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Abstract: In this study, we present artificial neural networks (ANNSs) to aid in a reconnaissance
evaluation of an aquifer storage and recovery (ASR) well. Recovery effectiveness (REN) is the
proportion of ASR-injected water recovered during subsequent extraction from the same well. ANN-
based predictors allow rapid REN prediction without requiring preparation for and execution of
solute transport simulations. REN helps estimate blended water quality resulting from a conservative
solute in an aquifer, extraction for environmental protection, and other uses, respectively. Assume
that into an isotropic homogenous portion of an unconfined, one-layer aquifer, extra surface water
is injected at a steady rate during two wet months (61 days) through a fully penetrating ASR
well. And then, water is extracted from the well at the same steady rate during three dry months
(91-day period of high demand). The presented dimensionless input parameters were designed to
be calibrated within the ANNs to match REN values. The values result from groundwater flow and
solute transport simulations for ranges of impact factors of unconfined aquifers. The ANNSs calibrated
the weighting coefficients associated with the input parameters to predict the achievable REN of
an ASR well. The ASR steadily injects extra surface water during periods of water availability and,
subsequently, steadily extracts groundwater for use. The total extraction volume equaled the total
injection volume at the end of extraction day 61. Subsequently, continuing extraction presumes a
pre-existing groundwater right.

Keywords: aquifer storage and recovery; unconfined aquifer; MODFLOW; MT3DMS; artificial
neural network

1. Introduction
1.1. Recovery Effectiveness (REN) of Aquifer Storage and Recovery (ASR) Well

The application of water resources management to increase water sustainability in-
volves controlling water movement to (a) increase beneficial use and (b) avoid damage to
life and nature. The managed aquifer recharge (MAR) method helps achieve long-term
water sustainability by using available stormwater runoff, treated wastewater, or other
surface water [1]. As a relatively inexpensive way to improve water supply, one of the
MAR tools that injects water into an aquifer is aquifer storage and recovery (ASR) wells.
The wells are especially useful where there is limited space, high population density, and
increasing demand for groundwater [2,3]. ASR is a tool for integrating surface water and
groundwater. It can help provide water storage in regions that have periods of both drought
and intense precipitation [4]. ASR involves storing available excess surface water within an
aquifer and subsequently recovering the water when advantageous. Note, ASR systems’
fundamental concept and structure design are based on one vertical well for injection and
extraction. Another MAR tool, ASTR (Aquifer Storage Transfer and Recovery) system, uses
one vertical well for injection and another one in a different location for extraction.
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If available, extra surface water is injected into an aquifer via an ASR well. After the
availability of surface water for injection ceases, the same ASR well immediately begins
extracting groundwater for irrigation use. REN represents the proportion of injected water
molecules contained within ASR extracted water. REN cannot exceed a value of one.

REN differs in recovery efficiency (RE) used to quantify the performance of ASR
wells. The wells inject water into brackish, saline, or coastal aquifers and extract blended
water that does not need treatment before its intended use [5,6]. RE can exceed a value of
one as it is the ratio of the extracted volume that does not need treatment to the injectate
volume [7-13].

REN is important in situations requiring knowledge of how much of the injected
water is subsequently extracted or how much remains in the aquifer. Sometimes, modest
mixing of (un)treated surface water or stormwater with groundwater in an aquifer is legally
and environmentally acceptable. Predicting REN helps estimate the degree of blending
that will occur. Forghani and Peralta [14] used a counting molecule method to predict the
effectiveness (REN) of ASR well recovery instead of assessing the escape of injectate. The
relation between REN and RE is:

V(E, amb)

RE = REN(Vg) +
Vinj

)

where V(E, amb) is the volume of ambient groundwater in the extracted water, Vg is the
total volume of extracted water, and Vi is the total volume of injectate.

Situations in which injected water and native groundwater have similar quality are
particularly challenging for predicting REN in the field. Field tracer tests have been
performed to predict injectate recovery [15-17] but involve much uncertainty [18].

Thus, a simplified procedure or tool is needed to predict REN for ASR operations
in unconfined aquifers, which are nonlinear systems. In recent years, a type of artificial
intelligence (AI), artificial neural network (ANN), has been broadly used to predict ground-
water quality and quantity [14,19-21]. Here, the application of this Al type helps quantify
injectate recovery (REN) for ASR systems in unconfined aquifers.

1.2. Application of Artificial Neural Network (ANN)

An artificial neural network (ANN) simplifies biological neural networks to simulate
human cognitive abilities via a mathematical structure [22]. ANN can develop theoretical
or empirical relationships between input(s) and output(s) data to model nonlinear water
resource systems [23,24]. This tool is used in hydrology, hydraulics, and water resources
management for various tasks, such as forecasting water and groundwater levels and
quality, modeling sediment, estimating rainfall-runoff, and managing floods [20]. The
drawbacks of ANN [25] involve defining the optimal network structure and training its
parameters. Thus, optimization algorithms are necessary to discover global and optimal
solutions within complex parameter spaces. The algorithms help mitigate overparame-
terization and ensure error minimization. But it is important to note that achieving a low
training error does not always guarantee good performance [25].

