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Abstract: Nowadays, as the pandemic has reshaped snacking behaviors, and consumers have be‑
come more health‑conscious, the need for the incorporation of “healthy snacking” in our diets has
emerged. Although there is no agreed‑upon definition of “healthy snacking”, dietary guidelines
refer to snack foods with high nutritional and biological value. The aim of this study was to chem‑
ically characterize and determine the nutritional value of an innovative UVB‑irradiated and baked
snack from Pleurotus eryngii mushrooms. P. eryngii is an edible mushroom native to the Mediter‑
ranean basin. We applied proximate composition, amino acids, fatty acids, vitamins, and macro and
trace elements analyses. Also, we computed indices to assess the nutritional quality of food, and we
evaluated the sensory characteristics of the mushroom snack. We found high nutritional, consumer,
and biological values for the snack. More specifically it was low in calories, high in fibre and pro‑
tein, low in lipids, without added sugars, and high in ergosterol and beta‑glucans. Additionally, it
had some vitamins and trace elements in significant quantities. Its NRF9.3 score was considerably
high compared to most popular snacks, and the snack exhibited high hypocholesterolemic and low
atherogenic and thrombogenic potentials. In conclusion, as a result of UVB‑irradiation and baking
of P. eryngii mushrooms, the snack’s nutritional and biological value were not affected; instead, it
provided a “healthy snacking” option.

Keywords: healthy snack; mushrooms; Pleurotus eryngii; Mediterranean; chemical profile; NRF;
macronutrients; micronutrients; vitamin D2; sensory evaluation; biological value

1. Introduction
Currently, the urgent need to address health‑related conditions, such as obesity and

metabolic disorders, leads to the development and incorporation of ‘healthy’ and ‘func‑
tional’ foods in the everyday diet, resulting in a flourishing market of functional foods.
Moreover, snack companies are recontextualizing the term “snack food” in light of the
consumer’s turn towards modern concepts such as “healthy living” and “active lifestyle”
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in an effort to reverse their negative dietary reputation by introducing healthier snack
products [1,2].

However, the term “healthy snack” still remains unclear, since definitions of “snack”
and “snacking” strongly depend on consumers’ perceptions, various socioeconomic data
(i.e., age, income, nationality, size of household, etc.) and eating habits, such as food type,
frequency of snacking or eating occasions (breakfast, lunch, dinner) [3]. Until now, snacks
have been considered to be energy‑dense foods that are high in sugar, salt, saturated fats,
and calories, and low in nutrients. Nevertheless, their health effects and whether they are
beneficial or not have not been fully assessed [2]. Accordingly, the current trend focuses
on snacks that disavow the label of “poor‑nutrient foods” by incorporating nutrients to
enhance health, such as vitamins, amino acids, minerals, fibre, etc. [4].

Nutrient‑Rich Foods (NRF) Index scores have been implemented to assess the nutri‑
ent profile of the snacks and to determine whether they are nutrient‑dense [4]. As no sys‑
tematic definition or official constituted recommendations of ‘healthy snack’ are currently
available, the inventory and tracking of NRF scores of various types of snacks provide
essential information regarding their nutritional value. Hence, NRF scores facilitate the
formation of more functional and nutrient‑dense snack options and the establishment of
international consensus nutrition policies and dietary recommendations related to snack
consumption [3,5]. Other indices that assess the nutritional quality of the lipid fraction
include atherogenicity index (AI), thrombogenicity index (TI) and fatty acids hypocholes‑
terolemic/hypercholesterolemic ratios (h/H) [6–9].

Since the current trend in the snacksmarketplace is the replacement of starchy and fat‑
rich ingredients (i.e., potatoes, corn, cheese) with healthier ones (i.e., kale, pumpkin, beet‑
root, grains, broccoli, orange, pineapple, etc.), mushrooms are gaining popularity as alter‑
natives due to their high protein, dietary fibre, copper, zinc, vitamins B, choline, and potas‑
sium content, and their low cholesterol content. Additionally, the cultivation of mush‑
rooms is increasing globally, while several health‑promoting properties such as their chole
sterol‑lowering, anticancer, antibacterial, and antidiabetic ones have been well
documented [10,11]. A commercially important edible mushroom species is Pleurotus
which possess a high nutritional value due to protein content and dietary fibre [12]. Pleu‑
rotus eryngii (P. eryngii), mushroomswhich are native toMediterranean regions, are consid‑
ered a high‑quality and low‑calorie food, with various pharmacological properties.
Their polysaccharides possess several antioxidant, anti‑inflammatory, antibacterial, and
hypolipidemic characteristics [13].

Thus, the objective of the present work was to chemically characterize and determine
the nutritional value of an innovative healthymushroom‑based snackwith P. eryngiimush‑
rooms that were UVB‑irradiated to fortify their vitamin D2 content. Therefore, proximate
composition, amino acids, fatty acids, ergosterol, vitamins, and trace elements analyses
were applied. In addition, nutritional quality indices were calculated to evaluate the nutri‑
ent density and healthiness of the produced snack. Finally, the sensory characteristics of
the mushroom snack were investigated by a trained sensory panel in order to assess the
acceptance of the final product.

2. Materials and Methods
2.1. Materials

All reagents and chemicals used in this study were of analytical grade and were pur‑
chased from Sigma‑Aldrich (St. Louis, MO, USA). The EZ:faast Gas Chromatographic
Amino Acid Analysis kit was purchased from Phenomenex® (Torrance, CA, USA). Pure
gamma‑aminobutyric acid (GABA) was purchased from Sigma (St. Louis, MO, USA). β‑
Glucan Assay Kit (Yeast and Mushroom) was purchased from Megazyme Int. (Leinster,
Ireland). Methyl nonadecanoate (98% purity) was obtained from Sigma‑Aldrich chemicals
(Missouri, USA). ERM®‑ CD281 (elements in rye grass) certified referencematerial was pur‑
chased from the European Commission’s Joint Research Centre (Geel, Belgium). All gas
chromatography‑mass spectrometry (GC‑MS) and inductively coupled plasma mass spec‑
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trometry (ICP‑MS) solvents were of MS grade and were acquired fromMerck (Darmstadt,
Germany). All gases were obtained from Linde Hellas (Mandra, Greece). Standards of
vitamin D2 (ergocalciferol, ≥98%), vitamin A acetate (475,000–650,000 USP units/g) and
L‑ascorbic acid (≥99%) were purchased from Sigma‑Aldrich (Steinheim, Germany). LC
and MS grade solvents were acquired from Fisher Scientific (Loughborough, UK), while
formic acid (LC‑MS grade) was from Scharlab S.L. (Barcelona, Spain).

