Following the construction of the Thanneermukkom Bund, the southern section trans-
formed into a dumping ground for pesticides, herbicides, fertilizers, and other agrochem-
icals utilized in the surrounding paddy fields [22]. The construction of the Thanneer-
mukkom Bund has led to the southern section of the Vembanad Lake becoming a freshwater-
dominant zone. This alteration was intended to facilitate double cropping in “Kuttanadu”.
However, the absence of salinity in the water actively encourages the growth of Eichhor-
nia, exacerbating the proliferation of this invasive species [58]. The eutrophication of the
Vemband Lake system stands as the primary environmental factor fueling the growth of
waterweeds. The combination of nutrient abundance and freshwater conditions within the
lake system fosters the unchecked proliferation of these weeds. However, Eichhornia can
be harvested promptly for use as compost, vermicompost, or biochar. These products not
only decrease the nutrient levels in the water body but also improve soil fertility and crop
productivity [59–62].

3.5. Principal Component Analysis

Understanding the intricate physicochemical and nutrient dynamics at river–lake
interfaces presents a formidable challenge due to the complex and ever-changing nature
of these ecosystems. Principal Component Analysis (PCA) provides valuable insights
into these dynamics, as exemplified by the extracted principal components (Table 5 and
Figure 5).
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Table 5. Principal component analysis.

Component

C1 C2 C3 C4

TRP 0.454 −0.113 −0.010 −0.134

TAHP −0.177 0.135 −0.801 0.110

TOP 0.085 0.227 0.791 0.048

Cl 0.965 0.062 0.071 −0.104

NO3 −0.072 −0.715 −0.051 0.133

SO4 0.932 0.081 0.074 −0.076

Na 0.940 −0.039 0.103 −0.066

NH4 −0.314 −0.049 0.062 0.809

K 0.817 −0.062 0.337 0.000

Mg 0.948 −0.062 0.073 −0.047

Ca 0.702 −0.520 −0.074 0.348

Temperature 0.435 0.357 0.476 0.176

pH −0.112 0.599 −0.178 0.598

Conductivity 0.932 0.057 0.190 −0.153

TDS 0.928 0.037 0.188 −0.159

Salinity 0.934 0.066 0.182 −0.154

DO −0.034 0.885 0.130 0.165

Hardness 0.966 0.064 0.133 −0.084
Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization.
Rotation converged in 6 iterations.

PC1, explaining 51.5% of the total variance, reveals significant positive loadings on
various parameters such as TRP, Cl, SO4, Na, K, Mg, Ca, temperature, EC, TDS, salinity,
and TH. These findings, along with the positive loading on PO4, temperature, conductivity,
and salinity, strongly suggest the influence of agricultural and sewage runoff. The observed
high association between these variables underscores the anthropogenic origins of the
observed changes in water quality [43].

PC2, contributing 13.16% of the variance, demonstrates positive loadings on DO and
pH. The correlation between DO and pH highlights potential eutrophication processes [63],
with a high pH indicating fertilizer contamination [64] and high DO levels suggesting or-
ganic compound pollution [65]. The visible proliferation of aquatic plants during sampling
further supports the notion of eutrophication affecting water quality

Explaining 7.49% of the variance, PC3 displays a high positive loading for TOP
and temperature. This association implicates agricultural nonpoint-source pollution, the
residues of aquatic plants, and algae in sediment organic phosphorus contributions [66].
Additionally, temperature variations may trigger sediment phosphorus release into the
water column, intensifying nutrient dynamics [67].

In PC4, significant positive loadings for NH4 and pH point towards bird droppings
and poultry farming as substantial sources of ammonia contamination [65]. The widespread
presence of poultry farming and large flocks of migratory birds and heronries in the study
area further accentuates the impact of these anthropogenic inputs on water quality [68,69].

3.6. Hierarchical Cluster Analysis (HCA)

Normally, cluster analysis serves to elucidate similarities between sampling sites.
However, in this study, we employed hierarchical cluster analysis (HCA) to group sites with
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similar origins of pollutants and comparable water quality parameters. The HCA generated
a dendrogram (Figure 6), revealing four significant clusters with related characteristics.
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Cluster 1 includes river points from multiple rivers (S2, S13, S6, S15, S8, and S10).
The sites in this cluster exhibit lower values of various physicochemical parameters, likely
reflecting the relatively pristine conditions of these river points. The similarity in character-
istics could indeed be attributed to their common classification as river points.

Cluster 2, comprising mostly river–lake interface points (S3, S16, S5, S12, and S9),
exhibits significantly higher values of physicochemical parameters compared to Cluster 1.
This suggests potential pollution sources or environmental influences at these locations,
likely due to their proximity to both river and lake environments.

Cluster 3, encompassing sites S1 and S7, exhibits markedly elevated values in con-
ductivity, total dissolved solids, salinity, hardness, chloride, and sulfate. This significant
deviation in water quality parameters can be directly linked to the presence of the lime
industry situated in S1 (Achinakam). The water from site S1 flows downstream to site S7,
positioned at the lake–river interface. This hydraulic connection underscores the associa-
tion between the industrial activities in Achinakam and the observed alterations in water
quality parameters downstream, emphasizing the impact of anthropogenic influences on
environmental conditions.

Cluster 4 consists of sites (S11, S14, and S4) with similar concentrations of chloride,
sodium, potassium, and magnesium, with high values observed at these points. This
suggests a distinct water quality profile possibly influenced by specific local pollution
sources or geological factors.

4. Conclusions

In this study, we conducted an extensive assessment of phosphorus (P) levels in the
water of Vembanad Lake, a Ramsar site, focusing particularly on the mouths of the rivers
flowing into the lake. Our findings revealed widespread contamination by phosphates at
the majority of our sampling sites. The mean concentrations of the total reactive phosphorus
(TRP), total acid hydrolyzable phosphorus (TAHP), total organic phosphorus (TOP), and
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total phosphorus (TP) exceeded the permissible limits set by USEPA for uncontaminated
lakes, causing a troubling level of eutrophication.

The presence of dense mats of Eichhornia and Monochoria across Vembanad Lake
suggests an environment enriched with nutrients. One of the in-flowing rivers, Meenachil,
stood out as a hotspot for TRP and TOP concentrations during both the pre-monsoon (PRM)
and post-monsoon (POM) seasons. Moreover, the confluences of River Meenachil exhibited
high values of TOP, TAHP, and TP during the POM season. Interestingly, while significant
seasonal variations were observed for TOP, no such fluctuations were evident for TRP,
TAHP, and TP.

During PRM, elevated concentrations of ions, notably chlorides, sulfates, sodium,
potassium, and magnesium, were positively associated with reactive phosphate, indicating
a common source of origin. Given the predominantly agrarian nature of Vembanad Lake
and its surroundings, characterized by unique paddy cultivation below sea level, extensive
fertilizer use and the local landscape play a significant role in phosphate accumulation in
the lake system. Additionally, tourism activities in the region may exacerbate phosphate
pollution.

Understanding the individual contributions of each adjoining river to phosphate
loading is paramount. Our study offers crucial baseline data for phosphorus mapping in
Vembanad Lake and its adjoining rivers, emphasizing the urgent need for a systematic and
scientific approach to managing nutrient inputs into these aquatic ecosystems.

We advocate for measures aimed at reducing or preventing nutrient loads, alongside
regular openings of the Thanneermukkom saltwater barrage, as effective strategies to curb
the proliferation of aquatic weeds. This research underscores the importance of proactive
initiatives to safeguard the ecological equilibrium of Vembanad Lake and its surrounding
river networks.
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