As published studies have shown, the calibration of different ANN models can be
used to simulate and forecast water table fluctuations. Such models improve water supply
planning in areas where aquifer information is not available [26-28]. In Taiwan, backpropa-
gation of ANN forecasted the variation in groundwater quality resulting from seawater
salinization and arsenic pollutant factors [29]. For predicting iodine levels of groundwater
in China, an ANN was developed to aid environmental management because traditional
analytical techniques are time consuming, difficult, and expensive [30]. Banerjee et al. [31]
calibrated ANN to present a simpler and more accurate alternative to SUTRA (Saturated—
Unsaturated Transport) numerical model techniques for groundwater salinity prediction.
In general, understanding ANN structure and operation and nonlinear hydrologic pro-
cesses is crucial for modeling rainfall-runoff, streamflow, groundwater management, water
quality simulation, and precipitation [32].
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For ASR operation within confined freshwater aquifers, ANN development predicts
REN, and is an alternative to solute transport numerical simulation [14]. The present study
tackles injectate-recovery (REN) prediction of ASR for specific times within unconfined
aquifers and uses the ANN tool for the prediction in such nonlinear systems.

1.3. ANN Structure

An ANN structure to predict responses of nonlinear systems includes components
such as: (a) input(s); (b) neuron(s) involving different numbers and arrangements;
(c) output(s); and (d) a transfer (activation) function to interconnect the input parame-
ters and neuron(s) to output(s). Figure 1 shows three layers (minimum number of layers)
illustrating the positions of the ANN components: (a) the input layer; (b) one hidden layer;
and (c) the output layer. In the layers, they are n inputs (I1 to In), n neurons (N1 to Nn),
and an output (O1), respectively (Figure 1).

Input Hidden Output
Layer Layer Layer

Figure 1. Schematic diagram of ANN structure including the input layer, one hidden layer, and the
output layer.

Defining inputs within the input layer is based on their impacts on the output(s) for
prediction of the output(s). For instance, Sahoo et al. [24] applied known and important in-
put parameters relatively to predict pesticide occurrence in wells. Forghani and Peralta [14]
utilized input parameters that impact REN prediction for confined freshwater aquifers.

In published studies, the optimum number of neurons in an ANN has been defined
as less than the number of input parameters [33]. Notably, increasing the number of
neurons in a hidden layer and the number of hidden layer(s) can result in (a) a significant
nondecreasing in root mean square error (RMSE) [29] and (b) losing the generalization
ability of the ANN prediction for a new data set [24,34,35]. Thus, finding the optimum
number of neurons and hidden layers in an ANN structure involves multiple “trials and
errors” [24].

In the position of the hidden layer, ANN uses a linear, non-linear, or logic transfer
(activation) function that provides an output corresponding to a weighted summation
of the input parameters [31,36]. Among various transfer functions, sigmoid function
(f(u) = H—%) is a typical function having values of responses from 0 to 1 for a range of
input parameters [19,36].

In this study, the presented suite of ANN using values of dimensionless analytical
parameters (terms) is a tool to predict REN for specific times. The ANN-based predictors
assist in estimating the retrieval of injectate, which is not simply the inverse process of the
injectate’s movement in the down gradient. Employed ranges of impact factor values exceed
the ranges of values reported for a representative 756 km? (288 mi?) shallow unconfined
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aquifer in an intermountain valley in the U.S. Great Basin. Herein, the number of neurons
and hidden layers for ANN are one and one, respectively. The numbers were discovered by
using a trial-and-error method in reference to statistical analyses. In short, REN evaluation
involves estimating solute concentrations within ASR-extracted water and solute remaining
within the aquifer. Water users and environmental protection scientists are interested
in both.

2. Materials and Methods
2.1. Parameters and Procedures for REN Simulation and Prediction
2.1.1. Overview

Section 2.1 provides an overview of assumptions, parameters, and procedures em-
ployed to derive REN values first via simulation and then prediction. It is assumedly
desirable to increase groundwater availability during a dry period (June-August) by in-
jecting available excess surface water into an unconfined aquifer during a preceding wet
period (April-May). This section defines the factors that impact REN and identifies the
ranges of impact factor values that exist in Salt Lake Valley, Utah.

After the selection of approximately half-month durations for flow and solute transport
simulations, standard methods are used in estimating (a) the advective plume length
after two months (61 days) of injection, (b) the longitudinal dispersivity, (c) the Courant
number, (d) the maximum time step size, (e) the total number of simulation time steps, and
(f) the time steps per each stress period. These estimates enable preparing a groundwater
aquifer model domain sufficiently large that assumed injection and extraction rates will
not appreciably affect any employed boundary conditions.

To cover the ranges of REN-affecting factors, 48,000 unique input files were prepared
for flow and solute transport simulations that were then processed in parallel. From the
simulation results, the procedure required computing a simulated REN response, identify-
ing impact factor combinations, and developing an artificial neural network (ANN) for the
REN prediction. The ANN uses values of dimensionless analytical terms containing the
impact factors to obtain the ANN-associated weighting coefficient values for the prediction.
Finally, a statistical comparison of simulated versus ANN-based predicted values of REN
determined the accuracy of the ANN-based predictors.