2.2. Methods
2.2.1. Preparation of Mushroom Snack

Whole fresh P. eryngii fruiting bodies (caps and stems) cultivated on a wheat straw‑
based substrate were thin cut (2 mm thickness) with a vegetable processing machine. The
sliced mushrooms were seasoned with yeast extract and garlic powder for flavor enrich‑
ment at a ratio of 0.5% (w/w). No artificial preservatives, colors or flavors were added.
The slices were then baked in a professional oven at 120 ◦C for 20 min using no fat or
oil. The dry crisps were allowed to cool down, then subjected to UVB‑irradiation under
a controlled environment of a thermostabilized cabinet to promote vitamin D2 concentra‑
tion levels. The irradiation was applied under the following scheme: linear lamps of 39 W
having a definite band of 290–315 nm were placed at a distance of 20 cm from one an‑
other; crisps were laid 20 cm far from light source and were UVB treated for 120 min. Six
gram portions of the obtained product were packed in sachets made of aluminum foil and
sealed airtight. The snacks were stored at room temperature and in darkness until further
investigation. P. eryngii crisps not exposed to UVB light, and prepared following the afore‑
mentioned procedure, were set as replicate control samples to examine the variant of irra‑
diation and the respective vitamin D2 content enhancement. Further, microbiological tests
were conducted in a certified laboratory to monitor the compliance to safety and hygienic
requirements indicated by the relevant legislation for foodstuffs (Regulation 2073/2005).
The final snack was prepared and packaged at the facilities of “Dirfis mushrooms” in Eu‑
boea, Greece.

2.2.2. Proximate Analysis
Crude Protein

Crude protein of the snackwas calculated based on its Kjeldahl nitrogen content using
the converting factor 6.25. The measurement was done in triplicate.

Total Lipid
The lipid content was measured by the colorimetric sulfo‑phospho‑vanillin reaction,

employing commercial sunflower oil as a lipid standard [14,15]. The measurement was
carried out in triplicate.

Energy Content
The gross energy content of the snack samples was determined with an IKA C4000

(IKA Analysentechnik, Heitersheim, Germany) adiabatic bomb calorimeter. The measure‑
ment was done in triplicate.

Crude Fibre
Crude fibre was determined by the Weende’s method using a Dosi Fibre apparatus

(Selecta, S.A., Barcelona, Spain). The method is based on the solubilization (digestion) of
non‑cellulosic compounds by a sulfuric acid and potassium hydroxide solution. Crude
fibre is the loss on ignition of the dried residue remaining after digestion of the sample,
determined gravimetrically.

2.2.3. Free Amino Acids
Free amino acids (FAAs)were extracted from snack as previously described [16]. Three

hundred mg of powdered sample were placed into 15 mL screw capped vials. Then we
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added 5mL of hydrochloric acid 0.01M, and samples were magnetically stirred for 15 min
at room temperature. Extracts were settled for 45 min, and supernatant (1 mL) was cen‑
trifuged at 7200× g for 30 min. Supernatants were stored at −40 ◦C until further analysis.

FAAs profile was obtained with EZ:faast™amino acid derivatization protocol for GC‑
MS. Solid phase extraction was followed by AAs derivatization and liquid/liquid extrac‑
tion of the derivatives. One hundred µL of individual extract and 20 nmol of norvaline as
internal standards were placed into sample preparation vials. Then, a solid phase extrac‑
tion was performed via sorbent tips that bind AA derivatives, while allowing interfering
compounds to flow through. Derivatization was conducted at room temperature. The
derivatized AAs were extracted into 100 µL of isooctane/chloroform, sealed in GC vials
and analysed by GC‑MS.

A Mass Selective Detector (Electron Impact, 70 eV), a split‑splitless injector, and an
HP7683 auto sampler were used for the analysis. Derivatized samples (2 µL) were injected
into the GC at a split ratio of 1:15. The separation was conducted on a Phenomenex Zebron
ZB‑A AAs column (length = 10 m, internal diameter = 0.25 mm, film thickness = 25 µm).
The carrier gas was high purity helium at a constant flow of 1.1 mL min−1. The tempera‑
tures of injector and transfer line were at 250 and 340 ◦C, respectively. Oven temperature
was initially set at 110 ◦C, and then increased to 320 ◦C at 30 ◦C/min where it was held
for 3 min. A selective ion monitoring (SIM) GC–MS method was used for the detection
and quantification of 22 AAs, based on the ± 0.05 RT presence of target and qualifier ions
at the predetermined ratios, together with the electronic library “Agilent. L” of the kit.
Quantification was performed using norvaline as the internal standard and constructing
five points’ reference curves for each AA by standard AAs solutions. GABA was quan‑
titated similarly, by employing pure GABA and extracting the respective m/z (mass to
charge ratio) ions. The analysis was done in triplicate.

