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Abstract: We enhanced the agro-hydrologic VegET model to include snow accumulation and melt
processes and the separation of runoff into surface runoff and deep drainage. Driven by global
weather datasets and parameterized by land surface phenology (LSP), the enhanced VegET model
was implemented in the cloud to simulate daily soil moisture (SM), actual evapotranspiration
(ETa), and runoff (R) for the conterminous United States (CONUS) and the Greater Horn of Africa
(GHA). Evaluation of the VegET model with independent data showed satisfactory performance,
capturing the temporal variability of SM (Pearson correlation r: 0.22–0.97), snowpack (r: 0.86–0.88),
ETa (r: 0.41–0.97), and spatial variability of R (r: 0.81–0.90). Absolute magnitudes showed some biases,
indicating the need of calibrating the model for water budget analysis. The seasonal Landscape
Water Requirement Satisfaction Index (L-WRSI) for CONUS and GHA showed realistic depictions of
drought hazard extent and severity, indicating the usefulness of the L-WRSI for the convergence of
an evidence toolkit used by the Famine Early Warning System Network to monitor potential food
insecurity conditions in different parts of the world. Using projected weather datasets and landcover-
based LSP, the VegET model can be used not only for global monitoring of drought conditions, but
also for evaluating scenarios on the effect of a changing climate and land cover on agriculture and
water resources.

Keywords: VegET model; soil moisture; actual evapotranspiration; runoff; land surface phenology;
drought; water budget

1. Introduction

Large-area modeling of rainfall–runoff processes has been an important component of
many environmental assessments, particularly for flood early warning [1,2], drought moni-
toring and impact assessment [3,4], water accounting [5], and hydrologic studies [6–10].
Although hydrologic models vary in their degree of complexity in terms of model com-
ponents and parameters, the fundamental principle remains the same in that all models
are designed to conserve mass through water budget accounting at all time scales over a
defined volume. By its nature, large-area rainfall–runoff modeling benefits from spatially
distributed inputs and parameters. As the primary driver for all hydrologic models is
precipitation, the availability of global satellite-based gridded precipitation data allows
model implementation over large basins, continents, and the globe [11–13]. Similarly,
model-assimilated gridded datasets are available for potential evapotranspiration [14–17],
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another key input to hydrologic models. Based on the purpose and desired accuracy,
hydrologic models are parameterized to account for water storage and flux quantities over
the landscape. Almost all hydrologic models define the soil moisture storage capacity
using parameters such as water holding capacity (WHC) derived from soil texture prop-
erties [18,19]. More comprehensive models also include snow and canopy interception
storage terms [7,8,20]. In addition to storage terms, flux-controlling parameters (surface
runoff, drainage, and evapotranspiration) are mainly tied to land cover, soil properties, and
climatic factors.

The purpose and availability of data may determine the complexity of the model from
short time interval (minutes) flood prediction models to monthly water balance models
such as the U.S. Geological Survey (USGS) water balance model [21]. Simple models with
one-dimensional (vertical) accounting of fluxes are well suited for drought monitoring
and basin-scale water budget studies at longer time scales. For agricultural drought moni-
toring purposes, simple bucket models that only account for the root-zone water balance
status have been used by various modeling groups [3,4,22,23] with numerous simplifying
assumptions. One of the early models is the Water Requirement Satisfaction Index (WRSI)
by the Food and Agriculture Organization (FAO) [4] that parameterizes the seasonality of
crop water use (actual evapotranspiration, ETa) using published crop coefficients (Kc) [24].
The WRSI model is based on the ratio of ETa (as a result of precipitation over a season) to
an ideal water requirement of a well-watered crop, which is defined by the potential ET (at-
mospheric demand) and the seasonally prescribed Kc. Because of the difficulty in defining
Kc values over large areas due to unknown crops and/or unreliability of published values
outside of their experimental region/continent, the VegET model incorporated land surface
phenology (LSP) derived from remotely sensed Normalized Difference Vegetation Index
(NDVI) [3]. Evaluation and application of the VegET model showed good performance for
ETa [25] and runoff estimation [26].

The original version of the VegET model [3] did not include snow accumulation
and snowmelt processes, which limited its representation in snow-influenced landscapes
for simulating soil moisture and runoff using the principle of saturation excess [27,28].
Furthermore, the previous version of the VegET model did not partition runoff into surface
runoff and deep drainage. The main objectives of this study are to (1) describe the updated
components and parameterizations to the VegET model, (2) evaluate the performance of
the VegET model using independent data for soil moisture, snowpack, ETa, and runoff, and
(3) demonstrate the applications of the updated VegET model for drought monitoring and
early warning.

2. Materials and Methods
2.1. Study Area and Data Sources

The updated VegET v2.0 model [29] was implemented over the conterminous United
States (CONUS) and the Greater Horn of Africa (GHA) (Figure 1), making use of Open
Source Python libraries and leveraging a combination of cloud computing and local servers
at the USGS Earth Resources Observation and Science (EROS) Center.

The model uses different input datasets including precipitation, reference ET, air
temperature, and soil properties. The data for the CONUS are described in Table 1.
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Figure 1. Study areas including the conterminous United States (CONUS) and the Greater Horn of
Africa (GHA) using Normalized Difference Vegetation Index (NDVI) to capture the spatial distribu-
tion of relative vegetation productivity for July 2018.

Table 1. Characteristics of model inputs and parameters for the conterminous United States (CONUS).

Parameters Spatial Resolution Temporal
Resolution Source

Precipitation 4000 m Daily, 1980–current gridMET [30]

Land Surface Phenology 1000 m 16 days (Terra),
2003–2017 *

MODIS NDVI [31]
(MOD13A2.061)

Reference Evapotranspiration 4000 m Daily, 1981–2010 * gridMET [30]
Air Temperature 4000 m Daily, 1984–2017 * gridMET [30]
Soil Properties 90 m Static gNATSGO [32,33]
Interception 250 m Static MODIS VCF [34] (MOD44B.061)

* Median climatology generated from the specified time period.