2.1.2. Selection of REN Impact Factors and Their Value Ranges

Based upon work by Fetter [37], Bedient et al. [38], Pavelic et al. [11], Ward et al. [12,13],
Bakker [5], Brown et al. [7], Smith et al. [4], and Forghani and Peralta [14], eight impact
factors that affect REN are considered: (1) initial aquifer (background) hydraulic gradient;
(2) horizontal hydraulic conductivity; (3) initial (original) aquifer saturated thickness;
(4) porosity; (5) specific yield; (6) steady rates of injection and extraction; (7) durations of
injection and extraction; and (8) well diameter. A total of 48,000 unique sets of impact factor
data were obtained by applying the Table 1 value ranges for groundwater flow and solute
transport simulations.

The ranges of background hydraulic gradient, horizontal hydraulic conductivity, and
initial aquifer saturated thickness used here include the values employed for Layer 1 of
a Salt Lake Valley groundwater model [39]. To set the 0.1-0.6 range of porosity values,
this study also relies upon values from Gelhar et al. [40] and Heath [41]. To determine the
specific yield range, the porosity range and a 0.375-0.95 range of ((specific yield)/porosity)
quotients (Table 1) are used. The 5.451 to 327.06 m>/d (1 to 60 gpm) steady injection rate
range approximates the range of one percent of the average local Red Butte Creek flow from
2014 through 2016 during April and May, which are the months of greatest streamflow [42].
The range of steady extraction rates is equal but opposite in sign to the injection rate range.
The extraction duration is three months (Table 1).
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Table 1. Impact factor value ranges.

Impact Factor Range (SI) Range (English)
Background hydraulic gradient 0.00001-0.015 0.00001-0.015
Horizontal hydraulic conductivity 4-20 (m/d) 13.124-65.61 (ft/d)
Initial aquifer saturated thickness 8-46 (m) 26.25-150.91 (ft)
Porosity 0.1-0.6 0.1-0.6
(Specific yield)/ (porosity) 0.375-0.95 0.375-0.95
Specific yield 0.0375-0.57 0.0375-0.57

0.0022-0.132 (cfs)
or 1-60 (gpm)
Well diameter 15.24 (cm) 6 (inch)

* Note, injection and extraction durations are two months (April and May) and three months (June, July, and
August), respectively. Extraction begins when injection ceases.

Daily constant injection rate * 5.451-327.06 (m3/d)

2.1.3. Modeled System and Simulators

In essence, to allow computing REN with reasonable accuracy, the MODFLOW [43]
finite difference flow model and its Multi-Node Well (MNW?2) package and the MT3DMS
solute transport model [44] are used. To distinguish the injectate from native groundwater
and to provide a solute for transport simulation, a hypothetical 100 ppm concentration
is assigned to the injectate. A fully penetrating ASR well in a homogenous, isotropic,
freshwater, one-layer, unconfined aquifer is modeled, and extraction rates that are equal
but opposite in sign to the injection rates are used. Specified constant-head boundaries on
the eastern and western edges of a square model area, no-flow boundaries on the northern
and southern edges, and the ASR well at the center are employed (Figures 2 and 3).

No-flow boundary
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Figure 2. MODFLOW2005-MT3DMS model study area for ASR well, top view (not to scale).
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Figure 3. MODFLOW2005-MT3DMS model study area for ASR well, side view (not to scale).

Toward sizing the model and preparing model inputs, the greatest advective plume
length that would occur by the end of the injection period for any set of Table 1 impact factor
values is estimated. Ignoring gradient changes induced by an injection or groundwater
mound, the greatest pore velocity would be 3 m/d (9.84 ft/d). After 61 days, this would
yield a 183 m (600.4 ft) advective plume length. The assumed ground surface elevation of the
model study area is a value of 100 m (328.08 ft). This results in (a) zero evapotranspiration
loss of water from groundwater because the capillary fringe does not reach the overlying
root zone. Note that the height of the capillary fringe in various soils does not exceed one
meter [41] and (b) zero deep percolation into the same aquifer for this study. Because the
unconfined aquifer includes a very thick initial saturated thickness, deep percolation might
cause only a small relative change in transmissivity.

Longitudinal dispersion will lengthen the plume further. For an advective plume
longer than one meter, the longitudinal dispersivity can be estimated as [40,45-47]:

o = 0.83[log,, Lp) "

@)
where oq, = longitudinal dispersivity (m) and L, = advective plume length (m). If
Lp <Ilm, = O.1Lp.

MT3DMS uses the user-input Courant number (C) to control the advective process
by decreasing oscillations, improving accuracy, and decreasing numerical dispersion.
C = (v x At)/Ax, where v = linear pore velocity, Ax = the grid cell dimension at the
well location (0.5 m or 1.64 ft), and At is the maximum desirable time step size [48].

To determine the simulation time step size in days, suitable for the preferred spatial
discretization, the grid Peclet number, P, as equaling 2C [48] is estimated. By assuming
that P also equals (Ax/«r ), one can compute the maximum time step size desirable for use
during injection.

The first estimation of the total number of time steps needed for the injection era
was the integer result of dividing the total injection duration by the time step size. Those
steps are partitioned equally into each injection stress period and then two more steps per
period are added to increase the likelihood of successful simulation. All preliminary simu-
lations for all data combinations used the same number of time steps for flow and solute
transport simulations.