2.2.4. Fatty Acid Profile
The FAs were determined as fatty acid methyl esters (FAMEs) as described by Alexi

et al. [17], after the extraction and direct trans‑esterification of the powdered snack in a
methanol‑toluene (3:2) solution and a freshly prepared acetyl chloride‑methanol solution
1:20 (v/v). FAMEs were analysed by GC‑MS (Agilent Technologies, Santa Clara, CA, USA)
on an Agilent DB‑WAX Column (30 m length, 0.25 mm internal diameter, 0.25‑µm film
thickness). The oven temperature was initially at 130 ◦C, raised to 215 ◦C at a rate of
3 ◦C/min, then raised to 220 ◦C at a rate of 0.3 ◦C/min, and finally, was raised to 240 ◦C
at a rate of 20 ◦C/min, where it was kept for 12 min. The injector was operated at 25:1
split ratio, and the temperatures of the MS source and quadrupole were set at 230 ◦C and
150 ◦C, respectively. Peak identification was based on the retention times and m/z ions of
the standardmixture of 37 FAME andwas confirmed bymeans of the NIST05mass spectra
library. FAMEs were semi‑quantitated by employing methyl nonadecanoate as the inter‑
nal standard.

2.2.5. Ergosterol
Ergosterol content was determined according to Sapozhnikova et al. [18] with slight

modifications [19]. A 200mgquantity of samplewas saponifiedwith 2mLof potassiumhy‑
droxide (3 M) in methanol under sonication (10 min) and heated (60 ◦C, 60 min). To avoid
the potential photoconversion of ergosterol to vitamin D2, all handling was performed un‑
der reduced light conditions. The non‑saponified fractionwas subsequently extractedwith
1.5 mL of hexane, and the solvent was evaporated to dryness (Speed Vac, Labconco Corpo‑
ration, Kansas City, MO, USA). Sterols were derivatized to trimethylsilylethers (TMS) with
N,O‑bis(trimethylsilyl)trifluoroacetamide (BSTFA) at 70 ◦C for 20 min, and 1 µL aliquots
were injected in the gas chromatographer. AnAgilent HPGC 6890N (Wallborn, Germany)
coupled with a mass spectrometer (Agilent HP 5973, Wallborn, Germany) at a split ratio of
5:1 was employed. The analysis of the TMS sterol derivatives was carried out under elec‑
tron impact ionization (70 eV), and separation was achieved on an Agilent J&W HP‑5MS
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capillary column (30 m × 0.25 mm × 0.25 µm). The carrier gas was high—purity He at a
0.6 mL/min flow rate. The injector and MS detector transfer line were kept at 220 ◦C and
300 ◦C, respectively. The oven temperature was set initially at 210 ◦C, raised to 300 ◦C at
5.5 ◦C/min and held for 14 min. The presence of ergosterol was verified by its ion frag‑
ments at proper ratios according to literature [20,21]. A 6‑point calibration curve, covering
the range 0–600 µg was constructed for the quantification of ergosterol; cholesterol was
employed as the internal standard.

2.2.6. Macro and Trace Elements
All materials were previously washed thoroughly, soaked in dilute HNO3 and rinsed

with ultrapure water of 18.2 MΩ cm (Millipore, Bedford, MA, USA). For the preparation
of required solutions, class A volumetric glassware was used. Samples were wet digested
with the addition of HNO3 65% supra pure and H2O2 30% supra pure in a microwave
digestion system (AntonPaarMultiwaveGOPlus, Graz, Austria) and subsequently diluted
to a final volume of 25 mL, according to the procedures described in Grigoriou et al. [22]
slightly modified.

Trace elements determination was performed by (ICP‑MS), with a Thermo Scientific
ICAP Qc (Waltham, MA, USA) instrument. Measurements were performed in a single
collision cell mode, with kinetic energy determination (KED) using pure He. Matrix in‑
duced signal suppressions and instrumental drift were corrected by internal standardiza‑
tion (45Sc, 103Rh). Limits of detection (LODs) were calculated by multiplying standard
deviation of seven replicate samples prepared at an approximately low concentration by
3.14 [23]. LODs in µg g−1 of dry weight were calculated equal to 0.01 for Cd and As, 0.02
for Co and Ni, 0.03 for Pb and Hg, 0.05 for Cr, Cu, Sn, and Mn, 0.16 for Zn, 0.20 for Se,
and 0.22 for Fe. Measurement of the macro‑elements K, Na, Ca, and Mg in the digested
samples was performed by atomic emission spectrometry (AES), using a Varian SpectrAA
200 (Varian, Mulgrave, Australia) instrument.

For quality assurance of the experiment, within each batch of samples we included
at least one procedural blank. For the accuracy and precision of the method, a certified
reference material (CRM) ERM®‑ CD281 (rye grass) was analysed, and recoveries for As,
Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Znwere from 85% to 120%. Recovery tests were performed,
through the analysis of metal‑spiked samples, and recovery efficiency for spiking sample
analysis was ±25% for all elements.

2.2.7. Quantification of β‑Glucans
Total and α‑glucans were measured according to the instructions of the Megazyme

commercial kit ((Megazyme Int., Bray, Ireland), and β‑glucans content was calculated by
subtraction of α‑glucans from the total glucans.

2.2.8. Detection and Quantification of Water‑ and Fat‑Soluble Vitamins
Water soluble vitamins were quantified according to Gentili and Caretti [24], Kivrak

et al. [25], and Ciulu et al. [26] while fat soluble A, E, and K were detected and quantified
according to Katsa et al. [27] in a Thermo Accela High Pressure Liquid Chromatography
(HPLC) equipped with an autosampler (Thermo Scientific, Waltham, MA, USA) and cou‑
pled with a Triple Quadrupole Vantage MS (Thermo Scientific, USA) in a private indepen‑
dent laboratory (Eurofins Athens Analysis Laboratories, Athens, Greece).