The precipitation, reference evapotranspiration (ETo), and air temperature (Ta) were
downloaded from the Gridded Surface Meteorological (gridMET) website [30] and con-
verted from the native netcdf format to geotiff. The air temperature data (daily minimum,
maximum, and average) also were converted from Kelvin (K) to degree Celsius (◦C) and a
median climatology was created from 1984 to 2017. The land surface phenology (LSP) is
based on the Moderate-Resolution Imaging Spectroradiometer (MODIS) NDVI provided by
National Aeronautics and Space Administration (NASA) Land Processes Distributed Active
Archive Center (LP DAAC). A daily median climatology NDVI for 2001–2019 (19 years)
was established with linear interpolation from the 16-day dataset. The soil properties
included WHC (also referred to as available water holding capacity, AWC), field capacity
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(FC), and soil porosity (POR). The WHC represents the difference between FC and the wilt-
ing point (WP). Detailed information on the soil data can be found in [33]. The schematic
representation of the WHC and associated parameters are shown in Figure 2.
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Figure 2. Schematic representation of the updated VegET model (v2.0) [29]. The Soil Water Store is
defined by two major sections: “gravity water” is filled once the soil moisture is above field capacity
(FC) and “plant available water” is the section between FC and permanent wilting point (WP). VCF:
vegetation continuous field, P: precipitation, Peff: effective precipitation, SWE: snow water equivalent,
Ta: air temperature; ETo: reference ET, Rn: net radiation, U: wind speed, RH: relative humidity,
ρ = air pressure, Kcp: landscape water use coefficient, LSP: land surface phenology, Ks: soil stress
coefficient, WHC: water holding capacity, MAD: maximum allowable depletion, SM: soil moisture,
SAT, soil saturation, SATfc: volume between SAT and FC, L-WRSI: landscape Water Requirement
Satisfaction Index.

The interception fraction layer was created from the MODIS Vegetation Continuous
Fields (VCF: [35]) in proportion to a pixel’s percentage of tree, herbaceous, and bare
coverage using Equation (1) [3]:

Interception = 0.15 × Tcover + 0.1 × Hcover + 0.0 × Bcover (1)

where Tcover is the tree cover layer (%) with a maximum interception of 15%; Hcover is the
herbaceous cover layer (%) with a maximum interception of 10%; and Bcover is the bare
ground cover layer (%) with no interception.

Input datasets for GHA are described in Table 2. The precipitation data source is
Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) [36], which uses
remote sensing data in combination with station information to create a dataset suitable
for crop monitoring and hydrologic applications. The LSP was created using MODIS
NDVI (Aqua and Terra) to generate a 15-year median climatology (2003–2017) and then
interpolated linearly from the 8-day time step to daily. The reference evapotranspiration
(ETo) was obtained from NOAA [37]. Air temperature (minimum, maximum, and mean)
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was sourced from Climatologies at High resolution for the Earth’s Land Surface Areas
(CHELSA); the monthly climatology from 1981 to 2010 was interpolated linearly from
monthly to daily and converted from K to ◦C units. The soil property raster data were
provided by the International Soil Reference and Information Centre (ISRIC—World Soil
Information) through their Soil Data Hub [38]. A list of soil parameters was extracted
to generate WHC, FC, and POR: AWCh3_M_Sl6_250m_II.tif, (WWP_M_sl6_250m_II.tif
and AWCh3_M_Sl6_250m_II.tif), and AWCtS_M_sl6_250m_ll.tif. POR layer was used to
represent the soil saturation (SAT) level. To convert the raster data from volumetric percent
representation (m3/m3) to depth (mm) per meter root-zone, they were multiplied by a unit
conversion factor of 10 ((soil raster × 1000)/100). Additionally, the SAT value was capped
to not be lower than FC. Interception was determined using Equation (1).

Table 2. Characteristics of model inputs and parameters for the Greater Horn of Africa (GHA).

Parameters Spatial Resolution Temporal
Resolution Reference

Precipitation 0.05◦ Daily; 1981—current CHIRPS [36]
Land Surface Phenology 1000 m Every 8 days (Aqua and Terra); 2003–2017 * MODIS NDVI [31]
Reference Evapotranspiration 0.625◦ × 0.5◦ daily; 1981–2010 * NOAA ETo [37]
Air Temperature 1000 m Monthly; 1981–2010 * CHELSA [39]
Soil Properties 250 m Static ISRIC [38]
Interception 250 m Static MODIS VCF [34]

* Median climatology generated from the specified time period.

2.2. Model Formulation
2.2.1. Original Model Setup

The original VegET model by [3] was developed to timely process and integrate
readily available global weather and remote sensing datasets using water balance modeling
techniques for drought monitoring purposes. ETo, a soil stress coefficient (Ks), and a
phenology-based crop coefficient (Kcp) are used to determine daily soil moisture, runoff
(R), and ETa using the root-zone as the control volume (Figure 2). The soil water level is
determined using a daily soil water balance using Equation (2).

SMi = SMi−1 + Pe f f i − ETai (2)

where SM is soil moisture (mm), Peff is effective precipitation (mm), ETa is simulated actual
evapotranspiration (mm) and i represents the current day and i–1 represents the previous
day. ETa is calculated using Equation (3) as follows:

ETa = Kcp × Ks × ETo (3)

where Kcp is the LSP-derived landscape “crop” coefficient (-); Ks is soil water stress
coefficient (-), and ETo is the grass reference ET (mm).

The innovation in the VegET model is on the calculation of Kcp, which is comparable
to the Kc that is widely used by agronomists [40]. The key difference between the two pa-
rameters is that Kcp is derived from remotely sensed data as opposed to region-specific
field experiments for Kc. Kcp represents both the spatial and temporal dynamics of the
landscape water-use pattern on a grid basis. LSPs are characterized and converted into
Kcp parameter functions for each modeling grid from NDVI climatology datasets with
the assumption that the LSP climatology represents the target vegetation condition of the
landscape where water requirement is met by precipitation. Thus, ETa is calculated using
the modified version of the classical crop coefficient approach [24] using the LSP-derived
crop coefficient.

Ks is determined from a soil water balance model such as the one developed by [22] for
USGS Famine Early Warning Systems Network (FEWS NET) applications using Equations (4)
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and (5). The dimensionless Ks coefficient varies from 0 to 1 depending on the soil water
level in the root zone and is calculated as:

Ks =
SMi

MAD
; SMi < MAD (4)

Ks = 1.0; SMi ≥ MAD (5)

where SMi is the soil water of current time step in depth unit (mm); MAD (mm) is the max-
imum allowable depletion level of soil water in the root zone below which the vegetation
ETa is less than “potential” and will be constrained by the availability of soil water.

Although MAD varies by crop/vegetation type, a nominal value of 50% of the WHC
can be used for most generalized crops, such as cereals and natural vegetation. Thus, MAD
was estimated as 50% of the WHC (i.e., 0.5 × WHC). More discussion on the setup and
application of the soil water balance model for operational crop monitoring is available
in [22].

The model estimates a combined surface runoff and deep drainage based on the
principle of saturation excess where soil water in excess of the WHC is considered to be
unavailable for plant use in the root zone; thus, SMi is set to a maximum of WHC and a
minimum of 0 during the modeling time step.

R = SMi − WHC; SMi > WHC (6)

R = 0; SMi ≤ WHC (7)

where R is total runoff (surface runoff and deep drainage); WHC is soil water holding
capacity (mm), i.e., the difference between FC and WP (Figure 2).