Preliminary simulations helped determine the horizontal domain size required to
avoid appreciable boundary condition impact from groundwater pumping. Simulations
employed the broadest extents of values of injection rate, extraction rate, horizontal hy-
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draulic conductivity, initial (original) aquifer saturated thickness, and initial aquifer (back-
ground) hydraulic gradient. The resulting selected 1163 m by 1163 m (3815.62 ft. by
3815.62 ft.) model domain has 129 rows and 129 columns that transition smoothly from cell
sizes of 10 m by 10 m (32.80 ft. by 32.80 ft.) to 0.5 m by 0.5 m (1.64 ft. by 1.64 ft.). In the
center, the central smallest cell is a 7.62 cm (3 inch) radius vertical well. To have a uniform
background hydraulic gradient and saturated thickness from the east to the west, the layer
bottom elevation paralleled the desired initial water table.

MODFLOW2005 and MT3DMS simulations use 11 half-month stress periods to easily
utilize available rainfall, streamflow, and plant water needs information. Period 1 simulates
steady-state background heads. Transient periods 2-5 employ injection and periods 6-11
simulate extraction. Both models also use identical numbers of time steps per period, and
that number can differ within a period. The MODFLOW2005 PCG solver uses a 0.01 m
head change criterion and a 0.01 m residual convergence criterion. To simulate advection
and dispersion, MT3DMS employs the total variation diminishing (TVD) package and the
generalized conjugate gradient (GCG) solver. The injection stress period has varied time
step durations. To avoid excessive processing time, the extraction period has a single time
step (using even 300 time steps for extraction increases REN by less than 0.005).

From the impact factor value ranges in Table 1, five background hydraulic gradients,
five hydraulic conductivities, eight injection or extraction rates, six porosity values, ten
initial aquifer saturated thicknesses, and four (specific yield/porosity) ratios are used.
For each of the 48,000 possible combinations, a different set of impact factor data for
groundwater flow and solute transport simulations is prepared. As mentioned above,
the 100 ppm of imaginary non-reactive solute (e.g., chloride or dissolved nitrate, etc.) is
assigned to the injectate for distinguishing it from native groundwater. As commonly
carried out in irrigation water management, chloride can be assumed to be a conservative
contaminant. Freshwater, including rainwater, can dissolve halite in soil while recharging
or passing through an aquifer. Also, under oxidizing conditions, dissolved nitrate is
considered to be nonreactive and conservative [49]. Thus, in MTDMS flow and transport
simulations in this study, the only simulated MT3DMS flow and transport simulations
are advection and dispersion [40]. MT3DMS simulations provide both the mass of solute
injected into the ASR well and the mass of solute recovered from the well. REN equals the
extracted solute mass divided by the injected solute mass.

Because the processing time of a single MODFLOW2005-MT3DMS simulation might
exceed an hour, parallel processing was used to drastically reduce the computing
time [14,50,51]. The Message Passing Interface (MPI) [52-54] of the C++ programming
language was utilized to implement parallel processing on multi-cored personal comput-
ers and on node clusters of the Center for High Performance Computing (CHPC) at the
University of Utah, USA. About 47,000 of the 48,000 attempted MODFLOW2005-MT3DMS
simulations were completed successfully. Each successful simulation provided the total
mass of solute injected through the ASR well and the mass of solute recovered from the
well. REN values were computed after 15, 30, 45, 61, 76, and 91 days of simulated extraction
(REN15, REN30, REN45, REN61, REN76, and REN91, respectively).

2.2. Development and Evaluation of Dimensionless Analytical Parameters (Terms) for ANN-
Based Predictors

2.2.1. Overview

This section describes the development of dimensionless analytical parameters (terms)
as inputs for artificial neural networks (ANNSs) that can rapidly predict REN values for use
in lieu of numerical simulation models. Data employed for this section include the impact
factors in Table 1 applied for the terms, resulting simulation outputs, and computed RENs.
Section activities include (1) developing dimensionless analytical expressions that equal (a)
a ratio of (extraction/plume) volumes, (b) a ratio of (capture zone/plume) widths, and (c) a
ratio of (capture zone/plume) lengths; (2) developing artificial neural networks (ANNs) that
apply the dimensionless analytical terms to predict REN values; and (3) defining statistical



Hydrology 2023, 10, 151

8 of 19

indices to evaluate ANN-based predictors. The first analytical expression (dimensionless
volume) addresses a dimensionless volumetric ratio of the pumped volume that contains
the plume volume at a specific time. Some initial trial and error tests for REN prediction
were started using the dimensionless volume in regression processes. Regarding the results,
it was concluded that the volume presents significant responses for REN prediction but is
not sufficient. Also, logically hydraulic down gradient results in moving the plume from
the ASR well location. Besides the dimensionless volume, the down-gradient width and
length ratios were applied in ANN to modify how much of the plume volume was within
the down-gradient capture zone for REN prediction. In the width and length ratios, a
natural logarithm was applied to aid their non-linear magnitudes to be valued linearly for
the prediction.

