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Abstract: This work proposes a Generic Model Control (GMC) strategy to regulate biomass growth
in fed-batch cultures of Escherichia coli BL21(DE3). The control law is established using a previously
validated mechanistic model based on the overflow metabolism paradigm. A model reduction is
carried out to prevent the controller from relying on kinetics, which may be uncertain. In order to
limit the controller to the use of a single measurement, i.e., biomass concentration which is readily
available, a Kalman filter is designed to reconstruct the nonmeasurable information from the outlet gas
and the remaining stoichiometry. Several numerical simulations are presented to assess the controller
robustness with respect to model uncertainty. Experimental validation of the proposed GMC strategy
is achieved with a lab-scale bioreactor.

Keywords: bioprocess control; generic model control; linearizing control; biotechnology

1. Introduction

Industrial production of recombinant proteins is commonly achieved through high cell-density
fed-batch fermentation of genetically modified strains of Escherichia coli, with glucose as the main or sole
carbon source. This is due to the many biological traits of this microorganism, such as the flexible culture
conditions, fast growth, the well-known physiological properties, the vast catalog of available tools for
genetic and genomic engineering [1], and the high production yields attainable [2].

One of the main challenges in high-density fermentations is the presence of acetate, produced when
E. coli growth is either performed under oxygen-limiting conditions or when the capacity for energy
generation within the cell is exceeded due to high carbon flux into the main metabolic pathways [3,4].
As a result, acetate presence leads to a decrease of biomass production yields and consequently a decrease
of the recombinant protein production [5,6].

In order to maximize productivity and to avoid acetate accumulation throughout fermentation, it is
important to maintain the substrate concentration to a certain threshold corresponding to the critical
oxidation capacity [7], inducing the necessity to design a closed-loop feeding strategy. Several control
strategies have been developed for similar fed-batch processes presenting overflow metabolism [8–12].

Accurate control of the substrate or acetate concentrations at low values may seem a straightforward
approach since the process is close to the edge between the respiro-fermentative and respirative modes,
where the majority of the available substrate is dedicated to biomass production. Some applications
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of this approach can be found in [13–16]. However, the lack of reliable online monitoring of acetate
and glucose at low concentrations is a major hurdle for the experimental application of these methods.
Additionally, the nonlinearity exhibited by the process and the need for an accurate determination of
the stoichiometry and the kinetics are drawbacks in the application of model-based control strategies.
Therefore, an adaptive control scheme with minimum reliance on stoichiometry and kinetics and
considering online measurements of substrate and acetate can be an attractive alternative.

Generic Model Control (GMC) was developed by Lee and Sullivan [17] and is an adaptive control
strategy based on feedback linearization, embedding the process nonlinearities in the design of the control
law. GMC was used in various process control applications, among which we can cite, for instance [18],
where GMC ensured tracking of the foreign protein level reference trajectory in E. coli fermentations [19],
where it was applied to anaerobic digestion; and [20], where GMC was used to control dual product
composition in an industrial high-purity distillation column. More specifically, in relation to the
present study, the GMC strategy was applied in [21] to control the specific biomass growth rate in
recombinant E. coli fed-batch cultures to an experimentally defined specific growth rate reference µre f (t).
Model simplification was carried out during the control design. In the same spirit, a control strategy
was developed in [22] and applied in [23], based on an adaptive linearizing control law, regulating the
acetate concentration with the dilution rate as a manipulated variable.

Taking advantage of the online measurement of the biomass concentration, the objective of the
present work is to develop and implement a GMC algorithm controlling biomass productivity during
the fed-batch fermentation of recombinant E. coli. In this control strategy, a predefined biomass trajectory
corresponding to a limited acetate production is imposed by the controller. The advantages of this
approach are the inclusion of the process nonlinear model in the control design and the compensation
of the model inaccuracies by online adaptation using a parameter estimator. In addition, the online
integration of the process model (i.e., the numerical solution of the mass balance differential equations)
is not required, which leads to an easy experimental implementation.

A model order reduction is applied to avoid reliance on the specific growth rates, to reduce the
computational cost, and to ensure that the process converges to the appropriate operating point.

This paper is organized as follows: In Section 2, the mechanistic model describing the growth of
E. coli is detailed. The generic model control strategy is presented and applied to the E. coli model
in Section 3, introducing a model order reduction to avoid the use of the kinetics in the control
design. In Section 4, a Kalman filter is developed to estimate the uncertain part of the control law.
The performance and robustness of the control strategy are tested in numerical simulations in Section 5.
Section 6 presents the materials and methods, and experimental results are proposed and discussed in
Section 7. Conclusions and perspectives end this study in Section 8.