For the quantification of Vitamin D2, a new LC‑MS‑MS method was developed. At
first, each snack portion out of a total of nine separate samples was treated and analyzed
one by one for assessing vitamin D2 concentration level. The content of each intact snack
package of 6 g was ground to fine powder and mixed to ensure homogeneity before being
partly withdrawn for extraction. The extractions were carried out in triplicate per snack
sample. Specifically, samples of about 2 g were subjected to a painstaking extraction pro‑
cedure based on previous studies for the elaborate recovery of vitamin D [28,29]. Pre‑
weighed samples were hydrolyzed with the prevalence of high pH value conditions and
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elevated temperature for 45min. After cooling to room temperature, the solutionswere ad‑
justed to approximately neutral pHwith the addition of hydrochloric acid. A liquid‑liquid
extraction with water and n‑hexane followed for the formation of a biphasic system, and
the collected organic layer was collected after the stabilization of the biphasic for 20 min
at ambient temperature. The crude solid extract was recovered using a rotary evaporator
operating at 45 ◦C for the gentle removal of solvents. The dry residue was redissolved
in 2 mL of a methanol‑water mixture, then centrifuged at 4 ◦C for 15 min. The super‑
natant was finally filtered with hydrophobic PTFE filters of 0.45 µm pore size and stored
at –20 ◦C prior to LC‑MS injection. The same protocol was followed for the analysis of con‑
trol samples, i.e., untreated mushroom crisps in relation to UVΒ‑irradiation. Vitamin D2
was determined by implementing an HPLC tandem mass spectrometric method using an
Ultra/HPLCPoroshellHPH‑C18 reversed‑phase column (particle size 2.7µm, 2.1× 150mm
i.d; Agilent, Santa Clara, CA, USA) and a matching guard column. A lipophilic vitamin,
namely, vitaminA acetate, was used as an internal standard to correct for differences in the
reproducibility of sample treatment and analysis. Experiments were executed in an Agi‑
lent 1200 HPLC system equipped with an autosampler (Agilent, Santa Clara, CA, USA),
and coupled with a 3200 Q TRAP triple‑quadrupole linear ion trap mass spectrometer for
mass spectrometric investigation (SCIEX, Framingham, MA, USA). The HPLC method‑
ology applied for separating vitamin D2 and internal standard from co‑extracted ingre‑
dients in the solution for [a period of time]; the analysis was based on a recent work
from our research team [30]. Specifically, a binary mobile system compounded from (A)
methanol [formic acid 0.1% (v/v)] and (B) n‑hexane [formic acid 0.1% (v/v)] was used at a
constant flow rate of 150 µL/min throughout the gradient solvent scheme. Total run time
for each injection was 44 min, embedding 33 min of analysis and the rest of the time for
re‑equilibration. The autosampler and column operated at approximately 18 ◦C. Standard
solutions, quality control samples, sample solutions, or blanks were injected at a volume
of 5 µL. Ionization was achieved via an electrospray ionization (ESI) source operating in
positive mode. Three separate multiple reaction monitoring (MRM) transitions were re‑
ported for each of the supervised compounds, with precursor and main quantifier ions
included. All measurements were performed in triplicate, and reliability of LC‑MS/MS
based analysis was assured by validating the method. Briefly, selectivity, stability, linear‑
ity range, limits of detection and quantitation, and robustness were examined. Pre‑spiked
matrix‑matched standard curves with a concentration range from 2 to 120 µg·mL−1 were
prepared to include matrix effect and total process recovery for the quantification of vi‑
tamin D2, exhibiting an adequate degree of linearity as assessed by coefficient of deter‑
mination (R2 = 0.998). A typical standard curve equation used in our experiments is as
follows: Y = 15041X + 82881, where Y stands for the MRM peak area (a.u.) of ergocalcif‑
erol MS ion, and X stands for vitamin concentration in the pre‑spiked final solution for
analysis expressed as µg·mL−1. Quality control samples were used to assure accuracy and
precision of the analysis for each running batch, ranging within (±)15% of the nominal
value. Moreover, the “carry over” effect between injections was investigated to ensure
confidence in the analysis. Data acquisition, assessment and processing were performed
using Analyst mass spectrometry software (v.1.4.2, SCIEX, Framingham, MA, USA). Sta‑
tistical calculations were generated with the Origin Pro 8 SR0 (OriginLab, Northampton,
MA, USA) statistical software package.

2.2.9. Sensory Analysis
The sensory analysis of the samples was carried out at the Laboratory of Food Chem‑

istry and Technology (School of Chemical Engineering—National Technical University of
Athens) by a panel of 12 well trained tasters (4 males and 8 females). The aimwas to evalu‑
ate the organoleptic properties of four different treatments to which the dried mushrooms
were subjected (presented in Table 1). The following sensory indicators were assessed: ap‑
pearance, odour, taste, texture and aroma/flavor, and all testing was conducted twice for
every sample. The tasters were requested to rate the samples for the above indicators with
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a scale from 1 to 10, (1 minimum and 10 maximum), to hierarchically order them from
highest to lowest preference and to give a score from 1 to 10 for their overall impression.

Table 1. Snack treatments used for the evaluation of the organoleptic properties. Percentage values
of ingredients refer to w/w.

Treatment Description

1 yeast (0.5%) + taste with the tradename
Maxagusto S‑99 (1%)

2 yeast (0.5%) + taste with the tradename
Maxagusto S‑99 (1%) + salt (1.5%)

3 yeast (0.5%) + garlic powder (1%) + salt (1.5%)

4 yeast (0.5%) + taste with the tradename
Maxavor Key Beef ΒX‑H (1%) + salt (1.5%)

2.2.10. Nutritional Quality Indices
In this study we used NRF9.3 to measure the nutrient density of an innovative

snack [31,32]. The NFR9.3 algorithm is based on the sum of nine nutrients to encourage
(protein, fibre, vitaminA, vitaminC, vitamin E, calcium, iron, magnesium, and potassium),
minus the sum of 3 nutrients to limit (saturated fat, added sugar, and sodium). Daily Ref‑
erence Values (DRVs) are based on Food and Drug Administration (FDA) standards and
are used to compute percentage of daily values of each nutrient.