2.2.2. Model Updates

The original VegET model has been updated with improved parameterization to be
more inclusive of hydrologic processes and for computing efficiency. The new modifications
to the model include the incorporation of snowpack and snowmelt processes and the
separation of runoff into surface runoff and deep drainage. Furthermore, parameterization
of the LSP has been simplified to use a set of linear equations without the need to specify
the minimum and maximum Kc that was part of the original formulation.

Figure 2 shows the schematic representation of the updated VegET v2.0 model [29].
Interception losses are first estimated to determine effective precipitation using the MODIS
VCF (Equation (1)). Effective precipitation (Equation (2)) is split into rain and SWE (snow
water equivalent) to enter the Soil Water Store (soil moisture) or Snow Water Store (snow-
pack) based on a temperature-index (Equations (10)–(13)) approach [41]. MODIS NDVI is
used to create the LSP for the Kcp function (Equations (8) and (9)). Rn (net radiation), Ta
(air temperature), U (wind speed), RH (relative humidity), and ρ (atmospheric pressure)
are parameters used to estimate ETo (reference ET). Kcp and Ks are critical parameters to
calculate outfluxes: surface runoff, deep drainage, and ETa. The Soil Water Store is defined
by the soil-texture properties. Saturation (SAT), defined in the model, is equivalent to soil
porosity (POR) from the soils database [38]; FC defines the maximum amount of water
retention by the soil matrix that is available to plants; and WP (permanent wilting point)
represents the water retention level at which point plants are unable to access moisture.
WHC (difference between FC and WP) is the readily available water for plant access, but
plant stress occurs in proportion to the remaining soil moisture (SM) once SM reduces
below the MAD limit (Equations (4) and (5)). Runoff (R) is generated once SM is in excess
of WHC (Equations (6) and (7)). All SM in excess of SAT will be surface runoff, but SM
that is within SATfc (between SAT and FC) will be split into surface runoff and deep
drainage (Equations (17)–(20)). L-WRSI (Landscape-Water Requirement Satisfaction Index)
is determined using ETa and landscape water requirement (ETc) (Equations (21) and (22)).
The VegET model is initialized with empty (0) amounts for SM and snowpack with a one
complete year spin-up period.
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Land Surface Phenology and Landscape Coefficients (Kcp)

The crop coefficient (Kc) determines the ideal (water unlimited condition) demand of
the crop based on the type and stage of the crop [24]. In VegET, the crop water requirement
(demand) is replaced with the landscape water requirement. The traditional tabular Kc by
Allen et al. [24] is replaced by the phenology-based Kc known as Kcp. The main assumption
is that the NDVI-derived Kcp represents the landscape “crop” water requirement in regions
where a major land cover change does not occur for a large area. For example, the Land
Change Monitoring, Assessment, and Projection (LCMAP) group indicates a less than 1%
land cover change per year on average over the CONUS [42]. For drought monitoring pur-
poses where the VegET is applied, the main goal is to determine if the precipitation amount
and distribution meet the average demand of the landscape. The use of a climatology
NDVI creates smoother and more realistic seasonal water use patterns compared to Kc, but
it may underestimate the demand during years of vigorous vegetation activity. However,
its effectiveness for drought monitoring would not be affected under such favorable wet
conditions. Figure 3 illustrates the development and seasonal progression of LSP-based
Kcp derived from climatology NDVI and its schematic Kc equivalent.
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The Kcp in the VegET model is estimated as:

Kcp = 1.25 × NDVI + 0.20; NDVI > 0.4 (8)

Kcp = 1.25 × NDVI; NDVI ≤ 0.4 (9)

where the NDVI threshold of 0.4 is based on vegetation sparsity classification by [43] and a
similar application in [3].

Equation (8) is similar to the one proposed by [44] when Kc is designed to be used
in combination with grass reference ETo. The conditional elimination of the 0.2 intercept
in Equation (9) is based on observations of overestimation of ETa over sparsely vegetated
surfaces [3].

Snowpack and Snowmelt

The updated VegET model accounts for snowpack and snowmelt processes using air
temperature-based empirical equations by [41]. A given day’s precipitation is split into
rainfall and snow water equivalent based on air temperature thresholds.

rain f rac = 1.0; Tavg > 6.0 ◦C (10)

rain f rac = 0.0; Tavg < 0.0 ◦C (11)

rain f rac =
1

12
(
Tavg − 0.0

)
; 0.0 <= Tavg <= 6.0 ◦C (12)
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where rain f rac is the rain fraction of precipitation that falls as rain (as opposed to snow)
based on daily average air temperature Tavg for that day. If Tavg for a given day is below

0 ◦C, all precipitation is assumed to fall as snow ( rain f rac = 0
)

; if Tavg is above 6 ◦C all

precipitation is assumed to be rainfall ( rain f rac = 1
)

; if Tavg is between 0 and 6 ◦C, the rain
fraction is interpolated using Equation (12).

The rainfall and snow (snow water equivalent, SWE) components are then partitioned
as follows:

SWE =
(

1 − rain f rac

)
× Pe f f (13)

where SWE is the snow water equivalent (mm) and Pe f f (mm) is the effective precipita-
tion (precipitation minus canopy interception losses), determined using the interception
parameters from Equation (1). The rainfall component is simply a product of the rain f rac
and Pe f f while SWE is the difference between Pe f f and the rainfall (rain) component
(Equations (10)–(12)).

The consideration of the timing of accumulation and melting of snow is useful for re-
gions where snowpack (Snow Water Store) retains the precipitation instead of immediately
releasing it as runoff during a cold season. The snowpack accumulates and melts based
on the addition of new SWE and melting of snowpack using a daily snowpack (Snowpack)
balance. The daily snowmelt is calculated based on the melt (mm) rate as:

melt = 0.06
(

T2
max −Tmax × Tmin

)
; Snowpack ≥ melt (14)

melt = Snowpack; Snowpack < melt (15)

where 0.06 is the melt factor (mm/◦C 2), Tmax is the daily maximum air temperature (◦C),
and Tmin is the daily minimum air temperature (◦C). The equation was adapted from [41].
All snow related parameters such as snowpack and melt are expressed in SWE forms.

Snowpack, i = Snowpack, i−1 + SWEi − melt i (16)

where Snowpack, i is the current snowpack in SWE unit (mm); Snowpack, i−1 is the previous
day’s snowpack (mm); SWEi is the additional fresh snow in SWE unit (mm) and melt i is
today’s snowmelt in SWE unit (mm) on the current day (i).