2.2.2. Development of Dimensionless Analytical Parameters (Terms)

The impact factors in Table 1 affect REN both in the field and as simulated using
MODFLOW2005-MT3DMS. Some initial attempts for REN prediction were started using
the impact factors as independent inputs within different artificial neural network (ANN)
structures. However, these attempts did not meet the convergence criteria to predict REN.
Then, dimensionless analytical terms were designed to be used by ANNs toward predicting
dimensionless REN from simulation results. The terms consist of (a) a ratio of the volume
of extracted water divided by the injectate plume volume at the time that extraction begins;
(b) a natural logarithm of the ratio of the steady-state down-gradient capture zone width
divided by the plume width at the end of the injection; and (c) a natural logarithm of the
ratio of the steady-state down-gradient capture zone length divided by the advective plume
length down-gradient at the end of the injection.

The volume of extracted water at a moment in time equals the extraction duration
to that moment times the extraction rate. The volume of the injectate plume equals its 2D
area times a representative vertical thickness. The area, Ay, of an elliptical injection plume
having a normal or Gaussian concentration distribution, a length of 30y, and a width of
3cry, is:

Ap = n30x30y 3)

where oy is the standard deviation of concentration in the x direction, (L) = 1/2Drt; oy
is similarly defined; Dy, and Dr are longitudinal and horizontal transverse dispersions
(L2/T) that respectively equal oy, X vy and at X vy; o, and «r are horizontal longitudinal
dispersivity and transverse dispersivity (L), respectively; vx and vy are the linear pore
velocities in the longitudinal x and transverse y directions (L/T), respectively; and t is the
injection duration (T) [37,38,55].

In the field, horizontal transverse dispersivity is typically an order of magnitude
smaller than longitudinal dispersivity [40,44]. Freeze and Cherry [56] indicated that the
above equations can be used for preliminary estimation of solute migration arising from
small contaminant spills in simple hydrogeologic settings. Assuming the horizontal trans-
verse dispersivity is one-tenth of the longitudinal dispersivity, by substitution, the plume
area is:

Ap = m18v0. 1oy vt @)

where v = the linear pore velocity.

An estimate of the 61-day plume volume is the sum of the volumes of a cylinder and
a cone (the cylinder and cone represent the initial or original aquifer saturated thickness
and injection or groundwater mound height, respectively). The cylinder volume equals the
product of the plume area and the initial (original) aquifer saturated thickness (bist). The
cone (injection or groundwater mound) volume equals the plume area times b;y, /3. Thus,
the plume volume is:

1 1
Vp = Ap (bist n 3bim> - (ﬂlS\/O.locht) X <bist + 3bim> )
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where Vy, is the plume volume, bjg; is the initial (original) aquifer saturated thickness, and
bim is the MODFLOW2005 injection or groundwater mound height that is water above the
initial water table. For about 48,000 combinations of the impact factor values in Table 1, this
study determined injection or groundwater mound heights by MODFLOW2005 simulation
of the unconfined aquifer.

Herein, employing a two-step equation-based process with a regression equation in
Appendix A to estimate the b;,, avoids the need to run MODFLOW2005 for new combina-
tions of aquifer conditions.

Equation (6) shows the definition of a dimensionless volume (DLV) as the ratio of the
volume of the extracted water (Vext) and the plume volume (Vy):

Vext
p

DLV =

(6)

where Ve = Q X t; Q = pumping extraction rate; and t = extraction duration.

Because after any duration of extraction REN is a) a cumulative and nonlinear relative
mass and b) between 0 and 1, concerning these REN properties, term 1 includes the sigmoid
function (an S-shaped nonlinear function with a response between 0 and 1) of the DLV:

1

Term 1= m (7)
By substituting Equations (5) and (6):
1
Term1 = — Vax 8
1+e AP(bist+%bim)

Term 2 is a natural logarithm of the ratio of the (steady-state down-gradient capture
zone width)/(plume width at end of injection that is 30y) in Equation (9). The steady-state
down-gradient capture zone width equals {Q/ (4Kbisi)} [57]. The plume width (30y) is
defined for Equation (3):

Q 0
Term 2 = LN AKDistd ©)
3 X /2X 0.1 X o XV X tip;

where LN is the natural logarithm; Q is the pumping extraction rate (L?/T); K is the horizon-
tal hydraulic conductivity (L/T); b is the initial (original) aquifer saturated thickness (L);
iis the initial aquifer (background) hydraulic gradient (-); o, is the horizontal longitudinal
dispersivity (L); v is the linear pore velocity (L/T); and ty; is the injection duration, 61 days (T).

Term 3 is a natural logarithm of the ratio of the (steady-state down-gradient capture
zone length)/(length of advective plume down-gradient at end of injection):

Kitin
n

Q-
Term 3 = LN ( 27Dl ) (10)

where LN is the natural logarithm; the steady-state down-gradient capture zone length
is {Q/ (21 x K x by x 1)} [57]; Q is the pumping extraction rate (L3 /T); 7t is 3.1416; K is
the horizontal hydraulic conductivity (L/T); bis is the initial (original) aquifer saturated
thickness (L) and the advective plume length down-gradient of the well at end of injection
(L) is { (Kitiyj) /n}; i is initial aquifer (background) hydraulic gradient; tiy; is the injection
duration, 61 days (T); and n is porosity (-).

Therefore, by using values of such terms as inputs, artificial neural networks (ANNs)
can predict injectate recovery (REN) for the specific times.
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2.2.3. Development of ANN to Predict REN

As mentioned above, a presented artificial neural network (ANN) represents a math-
ematical relationship between the REN output and the dimensionless analytical terms
computed for Table 1 ranges of impact factor values. In essence, each ANN uses the dimen-
sionless ratios of volume, width, and length (respectively, terms 1-3) to predict REN for a
specific extraction duration. Herein, ANN development employed the neuralnet package
of the R software [36].