AI, TI and h/H were computed according to the following equations [8,9]:

AI: [(C12: 0 + (4 × C14: 0) + C16: 0)]/(ΣMUFA + Σω6 + Σω3)

TI: (C14: 0 + C16: 0 + C18: 0)/[(0.5 × ΣMUFA) + (0.5 × Σω6 + (3 × Σω3) + Σω3/Σω6]

h/H: (C18: 1ω9 + C18: 2ω6 + C18: 3ω3 + C20: 4ω6 + C20: 5ω3)/(C14: 0 + C16: 0)

2.2.11. Antioxidant Capacity and Total Phenolic Content
Using the DPPH and FRAP assays, we evaluated the antioxidant potential of the

powdered snack methanolic extracts in terms of radical scavenging activity and reducing
antioxidant potential, respectively. Results on DPPH and FRAP are expressed as mmol
Trolox equivalents per 100 g.

In addition, the Folin‑Ciocalteu assay at 750 nm (AnalytikJena, Specord 200 photome‑
ter, Jena, Germany) was used to measure the total phenolic content of powdered snack
methanolic extracts employing gallic acid as a calibration standard. Resultswere expressed
as mg gallic acid equivalents (mg GAE) per 100 g.

3. Results and Discussion
3.1. Crude Protein Content

The protein content was found to be 25.43 ± 2.47 g/100 g. This result is in accordance
with previous studies performed on mushrooms of the same species [16].

3.2. Total Lipids
The total lipid content of the snack was 1.55 ± 0.02 g/100 g.

3.3. Crude Fibre
The average crude fibre content was 8.5 ± 0.01 g/100 g.

3.4. Energy Content
The energy content was 403.7 ± 2.8 kcal/100 g.
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3.5. Free Amino Acids
The total amount of FAAs was 4.95 ± 0.68 g/100 g, which is in accordance with pre‑

vious literature concerning P. eryngii mushrooms [16,33]. The most abundant FAAs were
alanine 0.76± 0.04 g/100 g, glutamic acid 0.64± 0.09 g/100 g, glutamine 0.49± 0.09 g/100 g,
leucine 0.42 ± 0.04 g/100 g, and thioproline 0.30 ± 0.05 g/100 g. Essential AAs accounted
for 1.41 ± 0.68 g/100 g, branch chained AAs (BCAAs) for 1.41 ± 0.16 g/100 g, short chain
AAs for 0.49 ± 0.05 g/100 g, aromatic AAs for 0.35 ± 0.03 g/100 g, and umami taste AAs
for 0.93 ± 0.20 g/100 g (Figure 1).
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Figure 1. Total and individual groups of free amino acids in the P. eryngii mushroom snack. EEAs,
Essential amino acids; BCAAs, Branched chain amino acids; SCAAs, Short chain amino acids; AAAs,
aromatic amino acids.

3.6. Fatty Acids Methyl Esters (FAMEs)
Fatty acid composition including total saturated fatty acids (SFAs), monounsaturated

fatty acids (MUFAs), polyunsaturated fatty acids (PUFAs), n‑3 and n‑6 fatty acids were
detected in the studied snack (Table 2). Up to 16 fatty acids were detected. Linoleic acid
(C18:2n6) predominated followed by oleic (C18:1n9) and palmitic (16:0). Unsaturated fatty
acids (PUFAs andMUFAs) predominated, representing 82.33% of total FAs, while the SFA
were only 15.24%.

3.7. Ergosterol
Ergosterol content in the studied snack was 0.55 ± 0.02 mg/g.

3.8. Macro and Trace Elements
The concentrations of four macro (calcium, magnesium, sodium, and potassium)

—and 13 trace elements (iron, nickel, lead, tin, mercury, cadmium, cobalt, chromium, cop‑
per, selenium, manganese, zinc, and arsenic) were recorded. The concentration of K was
24.2 ± 1.8 mg/g and that of Na was 2.1 ± 0.20 mg/g. Mushrooms are foodstuffs character‑
ized by a high‑K and low‑Na content [34,35]. The rest of the macro elements Mg and Ca
were also present at concentrations of 1.6 ± 0.29 mg/g and 0.30 ± 0.20 mg/g, respectively.
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Table 2. Fatty acids identified in the P. eryngiimushroom snack as percentage of total fatty acids and
as g/100 g of snack.

Fatty Acids % (w/w) of Total Fatty Acids g/100 g of Snack

Name Symbol Mean SD Mean SD

Linoleic 18:2ω6 67.999 0.149 0.969 0.002

Oleic 18:1ω9 12.425 0.240 0.177 0.003

Palmitic 16:0 11.902 0.301 0.170 0.004

Pentadecanoic 15:0 1.637 0.059 0.023 0.001

Stearic 18:0 1.010 0.030 0.014 0.000

Vaccenic 18:1ω7 0.671 0.010 0.010 0.000

Myristic 14:0 0.359 0.013 0.005 0.000

Docosadienoic 20:2ω6 0.212 0.113 0.003 0.002

Margaric 17:0 0.168 0.011 0.002 0.000

Linolenic 18:3ω3 0.163 0.004 0.002 0.000

Palmitoleic 16:1ω7 0.158 0.010 0.002 0.000

Gondoic 20:1ω9 0.148 0.006 0.002 0.000

Behenic 22:0 0.123 0.006 0.002 0.000

Erucic 22:1ω9 0.044 0.003 0.001 0.000

Arachidic 20:0 0.041 0.013 0.001 0.000

Total 97.569 0.977 1.390 0.014

SFA 15.239 0.407 0.217 0.006

MUFA 13.446 0.269 0.192 0.004

PUFA 68.373 0.274 0.975 0.004

Among the trace elements, themost abundantwere two essential heavymetals, Fe 460
± 69 µg/g and Zn 48± 6.7 µg/g, followed by Cr 7.2± 1.1 µg/g, Mn 4.3± 0.39 µg/g and Cu
3.3± 0.23 µg/g. The rest of the trace elementswere lower than 3 µg/g likeNi 2.8± 0.27 µg/g
or lower than 1µg/g for Pb 0.24 ± 0.04 µg/g, Se < 0.20 µg/g, Sn 0.07 ± 0.01 µg/g, Co
0.06 ± 0.01 µg/g, Hg 0.05 ± 0.01 µg/g, Cd < 0.01 µg/g, and As < 0.01 µg/g.