Deep Drainage and Surface Runoff Partitioning

The original VegET model estimates total runoff without the separation of quick flow
(surface runoff) and deep percolation (deep drainage). A simple approximation coefficient
is used to differentiate the quick flow (part of the total runoff that joins the stream network
as overland flow) from the deep drainage (part of the flow that may combine interflow and
deep percolation to groundwater). Although the separation of surface runoff and deep
drainage does not affect the soil moisture and ETa estimation, the potential application of
the VegET runoff in flood and streamflow simulation could benefit from this separation.
VegET does not have a flow routing routine; therefore, runoff from one pixel does not affect
soil moisture and evapotranspiration (ET) on nearby pixels. It is important to note that the
VegET model is more optimized to simulate ET; thus, its use for hydrologic applications
would benefit from more investigation, evaluation, and refinement.

In the updated VegET model, the deep drainage (dd) amount is estimated as the
difference between total runoff (R) (Equations (6) and (7)) and surface runoff (srf) as follows:

dd = R − sr f (17)
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where R is determined as daily SM in excess of the soil water holding capacity; sr f is
estimated based on the daily soil water, a quick-flow (qc)/drainage (dc) coefficient, soil
saturation (SAT), and field capacity (FC) parameters (Figure 2):

SAT f c = SAT − FC (18)

sr f = qc × R; R ≤ SAT f c (19)

sr f = R − SAT f c + qc × SAT f c; R > SAT f c (20)

where SATfc is the difference between SAT and FC; qc is the quick flow coefficient, which
is a complement to the drainage coefficient (dc) as qc = 1 − dc. In this study, a uniform
value of 0.35 is used for qc as a first approximation; however, this partitioning coefficient is
expected to vary by soil type and topography, and thus a calibration procedure is required
to estimate this coefficient more accurately.

2.2.3. Evaluation Data

The VegET model output parameters were evaluated using limited illustrative data
from the Soil Climate Analysis Network (SCAN) [45] measurements for soil moisture,
snow measurements from SNOpack TELemetry (SNOTEL) [46], AmeriFlux Network and
FluxNet 2015 [47,48] measurements for ETa, and runoff data from the USGS [49] (Figure 4).
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Figure 4. Location map for Soil Climate Analysis Network (SCAN) sites, SNOTEL (SNOpack
TELemetry) sites, AmeriFlux Tower sites, and eight-digit Hydrologic Unit Code (HUC8) in the
conterminous United States for water year 2012 evaluation. The map shows the Upper Mississippi
River Basin used for the detailed water budget analysis. GA: Georgia, KS: Kansas, MN: Minnesota,
NE: Nebraska, NM: New Mexico, OK: Oklahoma, TX: Texas.

Evaluation for Soil Moisture

One of the outputs of the VegET model is the daily soil moisture for a 1 m (39.4 inch)
root zone. VegET SM was evaluated at three SCAN sites (Table 3) administered by the
Natural Resources Conservation Service (NRCS) of the U.S. Department of Agriculture
(USDA) [45]. Data for the growing season of May to September 2019 were used. The
daily soil moisture measurements for five different depths (2 inches, 4 inches, 8 inches,
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20 inches, and 40 inches) were averaged and converted from volumetric water content
(m3/m3) percentage to depth of water per meter depth (mm/m) with a unit conversion
factor of 10.

Table 3. Summary of the Soil Climate Analysis Network (SCAN) soil moisture sites [45] used for
evaluation.

Site ID Name State Location (Latitude, Longitude in Degrees) Time Period

2002 Crescent Lake #1 Minnesota 45.42◦, −93.95◦ October 1993 to current

2022 Fort Reno #1 Nebraska 35.33◦, −98.02◦ November 1998 to current

2168 Jornada Exp Range New Mexico 32.56◦, −106.70◦ October 2009 to current

Evaluation for Snow Water Equivalent

SNOTEL site measurements [46] were used to evaluate the simulated SWE by compar-
ing the model output with in situ observations listed in Table 4. The time period used for
evaluation was 2015–2020. SNOTEL data of SWE were converted from inches to mm prior
to analysis and the comparison.

Table 4. Summary of the SNOpack TELemetry (SNOTEL) snow sites [46] used for evaluation.

Site ID Site Name Elevation (m) Location (Latitude, Longitude in Degrees) Time Period

982 Cole Canyon 5910 44.48◦, −104.42◦ 2000 to current

409 Columbine Pass 9171 38.42◦, −108.39◦ 1985 to current

1034 Sierra Blanca 10268 33.40◦, −105.80◦ 2002 to current

Evaluation for Actual Evapotranspiration

The ETa results from the VegET model were evaluated using eddy covariance (EC) flux
tower data from the AmeriFlux network [47]. For this evaluation, three EC towers were
selected (Table 5) across the CONUS for availability of data to represent rainfed systems
simulated by VegET. The locations of the towers are shown in Figure 4. Monthly data were
obtained from the FLUXNET2015 dataset [48].

Table 5. Summary of AmeriFlux EC sites [47] used for actual evapotranspiration (ETa) evaluation.

Site ID Name Name Landcover Location (Latitude, Longitude in Degrees) Time Period Available

US-AR1 ARM USDA Grassland 36.43, −99.42 2003–2021

US-Ne3 Mead Rainfed crop 41.12, −96.44 2001–2020

US-Var Vaira Ranch–Ione Grassland 38.41, −120.95 2000–2014

Evaluation for Runoff

The VegET runoff (R) was evaluated against independent runoff obtained from the
USGS WaterWatch [49] at 8-digit hydrologic unit code (HUC8) scale [50] across the CONUS
(Table 6). The runoff data are generated from historical flow observations at the USGS
streamgage locations, drainage basin boundaries of the streamgages, and the HUC8 bound-
aries [51]. The daily VegET runoff were summed by water year and the pixel values were
spatially averaged within the HUC8 boundaries to obtain a single value and compared
with the runoff (non-spatial single value) for water years 2012 (dry year), 2016 (wet year),
and 2018 (average year). The HUC8s with high runoff values from the USGS WaterWatch
were excluded from the comparison. For example, runoff more than 40% of precipitation
(R/P > 40%) with potential regional groundwater flow contributions and possibility of
watershed water balance closure issues [52,53].
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Table 6. Summary of runoff data source [49], spatial and temporal resolution, study years, and
number of HUC8 watersheds applied for evaluation.

Spatial Resolution Temporal
Resolution

Study
Years

Number of HUC8s
(R/P * ≤ 0.40)

HUC8 scale Water year (October
1–September 30)

2012 (dry),
2016 (wet),
2018 (average)

1762 (1441)
1762 (1432)
1762 (1396)

*: R/P refer to the ratio of runoff (R) to precipitation filter for number of HUC8 watersheds in bracket.