In advance, to find an optimal number of neurons, hidden layers, and outputs,
the trial-and-error method was applied to execute preliminary runs of the ANN using
(a) the impact factors as independent inputs within various ANN structures with different
numbers of hidden layers, neurons, and one and multi-REN outputs and (b) the terms as
inputs (note: the first term was defined via regression processes) within one ANN structure
for predicting all six REN values. The properties of these runs were various numbers of
(i) hidden layers and (ii) neurons of the hidden layers. In both sets of runs, the ANN could
not meet the convergence criteria or predict REN accurately.

Thus, the presented ANN structure and properties for six REN values concerning
accuracy and simplicity were defined (Figure 4) as follows: (a) three input values of terms
1, 2, and 3; (b) one output REN value for a specific time; (c) a network type of resilient
backpropagation with weight backtracking; (d) a network threshold of 0.01 for training;
(e) one network repetition for training; (f) one hidden layer; (g) one neuron in the hidden
layer; (h) a logistic transfer (activation) function; (i) biases of 1 in input and hidden layers;
and (j) a differentiable error function of “sum of squared errors”. And the rest of the
properties used were from the neuralnet default.

Value of
Term 1

Value of
Term 2

Value of
Term 3

Input Hidden Output
Layer Layer Layer

Figure 4. Schematic diagram of ANN structure including three-term inputs, one neuron, REN output
for a specific time, and associated weighting coefficients.

The ANN structure in Figure 4 is named “feedforward” [58-61]; this structure transfers
information from a previous layer to the next one. Here, all term 1-3 inputs and bias 1
connect to the neuron in the hidden layer that is linked to the output along with the hidden
layer bias. The associated weighting coefficients represent the connection importance in the
network. The value of the neuron in the hidden layer is calculated by using the sigmoid
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Fold 1

Fold 2

Fold 10

activation function on the sum of the products of the values of the bias, the terms (inputs),
and their associated weights (Equation (11)).

1

N =
L EXP[—(1 x Wy + Term 1 x Wqp + Term 2 x Wp; + Term 3 x W31 )]

(11)

Then, the REN value is calculated by the sum of the bias value multiplied by its
associated weighting value and products of the neuron value and the value of its associated
weight (Equation (12)).

REN = (1 x W) + (Ny x WYy) (12)

Herein, six ANN algorithms sharing the same structure predict REN values for the
six specific times (15, 30 ..., and 91 days after extraction) separately. For ANN calibra-
tion (training), the inputs (values of the terms 1 to 3) and the output (REN value for a
specific time that is a result of MODFLOW2005-MT3DMS simulations) of the dataset were
entered into the ANN model. The ANN model optimized the associated weighting values
(Wo1, W11, Wa1, W31, W1, and W/q7) by minimizing the sum of squared errors that are
differences between the simulated REN and the ANN-based predicted output (REN). For
training the ANN, the whole dataset (the 47,000 MODFLOW2005-MT3DMS results or
REN values) was split into 10 parts (named the 10-fold cross-validation method) randomly
without replacement by applying a written code in R software (Figure 5). The 10-fold
cross-validation method involves nine parts of the data set for training and one for testing
or validation [58,60].

Data set

A

¥ —

Training data Validation data

Figure 5. Scheme of 10-fold cross validation method for the data set of ANN.

Based upon the cross-validation method and values of the following statistical indices
(Figure A1), the best fold presented the six optimal values of the associated weighting
coefficients (Wo1, W11, Wa1, W31, W1, and W’q7) for the ANN to predict REN for a specific
time. In total, six ANN algorithms sharing the same structure provided 36 values of the
associated weighting coefficients for six REN predictions (REN15, REN30 ... , and REN91).
The required evaluation of the folds to select the optimal values of the weighting resulted
in using some statistical indices that are presented in the following section.
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2.2.4. Evaluation of Developed ANN-Based Predictors

The accuracy of the six ANN algorithms to predict six REN values was evaluated
by applying statistical indices in Table A1 of Appendix A. Such indices helped select the
optimal values of the associated weighting coefficients from the 10 folds of each ANN
algorithm. The optimal values in each of the six ANN algorithms defined the best ANN
for REN prediction. The values of the indices show the accuracy of the predicted REN by
comparing it with the simulated REN (i.e., results of successful MODFLOW2005-MT3DMS
simulations) for specific times. Although the predicted REN was not evaluated for a real
case, the simulated REN was assumed to present the result of the case for the evaluation.
After the reconnaissance evaluation, if a more detailed evaluation is needed for a site
having heterogeneous data, one would not use the ANN. Instead, one would calibrate and
use a heterogeneous flow and transport model.

3. Results and Discussion

Predicting recovery effectiveness (REN) for an ASR system in an unconfined aquifer
requires simulating groundwater flow and solute transport, followed by evaluating the
results. Herein, the developed artificial neural network (ANN) requiring values of the
dimensionless terms predicts REN accurately for ASR implementers. The present study
also statistically demonstrated the accuracy of the ANN-based predictors within the ranges
of the impact factors and modeled ASR assumptions.