3.9. Content in Glucans
The content of total glucans was 37.08 ± 1.13% w/w, of which α‑glucans were

4.90 ± 0.27% w/w, and β‑glucans 32.18 ± 0.91% w/w.

3.10. Vitamins Content
The LC‑MS/MS analysis revealed a significant ergocalciferol enrichment in the irradi‑

ated mushrooms. While the vitamin D2 content of non‑irradiated P. eryngii snack samples
was only 0.593 ± 0.073 µg/g (N = 5), the irradiated ones presented a more than twelvefold
increase of vitamin D2 (7.50± 0.82 µg vitamin D2/g,N = 9), as an obvious result of the UVB
treatment. The measured D2 concentration corresponds to a load of 45.0 ± 4.9 µg vitamin
D2 in every airtight sealed aluminum foil packet (containing 6 g snack), which equals 1800
international units (IU) [36].

The concentration of other vitamins is presented in Table 3.
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Table 3. Vitamins concentration in the P. eryngiimushroom snack.

Vitamins Concentration

Vitamin A (µg/kg) 37.4

Vitamin B1 (mg/kg) 0.514

Vitamin B2 (mg/kg) 9.1

Vitamin B3 (mg/kg) 363.0

Vitamin B5 (mg/kg) 13,5

Vitamin B6 (mg/kg) 1.77

Vitamin B9 (mg/kg) <0.278

Vitamin B12 (µg/kg) <0.45

Vitamin C (mg/100 g) ND

Vitamin E (mg/kg) 0.398

Vitamin K1 (mg/kg) <0.00179

ND: non detectable.

3.11. Sensory Analysis Results
The results of sensory evaluation are shown in Table 4. Regarding detailed descriptive

characteristics, treatment 1 (yeast (0.5%) + taste with the tradename Maxagusto S‑99 (1%))
had the highest scoring formost of the appearance characteristics of the respective samples,
but scored lowest in odour, crispiness in mouth and taste intensity. Treatment 2 (yeast
(0.5%) + tastewith the tradenameMaxagusto S‑99 (1%) + salt (1.5%)) had the highest scoring
for key snack sensory characteristics, such as integrity of appearance, easiness of chewing
and taste intensity. Treatment 3 (yeast (0.5%) + garlic powder (1%) + salt (1.5%)) had the
highest scoring in colour intensity and hardiness in mouth, and Treatment 4 (yeast (0.5%)
+ taste with the tradename Maxavor Key Beef ΒX‑H (1%) + salt (1.5%)) in crispiness and
aroma/flavor, while at the same time it scored high in bitterness and strange taste. In total,
treatment 2 scored higher in overall impression (7.7/10) and 100% of tasters stated that they
would consume the respective samples again. Treatments 3 and 4 had significant overall
scoring (7.0/10 and 7.2/10 respectively) but samples from treatment 4 were preferable to
tasters for consuming them again compared to those from Treatment 3 (71% vs. 43%). On
the other hand, theworst treatmentmethodwas the first onewith 6,6/10 overall impression
and only 29% of tasters preferring to consume again the respective samples.

Table 4. Descriptive sensory profiles of the P. eryngiimushroom snack as affected by the four differ‑
ent treatments.

Characteristics (1–10, 10 = Maximum) Treatment

1 2 3 4

Appearance

Colour intensity 7.1 7.4 7.7 7.6

Homogeneity of
appearance 7.3 6.8 7.1 7.3

Homogeneity of
shape 6.7 6.7 6.4 6.7

Visual texture 6.9 6.7 6.7 6.9

Integrity of
samples 7.4 7.4 7.2 7.0

Defects 2.3 2.0 2.9 1.8
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Table 4. Cont.

Characteristics (1–10, 10 = Maximum) Treatment

1 2 3 4

Odour
Odour intensity 5.8 6.1 6.9 6.9

Defects 1.9 1.5 1.8 1.4

Texture in hand
Hardness 6.1 6.5 6.5 6.7

Crispiness 7.0 6.6 6.0 7.1

Texture in mouth

Hardness 6.1 6.8 6.9 6.8

Crispiness 6.4 7.1 6.7 7.5

Easiness of
chewing 7.1 7.6 7.1 7.5

Defects 1.9 1.6 2.1 1.6

Taste

Taste intensity 6.2 7.4 7.0 7.4

Saltness 4.6 5.8 5.3 5.8

Sweetness 4.1 3.9 4.1 4.1

Bitterness 1.1 1.3 1.1 1.5

Metallic taste 1.0 1.1 1.1 1.1

Strange taste 0.9 1.2 1.4 1.5

Defects 1.7 1.4 1.6 1.5

Aroma/flavor

Aroma/flavor
intensity 5.8 7.4 6.8 7.7

Mushroom
aroma/flavor 6.4 6.6 6.6 6.9

Yeast aroma/flavor 3.0 2.6 2.6 3.1

Additives
aroma/flavor 1.4 2.3 1.8 2.3

Defects 1.7 1.6 1.6 1.6

After‑taste 6.1 6.9 6.6 7.1

Overall impression (1–10, 10 =
maximum) 6.6 7.7 7.0 7.2

Order (1 = best, 4 = worst) 3.1 1.6 2.7 2.6

% of tasters who would consume again
samples from each treatment 29% 100% 43% 71%

3.12. Nutritional Quality Indices
Calculation of NRF9.3 is presented in Table 5. AI was 0.59, TI was 0.31, and h/H

was 6.72.

3.13. Antioxidant Power and Total Phenolic Content
As demonstrated by the DPPH and FRAP assays, snack extracts exhibited significant

antioxidant activity (399.92 ± 10.14 µmol Trolox Equivalents/100 g and 16.31 ± 0.07 µmol
Ascorbic Acid Equivalents/100 g, respectively). Total phenolic content was found to be
1.85 ± 0.01 µg GAE/100 g.
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Table 5. NRF 9.3 Sample Score Calculation for the P. eryngiimushroom snack.