3. Results and Discussion
3.1. Water Balance Components

The VegET model produces several parameters, fluxes, state variables, and indices
including interception losses, rainfall, snow water equivalent, snowpack, snow melt, soil
moisture, surface runoff, deep drainage, actual evapotranspiration, landscape water require-
ment, and the drought monitoring product L-WRSI [54]. Figure 5 provides an illustrative
overview of the model inputs, outputs, and parameters for a flux tower location in Minnesota.
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Figure 5. VegET model input and output parameters for a pixel at the AmeriFlux station in Minnesota
(US-Ro1) for 2018. (a) Normalized Difference Vegetation Index (NDVI) and precipitation; (b) soil
moisture (SM), snowpack (Snowpack), surface runoff (srf), and deep drainage (dd); (c) actual ET (ETa),
reference ET (ETo), and landscape water requirement (ETc).

Figure 5a shows precipitation and NDVI as a reference for providing an overview of
the water supply and vegetation demand over the year. Precipitation is the main input and
NDVI is an important rate controlling parameter representing the state of vegetation and its
water use phenology. Figure 5b includes soil moisture level, snowpack, deep drainage, and
surface runoff. The soil moisture (SM) shows a steady increase once snowpack decreases
due to melt and additional rainfall and remains high for much of the spring with small
variability around 150 mm, which is close to WHC = 160 mm. We note that no runoff
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component is generated during the summer, which requires SM to exceed the WHC.
SM shows a substantial reduction in mid-August due to reduced precipitation events
in frequency and magnitude, which leads to a reduction in ETa (Figure 5c). When SM
reduces below the MAD level (half of WHC), ETa (green line, Figure 5c) will be lower than
landscape water requirement (ETc) (Figure 5c), which leads to a deficit. The ETc is created
as the product of ETo (Figure 5c) and Kcp.

VegET takes spatially explicit inputs and parameters and produces spatially explicit
outputs, making it useful to create a continuous surface for agro-hydrologic applications.
The annual ETa maps for CONUS are shown in Figure 6, in which water years 2012, 2016,
and 2018 represent a drier year, a wetter year, and an average year, respectively. The
drier landscape responses (ETa < 400 mm/yr) are noticeable for 2012 in large parts of
Nebraska, Kansas, and Texas where drought conditions were reported by the U.S. Drought
Monitor [55].
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Figure 6. VegET annual actual evapotranspiration (ETa) for the years (a) 2012, (b) 2016, and (c) 2018.
Brown colors with low ETa dominate low-precipitation and sparsely vegetation regions in contrast
with green and blue tones on well-vegetated and precipitation-rich regions.

The calculation of ETa depends heavily on SM because reduction from ETa begins
when SM falls below the MAD level. Due to differences in soil texture, maps of normalized
SM as percentage of the WHC across the CONUS is shown in Figure 7 for selected days
(1 October, 1 January, 1 April, and 1 July) during water year 2018. In this example, the
relative SM in the soil started out low in October after the end of the growing season
and increased over the next months until April. In July, SM showed a general reduction,
especially in the southwestern CONUS.
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Figure 7. VegET relative soil moisture as percentage of water holding capacity (WHC) for (a) 1 October
2017, (b) 1 January 2018, (c) 1 April 2018, and (d) 1 July 2018.

The major improvement in VegET v2.0 model [29] is the inclusion of the snowpack
and snowmelt processes. Figure 8 shows the state of snowpack based on the simple
temperature-index algorithm to accumulate and melt the snow. As expected, the largest
coverage of snowpack was observed on 1 January (Figure 8b) and the least snow was on
1 October after the summer (Figure 8a). Because of the simplicity of the model, only the
relative magnitudes are reliable, which is sufficient for drought monitoring purposes. These
maps are useful when comparing relative snowpack build-up and timing of melt across
regions and years.
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Figure 8. VegET snowpack as snow water equivalent (SWE) (mm) for (a) 1 October 2017, (b) 1 January
2018, (c) 1 April 2018, and (d) 1 July 2018. October shows the least amount of snow spatial coverage
with January showing the largest areal extent.
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3.2. Evaluation

Although VegET products are not calibrated with independently measured datasets
and are not expected to be highly accurate in magnitude, the relative distribution in time
and space can be evaluated. Illustrative comparisons with in situ observations for soil
moisture, snowpack, ETa, and runoff are presented below.

3.2.1. Soil Moisture (SM)

VegET estimates SM for the entire 1 m (39 inch) depth root zone; SM represents
the readily available water for plants, i.e., with a soil suction pressure between FC and
WP. Comparisons with observed measurements from three different sites in the SCAN
network are illustrated in Figure 9 for the growing season from 1 May to 30 September
2019. The sites located from north to south have different characteristics for soil properties
and precipitation. Crescent Lake #1 (Figure 9a), Minnesota, received about 900 mm of
precipitation in 2019 with a WHC = 70 mm. The temporal patterns of observed and
simulated SM show a strong agreement (Pearson correlation r = 0.82). However, the
observed SM shows a much higher magnitude. This can be attributed to the fact that
the simulated SM only accounts for the amount of water between FC and WP with any
moisture above FC (gravity water) that is assumed to be excess and would drain from the
root-zone as runoff. The Fort Reno site (WHC = 190 mm) in Oklahoma (Figure 9b) portrays
similar strong temporal agreement (r = 0.97), with observed SM showing much higher
magnitudes and comparable decreasing rates during the growing season with limited
precipitation events and amount. At the drier (~400 mm annual precipitation) New Mexico
site (WHC = 140 mm), not only the temporal agreement is weak (r = 0.22), in contrast to
the other two sites, the observed SM is lower than the simulated SM. This is probably due
to overestimated WHC (140 mm) data used in the model, causing even greater estimation
than the Minnesota (Figure 9a) site (WHC = 70 mm). This highlights the importance of
acquiring accurate quality soils data for hydrologic modeling.

Despite the differences in absolute magnitude, the simulated SM shows satisfactory
performance in terms of capturing the temporal variability, which is key for ETa estimation
and drought monitoring applications.

3.2.2. Snow Water Equivalent (SWE)

Snow water equivalent (SWE) of snowpacks at three SNOTEL sites over six years
(2015–2020) was used for evaluation. Generally, agreement is good (r: 0.86–0.88) on the
timing and duration of SWE accumulation at the three sites (Figure 10). Although the
magnitude is reasonable at the Cole Canyon site (Figure 10a), bias is large at Columbine
Pass (Figure 10b). The Sierra Blanca (Figure 10c) site shows a good agreement on timing and
mixed results on bias in water-year 2016, with a reasonable agreement during 2017–2020.
The difference in magnitude can be partially attributed to errors in gridMET dataset used
in VegET, which underestimated precipitation by as much as 200 mm for a calendar year
at Columbine Pass. Furthermore, any differences between actual air temperature and
simulated air temperature could cause discrepancy in the timing of melt and magnitude
of snowpack. In winter, the average temperature input in the VegET model exceeded the
average temperature recorded by SNOTEL by 1.5 ◦C at Cole Canyon, whereas Columbine
Pass temperature input into VegET was warmer by 7.7 ◦C on average, which explains some
of the differences in snow accumulation between the two sites.