It is assumed that an ASR well is installed within an unconfined, homogenous,
isotropic, freshwater, one-layer aquifer. Also, when extra surface water is available,
61 days (two wet months) of steady injection into the ASR well occurs, followed by 91 days
(three dry months) of steady extraction from the same well. For six specified distinct times
after extraction begins, the ANN-based predictors were developed to predict REN values in
lieu of the numerical simulations. Each of the six ANN algorithms involves six associated
weighting coefficients that were valued optimally. The neuralnet that used the 10-fold
cross-validation method helped obtain optimal values of the coefficients. Here, Table 2
presents values of the weighting coefficients for the six ANN algorithms to predict the REN
values after 15, 30, 45, 61, 76, and 91 days (REN15, REN30 ... , and REN91).

Table 2. Optimal values of associated weighting coefficients for the six ANN algorithms to predict
six REN values.

Weighting Coefficient/

Extraction Days Wou Wi W2 Wa1 Wo Wi
15 0.88776  1.36690  0.05449  1.26304  0.01797 0.22883
30 0.42093  0.04244  0.14767  0.99647  0.01670 0.47337
45 0.05082  0.02403  0.05824  0.94451  0.00925 0.69328
61 —0.22883 0.15617  0.02508  0.91678  0.00437 0.85361
76 —0.35194 0.21135  0.03392  0.92816  0.00580 0.92971
91 0.34696  —0.16184 —0.06269 —0.97335 0.96797  —0.95680

For the evaluation, Table 3 statistically shows the accuracy of the ANN-based predic-
tors. For all extraction durations, R? values exceed 0.9987. The root mean squared error
(RMSE) of the prediction that ranged from 0.0029 to 0.0127 (gm/gm) always increases with
extraction duration.

To illustrate a comparison of a REN simulation with the ANN-based prediction,
Figures 6,7, A1 and A2 in this section and Appendix A compare simulated versus ANN-
based predicted REN values for validation (testing) data and for training and validation
data, respectively. In each figure, the x-axis represents the simulated and assumedly accu-
rate REN values. The y-axis represents the ANN-based predicted REN. Perfect prediction
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is represented by circles lying on the diagonal line (i.e., the orange dotted line) as shown in

Figures 6 and 7 below.

Table 3. Statistical comparisons of ANN-based estimated versus simulated REN for validation

(testing) data.

Extraction .
Days/Parameter 15 30 45 61 76 91 Interpretation Ranges
ME —0.0000 0.0000 0.0000 0.0000 0.0002 0.0002 —o0 < ME < +o0; Perfect: 0
(gm/gm)
RMSE
0.0029 0.0040 0.0081 0.0111 0.0116 0.0116 0 < RMSE < +oo; Perfect: 0
(gm/gm)
PWRMSE 0.0025 0.0036 0.0085 0.0120 0.0124 0.0127 0 < PWRMSE < +o0; Perfect: 0
(gm/gm)
-1<r<1;
r(-) 0.9994 0.9997 0.9995 0.9994 0.9995 0.9995 Perfect: 1 or —1
2 .
R? () 0.9987 0.9995 0.9991 0.9988 0.9990 0.9990 OsR'<T;
Perfect: 1
Ens (-) 0.9987 0.9995 0.9991 0.9988 0.9990 0.9990 —co<ENs <1
NS . : . : : ’ Perfect: 1
< 25%
I PBIAS| (%) 0.03 0.03 0.01 0.00 0.04 0.04 |PBIAS| < 25%
very good
Perfect:
SI (%) 1.47 1.11 1.64 1.92 1.80 1.74 St < 2.0 o
Operational:
SI < 60%

0.6

Estimated REN30 (gm/gm)

0.1

0.2 0.3

0.4

Simulated REN30 (gm/gm)

0.5

Figure 6. Comparison of ANN-based predicted versus simulated REN30 for validation (testing) data.
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Estimated REN91 (gm/gm)

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
Simulated REN91 (gm/gm)

Figure 7. Comparison of ANN-based predicted versus simulated REN91 for validation (testing) data.

4. Conclusions

This study provides a rapid method to predict aquifer storage and recovery (ASR)
and well recovery effectiveness (REN) using artificial neural network (ANN)-based pre-
dictors. Here, REN represents the proportion of injected water molecules contained in
ASR-extracted water from the same well. This is useful for balancing goals of increasing
utilizable water supply while protecting aquifer environmental quality. Also, this method
improves the prediction of the mass of a conservative contaminant remaining in the aquifer
after a season of injection and extraction. The predicted REN values enable predicting the
concentration of the extracted water that is a blend of injectate and natural background
groundwater. Using the presented ANNs that apply dimensionless terms enables predict-
ing REN for one ASR well. The well fully penetrates a homogenous, isotropic, unconfined,
one-layer aquifer. The REN is predicted after every half a month of a three-month ex-
traction period. The ANNSs can be applied using a wide range of impact factor values.
These ranges are aquifer hydraulic conductivity (4-20 m/d or 13.124-65.61 ft/d), porosity
(0.1-0.6), specific yield (0.0375-0.57), initial (original) aquifer saturated thickness (8—46 m
or 26.25-150.91 ft), initial aquifer (background) hydraulic gradient (0.00001-0.015), and
steady pumping rate of injection and extraction (5.451-327.06 m3/d or 1-60 gpm). Statistics
describing the accuracy of the predicted REN values after 15 to 91 days of extraction range
from 0.9987 to 0.9995 for R? and 1.11 to 1.92% for scatter index (SI). The predictive REN
root mean square error (RMSE) ranges from 0.0029 to 0.0116 (0.29% to 1.16%). Note, a REN
could vary from near 0.00 to 1.00 (0.00 to 100%) in value.