Nutrients Amount in 100 kcal of
Snack DRV PDV

Protein (g) 8.28 50 17.00 Sum of nutrients to
encourage: 153.33

Fibre (g) 11.29 25 45.16
Vitamin A (IU) 3.09 5000 0.06
Vitamin C (mg) ‑ 60 0.00

Vitamin E [IU (mg)] 0.01 30 (20) 0.05
Calcium (mg) 7.43 1000 0.74
Iron (mg) 11.39 18 63.28

Potassium (mg) 599.43 3500 17.13
Magnesium (mg) 39.63 400 9.91

Saturated fat (g) 0.054 20 0.27 Sum of nutrients to
limit: 2.44

Added sugar (g) ‑ 50 0.00
Sodium (mg) 52.02 2400 2.17

NRF9.3/100 kcal 150.89
NRF9.3/serving 36.55

DRV: Daily Reference Value; PDV: percent daily value.

4. Discussion
During recent years, and especially since the COVID‑19 pandemic, while many peo‑

ple have gained weight and adopted unhealthy choices, consumers’ awareness and de‑
mand for healthier snack choices have been increasing. Snacks based on mushrooms can
provide a healthy alternative as they provide low calories, complex carbohydrates, essen‑
tialminerals, vitamins, dietary fibre, and are rich in protein, beta‑glucans and nutraceutical
compounds with antioxidant and anti‑inflammatory properties [10]. The aim of this study
was to explore whether an innovative mushroom‑based snack could be a healthy choice
in the human diet. To address this aim, P. eryngiimushrooms were UVB‑irradiated to en‑
hance vitamin D2 content and then baked in a professional oven prior to packaging. The
snack was packed in a quantity of 6 g that provides 65% of the recommended daily intake
of beta‑glucans (3 g) to lower cholesterol levels. Cereal grains are also a source of beta‑
glucans. We chemically characterized the snack and determined its nutritional value by
applying proximate amino acids, fatty acids, ergosterol, vitamins, and trace elements anal‑
ysis, computing nutritional quality indices and investigating its sensory characteristics.

Overall, our snack could be considered a healthy choice. Regarding its nutritional
profile, it has a low caloric content (24.22 kcal/package) and an energy content of 24.22 kcal
per serving; the latter is considerably low taking into consideration thatmost USDA snacks
vary between 76 and 214 calories per portion with a mean of 146± 25 kcals [37]. Moreover,
a 25% protein content is regarded as considerably high for a snack. Higher protein intake
in snacks has been associatedwith several cardiometabolic health parameters in adults (i.e.,
a negative association with diastolic blood pressure and cardiovascular disease risk), and
more protein consumption atmore frequent intervals results in higher total and abdominal
fat mass loss in an energy balance and deficit intervention in overweight adults [38,39].
Added to the above, the high potassium (24.2± 1.8mg/g) and low sodium (2.1± 0.20mg/g)
content suggest that this snack is an extremely healthy food option. In comparison with
previous studies, the levels in trace elements were alike [35]. Increased potassium intake
lowers blood pressure and contributes to decreasing the risk of heart disease and stroke.
On the other hand, intake of too much sodium increases blood pressure and the risk for
stroke. TheWorldHealth Organisation (WHO) in terms of the five priority actions for non‑
communicable diseases suggested a global goal of reducing salt intake to less than 5 g (or
2000 mg sodium) per person by 2025 [40].

Regardingfibre content, wemeasured considerable amounts of crudefibre (8.5 g/100 g)
and glucans (37.08 g/100 g) resulting in a total fibre content of 45.58%. Especially in rela‑
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tion to glucans, the snack’s content seems to be unaffected by its preparation (including
cooking) process compared with the raw material [19]. This agrees with other studies i.e.,
in Shiitake or Ganodermamushrooms [41,42].

The NRF9.3 score of our snack was found to be 150.89 (or 36.55 per serving), which
is considerably high taking into consideration that most popular snacks have NRF scores
that vary from−17 to 55. For example, yogurt, milk, and fruit are the most nutrient‑dense
snacks, while ice cream, pies, cakes and soft drinks are the most nutrient‑poor snacks [4].
Of course, it isworth noticing that ourmushroomsnack is baked andhas very lowmoisture
content. Yet, even when compared with other low moisture snacks, such as dry beans,
legumes, nuts, and seeds (which have a NRF9.3/100 kcal of 23.1 and a NRF9.3/serving of
44.7), its nutritional quality is high [32].

Sensory evaluation of the different preparation methods of the snack showed that
all four treatments had an acceptable sensory quality (>6/10 in overall impression). All
samples scored remarkablywell inmost key snack sensory characteristics, such as integrity
of appearance, texture, crispiness, and taste intensity. In total, treatment 2 [(yeast (0.5%)
+ taste with the tradename Maxagusto S‑99 (1%) + salt (1.5%)] scored higher in overall
impression (7.7/10), and 100% of tasters would consume samples of this treatment again.
Nevertheless, it seems that the preparation method and seasoning do not negatively affect
the acceptance of the product, and that a common commercial flavoring along with a low
amount of salt could provide a satisfactory outcome.

Regarding FAAs, all the essential FAAs are usually present inmushrooms, comprising
25–40% of total FAAs [43]. In the present work, all the essential FAAs (histidine, isoleucine,
leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine) were de‑
tected in the snack with their total amount reaching 1.41 ± 0.16 g/100 g. Among the es‑
sential FAAs identified, leucine predominated, followed by valine. In agreement with our
findings, leucine and valine predominated among essential FAAs in Pleurotus species culti‑
vated in wheat straw‑based substrates [16,44]. BCAAs are necessary for protein synthesis
and immunoglobulins, cytokines, and their receptors production. Thus, their availability
in the diet is of high importance since they also exhibit a significant immunoregulating
role [45]. The total amount of BCAAs in the studied snack was 0.77 ± 0.08 g/100 g, with
leucine standing out. Values for free BCAAs content fall within the range (0.064–3.675
g/100 g dw) of the aforementioned in several Pleurotus species [16,44,46–49]. Moreover,
the GABA content of the snack (0.03 g/100 g) was within the wide range (0.006 g to 0.390
g/100 g) recorded in previous studies [16,33,47,49]. GABA is a non‑protein, four carbon
AA present in plants, animals, and microorganisms. It functions as a neurotransmitter of
the central nervous system of vertebrates by decreasing neuron activity [50]. In agreement
with Tagkouli et al. [16], the concentration of free ornithine was 0.16 ± 0.03 g/100 g.