Although large biases in snowpack SWE magnitude exist at a few sites such as
Columbine Pass (Figure 10b), the consistent performance of VegET for timing and du-
ration makes it useful for monitoring water availability in areas of the world with limited
in situ observations. Moreover, relative variations in SWE are more important than actual
magnitudes for predicting relative changes in river flows for irrigation. The simplified
snow module in VegET can be used to provide valuable and timely insight into yearly
changes and trends in snow accumulation and melt over watersheds and regions as well as
to generate future scenarios with projected climate datasets.
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Figure 9. Three Soil Climate Analysis Network (SCAN) sites showing daily simulated (VegET
model) and observed soil moisture (SM) [45] along with precipitation for the growing season (May–
September) in 2019. (a) Crescent Lake # 1, water holding capacity (WHC) = 70 mm; (b) Fort Reno
#1, WHC = 190 mm; and (c) Jornada Exp Range, WHC = 140 mm. The maximum magnitude of
the simulated SM corresponds to field capacity (FC) of the soil. The observed SM is not confined
to a maximum of FC and thus could include gravity water between soil saturation (SAT) and FC.
Temporal-pattern comparison is more meaningful than absolute magnitudes.

3.2.3. Actual Evapotranspiration (ETa)

VegET ETa was compared to EC ETa over several years (Figure 11) using monthly
ETa data obtained from the FLUXNET2015 dataset [48] for the following sites: US-AR1
(2009–2012), US-Ne3 (2009–2012), and US-Var (2009–2012). Because of the strong connection
between ETa and biomass/yield, the performance of VegET ETa is crucial for accurate
biomass estimation and drought monitoring.
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Figure 10. SNOpack TELemetry (SNOTEL) sites showing daily observed [46] and simulated (VegET
model) snowpack as snow water equivalent (SWE) (mm) for 2015/2016 to 2019/2020 at (a) Cole
Canyon, (b) Columbine Pass, and (c) Sierra Blanca.

Although the general seasonal pattern of VegET shows good agreement with the
observed ETa, there are some seasonal inconsistencies in the two sites (US-AR1 and US-
Ne3). VegET ETa captures well the winter and spring ETa at all sites but tends to show
a relatively dry condition compared to the observed ETa in the summer during reduced
precipitation periods at US-Ne3 and US-AR1. One explanation is that the footprint of the
EC tower may include ETa from landscapes that have access to additional sources of water
such as groundwater by deep-rooted trees or from nearby irrigated fields, especially for
the Nebraska site (Figure 11b). The Oklahoma grassland site (US-AR1, Figure 11a) shows
reasonable agreement in 2009 and 2010 but showed an out-of-phase behavior in 2011 and
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2012. There was a reduction in precipitation during the summer of 2012, which is reflected
in VegET ETa, but the EC tower shows a high ETa, contrary to the expected drought-year
response. Furthermore, the EC data for the winter months of 2009 (January–March) show
unrealistically high values compared to other years, casting doubt on the accuracy of the
EC data from this site.
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Figure 11. Monthly traces of observed [48] and simulated (VegET) ETa time series at three eddy
covariance (EC) flux sites during 2009 to 2012: (a) US-AR1 (grassland), (b) US-Ne3 (rainfed crop), and
(c) US-Var (grassland). Daily data were aggregated to monthly for clarity of display and interpretation.

The simulated ETa from VegET corresponds consistently to precipitation, usually
exhibiting increases in ETa with a month lag, after peak precipitation in the summer
(Figure 11a–c). Except for US-Var (Figure 11c), the peak seasonal ETa from VegET generally
lags behind the peak ETa recorded by the EC tower. This is reflected in the lower r statistic
in the comparison of US-AR1 and US-Ne3 (r = 0.41 and r = 0.76, respectively) (Figure 11a,b)
relative to US-Var (r = 0.97) (Figure 11c), where it performs favorably in both pattern and
magnitude. A further investigation with more sites would be useful to help understand
and characterize the spatiotemporal dynamics of the performance of the simulated ETa.

The monthly temporal patterns of simulated ETa at point locations and the annual ETa
maps over CONUS are consistent with seasonal and regional patterns of vegetation and
precipitation in the CONUS. This reinforces the proposed application of the VegET model for
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quantifying green-water ETa (from precipitation and soil moisture), which is an important
parameter in the determination of net irrigation water use (blue water) as the difference
between total ETa from energy balance models and VegET ETa as suggested by [25].

3.2.4. HUC8 Runoff

Although the main purpose of the VegET model is to estimate precipitation-driven
landscape ETa to develop an integrated drought monitoring product L-WRSI, one byprod-
uct of VegET is runoff, which can be evaluated with independent data sources. The annual
total runoff from VegET was compared with the model-assimilated observed runoff from
the USGS WaterWatch [49] to evaluate the performance of VegET runoff in capturing the
spatial variability across HUC8 watersheds over three years. Correlation coefficients above
0.80 for all water years show a reasonable performance of VegET runoff for capturing the
spatial dynamics. The VegET runoff values are lower than WaterWatch runoff values for
the filtered HUC8s (R/P ≤ 0.40) for all water years as shown in Figure 12. The underestima-
tions of VegET are within 5% (≤7 mm/yr) for water years 2012 and 2016, and within 15%
(≤24 mm/yr) for water year 2018 (Figure 12, Table 7). The root mean square error (RMSE)
values are relatively high with an average of 62%, indicating uncertainties over individual
HUC8s while capturing the overall spatial dynamics. The performance of the VegET model
improved substantially for runoff estimation when the R/P ≤ 0.40 was applied (Table 7).
With the R/P (≤0.4) filter, the model bias reduced for all three water years with the largest
reduction of 15.6% (from −20.2% to −4.6%) for 2012 (dry year) and the least of 9.2% (from
−23.9% to −14.6%) for 2018 (average year).
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Figure 12. Scatterplot showing the relationship between simulated (VegET) and observed (Water-
Watch [49]) annual runoff at eight-digit hydrologic unit code (HUC8) scale for three water years (2012,
2016, 2018) using N number of watersheds across the conterminous United States.