The six ANNs share the same structure but differ in the values of the neurally asso-
ciated weights. As shown statistically, the six ANN algorithms allow a user to predict
REN rapidly without having to prepare for and execute numerical flow or solute transport
simulations. The generated expressions make it simple and practical to evaluate ASR
potential for a wide range of unconfined aquifer conditions. Assuming the presence of
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a pre-established groundwater right, the extraction can be continued accordingly. The
simplicity of the ANNs can help water managers to rapidly perform a reconnaissance level
evaluation for a candidate ASR well site. At a reconnaissance level, there might not be
more than one observed hydraulic conductivity or transmissivity value in a candidate
injection site.
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Appendix A

As mentioned above, a two-step analytical equation-based process with a regression
equation estimates MODFLOW2005-simulated injection or groundwater mound height
(bim) and helps avoid the need to run MODFLOW2005 for the b;,, value. The two-step
process employed (a) the Cooper and Jacob [62] straight-line method to compute the
head change (s') in an equivalent confined aquifer and (b) the Jacob correction [63] to
convert the computed confined aquifer head change into an unconfined aquifer head
change. The Cooper and Jacob [62] straight-line method computes the head change in
Zr%g;l:t
pumping (here, constant negative injection flow), T is horizontal transmissivity, Sy is the
unconfined aquifer specific yield, and t is the elapsed time after steady pumping began.

The Jacob correction [63] converts the confined aquifer head change into an unconfined

an equivalent confined aquifer by s’ ={ %LN( ) }, where Q is a constant positive

aquifer head change as s=b (1 —4/1- (%S/) ) , where b is the initial (original) aquifer

saturated thickness. This is appropriate because values of the late-time function (ug) are
much less than 0.01 for the impact factor values in Table 1 [62-67].

The regression equation with use of the two-step process estimates by, values with a
mean error (ME) of 0.000 (m); root mean square error (RMSE) of 0.005 (m); peak weighted
root mean square error (PWRMSE) of 0.006 (m); R? of 0.9999; and percent of bias (PBIAS)
of 0.000 (%). Thus, the regression equation was defined as:

bijm (MODFLOW injection or groundwater mound height estimated using a regression
equation) = |{(1.026623 x mound height from the two-step analytical process) + 0.002061} |
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Table A1l. Statistical indices.

Parameter Formula * Range Applied by
n —o00 < ME < +o0;
Mean Error (ME) % gl(oi -S) Perfect: 0 Javan et al. [68]

Root Mean Square

0 < RMSE < +00; Perfect: 0 Mentaschi et al. [69]; Javan et al.

Error (RMSE) ; [68]; Jimeno-Séez et al. [70]
Peak Weighted Root Mean - > 040
s . Q. YTV < . .
Square Error (PWRMSE) ¢ R L (0i=5)" x ( e ) 0 < PWRMSE < +o0; Perfect: 0 Javan et al. [68]

Pearson’s Correlation
Coefficient (r)

Y (0i—0)x(Si-S)
VIt (0:-0) xIiy (5-5)°

—1<r<1;
Perfect: 1 or —1

Moriasi et al. [71];
Javan et al. [68]

Coefficient of [, (oﬁ@)x(sﬁ@}z 0<RZ<I; Moriasi et al. [71];
Determination (R?) T (0i-0) <, (Si-5)° Perfect: 1 Jimeno-Séez et al. [70]
Nash-Sutcliffe Efficiency 1- YL (0—S;) —oo<Ens <1, Moli:?eé’lcr:ll S[;Eh]f;ie[lizg; al

(NSE or Epg) ¥, (0-0)° Perfect: 1 P :

[68]; Jimeno-Séaez et al. [70]

Percent Bias (PBIAS) La(9i=S) 100

IPBIAS| < 25% Moriasi et al. [71];

Yis O very good Jimeno-Séez et al. [70]
Perfect:
n a 12 SI < 20%; Janssen and Komen [73];
™, [(Si-5)—(0;-0
Scatter Index (SI) \/ il Zp}] O(z ) Operational: Moriasi et al. [71]
- SI < 60%

* Note, n is the number of data pairs; O; represents the observed MODFLOW2005-MT3DMS results and S;
represents the estimated values; O is the mean observed value; and S is the mean estimated value.

0.6

Estimated REN30 (gm/gm)

0 0.1 0.2

0.3 0.4 0.5 0.6

Simulated REN30 (gm/gm)

Figure A1. Comparison of ANN-based predicted versus simulated REN30 for training and validation

(testing) data.
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09 +

08 +

0.7 +

0.6 +

0.5 +

Estimated REN91 (gm/gm)

04 +

0.3 +

0.2 +

0.1 +

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Simulated REN91 (gm/gm)

Figure A2. Comparison of ANN-based predicted versus simulated REN91 for training and validation
(testing) data.
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