Our results in fatty acid analysis agree with previous reports for mushrooms of the
Pleurotus spp [51]. An important finding in this study is the low total lipid and SFA con‑
tent of the snack (1.55 g/100 g and 0.217 g/100 g, respectively) along with the significant
nutritional quality indices of the lipid fraction (AI was 0.59, TI was 0.31, and h/Hwas 6.72).
WHO recommends a reduction of total fat intake to less than 30% of total energy in order
to prevent weight gain and risk of noncommunicable diseases and a reduction in saturated
fats to less than 10% [52]. The AI, TI and h/H are well known indices of the atherogenic,
thrombogenic and hypo‑ or hypercholesterolemic potential of fatty acids, respectively, and
they have beenwidely used in several foods [53]. According to our scoring, our snack holds
a high hypocholesterolemic potential and a low atherogenic and thrombogenic potential
compared to other foods. For example, AI in various stages of lactation inmilk ranges from
4.08 to 5.13 [54], while eggs have been shown to possess an AI between 0.434 and 0.533, TI
between 0.393 and 0.781, and h/H between 1.81 and 2.26 [55]. The aforementioned indices
vary in several fish from 0.21–1.41 for AI, 0.14–0.87 for TI, and 0.87–4.83 for h/H [53].

The ergosterol content herein was lower than was reported in previous
research [19,56]. Given that ergosterol is the precursor of vitamin D and the mushrooms
have been exposed toUV light to increase the vitaminD in the final product, this outcome is
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valid, indicating the transformation of ergosterol to vitaminD.According to our results, the
rapid and straightforward technique of applying ultraviolet irradiation to P. eryngiimush‑
rooms proved to be effective at enriching the snack with vitamin D up to 12‑fold compared
with the non‑irradiated control (whichwas of no nutritional significance regarding the con‑
tent of the targeted lipophilic vitamin). Recent research results have shown the importance
of vitamin D in skeletal and non‑skeletal health; serum 25‑hydroxyvitamin D levels are not
only predictive of bone health but also of cancer and all chronic disease risks [57], while se‑
vere or chronic vitamin D deficiency is associated with a number of health risks in certain
populations, such as infections [58], cardiovascular diseases, cancer, diabetes [59], hyper‑
parathyroidism, rickets and osteomalacia [60,61]. Consequently, prevention and treatment
strategies have been highlighted and reconsidered. In this context, an adequate supple‑
mentation with vitamin D has been associated with reduced cancer mortality, e.g., a sig‑
nificant 17% reduction was demonstrated in a study where 2000 IU were administered to
adult men and women on a daily basis [62–64]. While vitamin D2

′s effectiveness was con‑
sidered to be 30% as great as vitamin D3, Holick et al. [65] found that vitamin D2 was at
least as effective in maintaining circulating concentrations of 25‑hydroxyvitamin D as vi‑
tamin D3 [65]. Regular intake of foods fortified with ergocalciferol has been indicated to
raise blood levels of its main bioactive metabolite (25‑hydroxy‑vitamin D) by 1.2 nmol/L
for every 40 IU of vitamin, and even up to 48 nmol/L for higher doses following oral ad‑
ministration [66,67]. The content of vitaminD2 in our snack falls within the tolerable upper
intake level (UL) for vitamin D as stated in the guidelines of health agencies. Specifically,
the European Food Safety Authority (EFSA) and the US Food and Nutrition Board of the
Institute of Medicine (FNB/IOM) set the UL for adults at 4000 IU per day [67–69]. Among
the few natural sources containing substantial levels of ergocalciferol, our all‑natural and
only lightly processed vitamin D‑rich P. eryngiimushroom product fits the consumers’ ex‑
pectation for a healthier on‑the‑go snack. Hence, special alimentation groups such as vege‑
tarians and vegans may incorporate it in their everyday diet. The studied snack may serve
to maintain the vitamin D status when consumed as part of a balanced diet and exhibits a
strong potential to curb the prevalence of vitamin D deficiency in the adult population.

The UVB‑irradiated and baked mushrooms retained only part of the total phenols
compared with the phenolic content in P. eryngii [56]. Heat treatment has been previously
shown to affect the total phenolics and antioxidant activities of P. eryngii extracts [70].
Herein, a significant antioxidant capacity was detected in DPPH (399.92 ± 10.14 µmol
Trolox Equivalents/100 g) and FRAP (16.31 ± 0.07 µmol Ascorbic Acid Equivalents/100 g)
tests on the snack extracts. Islam and his colleagues have evaluated DPPH in a wide vari‑
ety of edible mushrooms, with a range from 1.36 to 18.56 µmol TE/g with P. eryngii having
a DPPH of 11.16± 0.79 µmol Trolox Equivalents/g [71]. The antioxidant capacity of mush‑
rooms may be influenced not only by the remaining antioxidant content of mushrooms,
but also by those derived from baking, the Maillard reaction products.

5. Conclusions
The UVB‑irradiated and baked snack from P. eryngiimushrooms could be considered

a healthy snack choice. Based on its low caloric content, its fatty acid profile, but also on its
fibre content, potassium and antioxidant potential, this snack should be seen as one that
displays cardiovascular protectionwith a high hypocholesterolemic and a low atherogenic
and thrombogenic potential. Its content in vitaminD2 is important in terms of covering the
pertinent needs of the general population and most prominently of the vegans. The recent
trend of European consumers selecting healthier food options and the growing demand
for vegan snacks can make the introduction of such an alternative snacking option to the
European market a promising one.
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