Figure 13 shows major water balance components for the Upper Mississippi River
Basin including precipitation, actual evapotranspiration, and runoff, along with their
monthly variations for the water year 2012. Areas of higher precipitation correspond with
higher VegET-simulated ETa and R, as expected, capturing the general spatial distribution
of major fluxes. Additionally, seasonal runoff dynamics compare well between VegET
(simulated) and WaterWatch (observed) in relative terms, with higher runoff during spring
(March-May) and peak runoff in May (both for VegET and WaterWatch). However, there is
a large difference in the monthly R values between the observed and simulated, indicating
that calibrating the model and improving the parameterization of the runoff are warranted.
The combined ETa and R account for about 93% of water year total precipitation, with the
remaining fraction attributed to interception (~8%) and change in storage (~−1%).
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Table 7. Summary statistics of eight-digit hydrologic unit code (HUC8) annual runoff comparison
between simulated (VegET) and observed (WaterWatch [49]) for three water years (2012, 2016, 2018),
without filter and with filter (excluding HUC8s when runoff (R) and precipitation (P) ratio is greater
than 0.40.

Statistics
Without Filter With Filter (R/P ≤ 0.40)

2012 2016 2018 2012 2016 2018

N (HUC8) 1762 1762 1762 1441 1432 1396

r (correlation coefficient) 0.90 0.88 0.90 0.82 0.81 0.82

WaterWatch runoff (mm/yr) 216 297 267 128 205 165

VegET runoff (mm/yr) 173 253 203 122 198 141

Bias (mm/yr) −44 −44 −64 −6 −7 −24

Relative bias (%) −20.2 −14.8 −23.9 −4.6 −3.4 −14.6

RMSE (mm/yr) 144 163 157 85 127 107

Relative RMSE (%) 66.5 54.9 58.9 66.9 62.2 64.9
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Figure 13. Major water balance components for the Upper Mississippi River Basin for water year 2012
(a) precipitation (P) from gridMET [30], (b) actual evapotranspiration (ETa) from VegET, (c) surface
runoff (R) from VegET, and (d) monthly P, ETa, and runoff (simulated R (VegET) and observed R
(WaterWatch).

Despite the bias and uncertainty, the overall performance of the VegET runoff is
satisfactory for an uncalibrated model. Potential sources of errors could be attributed to the
gridded precipitation input and model parameters. For example, if gridded precipitation is
lower than the actual amount fallen over a basin, the VegET runoff will certainly be lower
than the observed. The relative accuracy of VegET runoff is not critical for the estimation of
ETa as ETa is assigned a priority in the calculation using the saturation excess principle, i.e.,
runoff is generated once the root-zone is filled with enough soil moisture.

The annual runoff comparison provided good results with percent bias less than 15%
(with R/P ≤ 0.40 filter) for all water years. The percent bias is acceptable considering
these are an uncalibrated results from a simple bucket model to handle complex physical



Hydrology 2023, 10, 168 20 of 26

processes that are often unique to each watershed. It is possible that the performance of
VegET model varies across HUC8 watersheds, and the single threshold (R/P ≤ 0.40) filter
applied to the CONUS-scale study may not represent the water balance characteristics of
each watershed. However, the VegET model can be calibrated and optimized when finer
scale spatial information is needed.

4. Case Study Applications

The spatially explicit Landscape Water Requirement Satisfaction Index (L-WRSI) is
an indicator of landscape performance akin to the well-established WRSI for monitoring
crop production based on the availability of precipitation and soil moisture to meet crop
or landscape water requirements (ETc) during the growing season [22]. L-WRSI can be
estimated as the ratio (%) of seasonal ETa to the seasonal ETc. Similar calculations are used
for L-WRSI where Kcp is used instead of Kc to define the landscape water requirement
phenology as follows:

L-WRSI = ∑ ETa
∑ ETc

× 100 (21)

ETc = Kcp × ETo (22)

where ∑ ETa is the sum of ETa (mm) for the selected time period (month, season, year);
∑ ETc is the sum of the landscape water requirement (mm) for the selected time period and
denotes landscape-specific ETo after an adjustment is made to the reference crop ETo by the
use of the LSP coefficient (Kcp). Kcp values define the seasonal water requirement patterns
of the landscape.

Figure 14 illustrates the concept of the L-WRSI. The gray (ETc) and green (ETa) lines are
the two components creating the L-WRSI. The difference between the two lines indicates the
water deficit during insufficient precipitation, which leads to the reduction in the L-WRSI
from 100%. The annual (January–December) and seasonal (May–September) cumulative
deficit are represented by L-WRSI values of 85 and 89, respectively, i.e., 85% and 89% of
the median landscape water requirement, met by precipitation, for the year and the season
in 2018. The main deficit in the growing season was observed in July with a relatively
low amount of precipitation. However, the 11% deficit for the season may not necessarily
reflect an actual water deficit that would lead to a proportional yield reduction due to
uncertainties in model inputs and assumptions; however, the relative magnitude in space
and time could be used for drought monitoring and early warning by comparing the index
across years and regions.

Hydrology 2023, 10, x FOR PEER REVIEW 23 of 28 
 

 

or landscape water requirements (ETc) during the growing season [22]. L-WRSI can be 

estimated as the ratio (%) of seasonal ETa to the seasonal ETc. Similar calculations are used 

for L-WRSI where Kcp is used instead of Kc to define the landscape water requirement 

phenology as follows: 

L˗WRSI =  
∑ 𝐸𝑇𝑎

∑ 𝐸𝑇𝑐
× 100 (21) 

𝐸𝑇𝑐 = 𝐾𝑐𝑝 × 𝐸𝑇𝑜 (22) 

where ∑ 𝐸𝑇𝑎 is the sum of ETa (mm) for the selected time period (month, season, year); 
∑ 𝐸𝑇𝑐 is the sum of the landscape water requirement (mm) for the selected time period 

and denotes landscape-specific ETo after an adjustment is made to the reference crop ETo 

by the use of the LSP coefficient (Kcp). Kcp values define the seasonal water requirement 

patterns of the landscape. 

Figure 14 illustrates the concept of the L-WRSI. The gray (ETc) and green (ETa) lines 

are the two components creating the L-WRSI. The difference between the two lines indi-

cates the water deficit during insufficient precipitation, which leads to the reduction in the 

L-WRSI from 100%. The annual (January–December) and seasonal (May–September) cu-

mulative deficit are represented by L-WRSI values of 85 and 89, respectively, i.e., 85% and 

89% of the median landscape water requirement, met by precipitation, for the year and 

the season in 2018. The main deficit in the growing season was observed in July with a 

relatively low amount of precipitation. However, the 11% deficit for the season may not 

necessarily reflect an actual water deficit that would lead to a proportional yield reduction 

due to uncertainties in model inputs and assumptions; however, the relative magnitude 

in space and time could be used for drought monitoring and early warning by comparing 

the index across years and regions. 

 

Figure 14. Illustration of the Landscape Water Requirement Satisfaction Index (L-WRSI) concept 

using daily precipitation (P), reference ET (ETo), actual evapotranspiration (ETa), and landscape 

water requirement (ETc) for a pixel near the AmeriFlux Station (US-Ne3) for 2018. Seasonal (89%) 

and annual L-WRSI (85%) indicate some level of dryness during the growing season and through 

the year. 

The L-WRSI values for the CONUS and GHA were calculated and used to illustrate 

their agro-hydrologic applications for drought monitoring. L-WRSI is an integrated index 

that includes precipitation, atmospheric demand, phenology, and soil properties. 

  

Figure 14. Illustration of the Landscape Water Requirement Satisfaction Index (L-WRSI) concept
using daily precipitation (P), reference ET (ETo), actual evapotranspiration (ETa), and landscape water
requirement (ETc) for a pixel near the AmeriFlux Station (US-Ne3) for 2018. Seasonal (89%) and annual
L-WRSI (85%) indicate some level of dryness during the growing season and through the year.
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The L-WRSI values for the CONUS and GHA were calculated and used to illustrate
their agro-hydrologic applications for drought monitoring. L-WRSI is an integrated index
that includes precipitation, atmospheric demand, phenology, and soil properties.

4.1. CONUS

Figure 15 shows seasonal L-WRSI for three years, namely 2012, 2016, and 2018. L-WRSI
less than 100 indicates some form of water stress. Generally, L-WRSI > 95 is considered
optimal and less than 80 indicates a serious precipitation shortfall that may lead to a
substantial biomass and yield reduction for crops. A crop WRSI < 50 indicates crop failure
and need for irrigation to grow crops. It is important to note that L-WRSI is calculated based
on availability of moisture in the 1 m root-zone and does not take into account potential
access to groundwater by deep-rooted trees and shrubs. This is one explanation why
L-WRSI shows lower values (Figure 15) during the growing season in the southeast (e.g.,
Georgia), where the vegetation demand could be partially met by groundwater resources
for the tree-dominated landscapes. It also explains the supplemental irrigation requirement
for growing crops during the growing season in the region.
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WRSI) for the conterminous United States for (a) 2012, (b) 2016, and (c) 2018. Values close to 100 

Figure 15. Growing season (May–September) Landscape Water Requirement Satisfaction Index
(L-WRSI) for the conterminous United States for (a) 2012, (b) 2016, and (c) 2018. Values close to 100
(green) show availability of enough precipitation to meet crop requirements during the growing
season. L-WRSI < 50 (brown tones) indicate severe moisture deficit in the top 1 m root zone to
meet the expected water requirement of the landscape. The index does not account for access to
groundwater or irrigation water applications.
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For the country-wide assessment, L-WRSI was grouped into four qualitative cat-
egories of Good (L-WRSI > 95%), Fair (80–95%), Poor (50–80%), and Severe Damage
(L-WRSI < 50%). A summary of the L-WRSI by croplands [56] of the CONUS (Figure 16)
shows the drought year of 2012 had 66% of the CONUS under severe damage whereas 2016
and 2018 experienced severe damage to a lesser extent (26–27%). The extent observed in
2016 and 2018 may represent the areas that normally require irrigation for crop production.
Such kind of metric would allow the expression of the impact of a drought year relative to
a normal year. In this case, one could say the 2012 damage was twice as severe as that of
2018 (an average precipitation year).
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Figure 16. Summary of seasonal Landscape Water Requirement Satisfaction Index (L-WRSI) for crop
areas by four broad categories for the conterminous United States (CONUS). The rectangular charts
illustrate the percentage of the CONUS area that falls within the classes of Good (L-WRSI > 95%),
Fair (80–95%), Poor (50–80%), and Severe Damage (L-WRSI < 50%) for each year.

4.2. GHA

L-WRSI was generated for the Greater Horn of Africa where frequent droughts create
serious food insecurity challenges (Figure 17). In the GHA region, the L-WRSI is combined
with other drought monitoring products such as NDVI and hydrologic indicators to develop
the convergence of evidence framework needed for food insecurity assessment by FEWS
NET. Figure 17 shows 3-month L-WRSI ending on the named month. For example, January
2018 L-WRSI comprises the ratio of ETa to ETc for the months of November 2017, December
2017, and January 2018. The spatial distribution of L-WRSI in the different seasons shows
the complex nature of precipitation and vegetation pattern in the region. L-WRSI values
can be summarized by district or watershed over a historical period to understand the
relative performance of the landscape across regions and time periods.
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Figure 17. Landscape Water Requirement Satisfaction Index (L-WRSI) distribution in the Greater
Horn of Africa using 3-month moving total for ETa and ETc during 2018. L-WRSI spatial patterns
reflect the growing season dynamics across the region.

As opposed to the existing WRSI product of FEWS NET [22] for crop monitoring,
the current continuous 3-month L-WRSI brings enhanced features of (1) the L-WRSI is
continuous in space because the Kcp is generated from the NDVI-based LSP and does
not depend on crop types or growing regions where the Kc is applied, (2) L-WRSI does
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not require estimation of start-of-season and end-of-season layers, which could introduce
additional sources of uncertainty, making year-to-year comparison more reliable, and
(3) because of the daily, year-round modeling, any desired time period can be simulated in
the world instead of pre-specified seasons for a given region.

5. Conclusions

The main objective of this study is to present the updated agro-hydrologic VegET v2.0
model [29] along with performance evaluation results and drought monitoring applications
over the conterminous United States and Greater Horn of Africa. A successful integration of
a simple temperature-index based snowpack and melt process algorithm has been adapted
to work with the VegET model.

Limited evaluation results indicate an encouraging performance in terms of capturing
the timing and duration of snow accumulation and melt. Evaluation of soil moisture,
ETa, and runoff estimations were reasonable in terms of capturing relative differences in
space and time, indicating the usefulness of the model for drought monitoring purposes
across diverse ecosystems using the highly integrated L-WRSI product. The operational
implementation of the L-WRSI in the Greater Horn of Africa by the Famine Early Warning
System Network can be expanded to a global coverage due to the readily available nature
of gridded weather datasets and remotely sensed model parameters.

The spatiotemporal patterns of VegET ETa indicate that VegET could be used for
the determination of net irrigation water use (blue water) when combined with energy
balance models that estimate total ETa by quantifying the green water contribution from
precipitation and soil moisture.

With continued evaluation and improvement, the VegET model can also be used to
help improve flood forecasting because of the unique inclusion of the readily available land
surface phenology (LSP) that accounts for vegetation dynamics in hydrologic modeling,
without requiring specification of land cover types.
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