2. E. coli Nonlinear Dynamic Model

This section presents the macroscopic model of E. coli cultures in fed-batch mode. The different
variables, parameters, and abbreviations used in this section are described in Table 1.

The model describing biomass (X) growth and acetate (A) formation on glucose as the main
substrate (S) in fed-batch mode is based on the following biochemical reaction scheme [14]:

S + kO1O
ϕ1−→ kX1X + kC1C (1a)

S + kO2O
ϕ2−→ kX2X + kA2 A + kC2C (1b)

A + kO3O
ϕ3−→ kX3X + kC3C (1c)
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where kξi(i = 1, 2, 3) are the stoichiometric coefficients and ϕj (ϕj = µjX) are the reaction rates [22],
modelled with Monod type kinetics [24]:

µ1 = min(qs, qscrit) (2a)

µ2 = max(0, qs − qscrit) (2b)

µ3 = min(0, qAC) (2c)

Table 1. Variables and abbreviations.

Variable Description Unit

X biomass concentration gL−1

S glucose concentration gL−1

A acetate concentration gL−1

O dissolved oxygen concentration gL−1

C dissolved carbon dioxide concentration gL−1

V effective medium volume L
ϕ1 glucose oxidation reaction rate gL−1h−1

ϕ2 glucose overflow reaction rate gL−1h−1

ϕ3 acetate oxidation reaction rate gL−1h−1

kξ{1,2,3} yield coefficients g g−1

KS Monod half-saturation constant of glucose consumption gL−1

KA Monod half-saturation constant of acetate consumption gL−1

kOS yield coefficient between oxygen and substrate consumption gL−1h−1

KOA yield coefficient between oxygen and acetate consumption gL−1h−1

KiA constant of growth inhibition by acetate gL−1h−1

qs substrate consumption rate gL−1h−1

qscrit critical substrate consumption rate gL−1h−1

qAC acetate consumption rate gL−1h−1

Fin feed flow rate Lh−1

D dilution rate (D = Fin/V) h−1

Sin substrate concentration in the feed medium gL−1

OTR oxygen transfer rate from the gas phase to the liquid phase gL−1h−1

CTR carbon dioxide transfer rate from the liquid to the gas phase gL−1h−1

kLaO volumetric transfer coefficient of oxygen h−1

kLaCO2 volumetric transfer coefficient of carbon dioxide h−1

Osat dissolved oxygen concentration at saturation gL−1

CO2sat dissolved carbon dioxide concentration at saturation gL−1

The consumption rates are defined by

qs = qsmax

S
Ks + S

(3a)

qscrit =
qOmax

kOS

KiA
KiA + A

(3b)

qAC =
kOS(qscrit − qs)

kOA

A
KA + A

(3c)

where qs and qAC denote the substrate and acetate consumption rates, respectively; qsmax and qOmax are
the maximal consumption rates for substrate and dissolved oxygen, respectively; and qscrit represents the
critical substrate consumption rate.
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The kinetic model (2) is based on the bottleneck assumption of Sonnleitner and Käppeli [25].
According to the substrate concentration level, two different operating modes can be distinguished.
A substrate concentration higher than the critical value corresponding to the available oxidative capacity
(S > Scrit) leads to acetate formation through the fermentative metabolic pathway (reactions (1a) and
(1b)). The system is said to be in respiro-fermentative mode. On the other hand, a low substrate
concentration (S < Scrit) leads to substrate and acetate (if present) oxidation, and the system is said to be
in respirative mode (reactions (1a) and (1c)).

Applying mass balances to the reaction scheme (1), we obtain [24] the following:

Ẋ = (kX1µ1 + kX2µ2 + kX3µ3)X− D X (4a)

Ṡ = −(µ1 + µ2)X− D (S− Sin) (4b)

Ȧ = (kA2µ2 − µ3)X− D A (4c)

Ȯ = −(kO1µ1 + kO2µ2 + kO3µ3)X− D O + OTR (4d)

Ċ = (kC1µ1 + kC2µ2 + kC3µ3)X− D C− CTR (4e)

V̇ = Fin (4f)

where D is the dilution rate defined by D = Fin
V . In the following, we consider the feed-rate Fin as the

manipulated variable.
OTR and CTR can be expressed with the following basic expressions [26]:

OTR = kLaO (Osat −O) (5)

CTR = kLaCO2 (CO2 − CO2sat) (6)

3. Generic Model Control

Generic Model Control (GMC) is based on the input–output linearization of the nonlinear dynamics
of the system of (4). The main objective is to track a desired output nominal trajectory [27]. Consider a
process described as follows:

ẋ = f (x) + g(x)u (7)

y = h(x) (8)

where x ∈ Rn is the state vector, u ∈ R is the manipulated input, and y ∈ R is the system output.
f : Rn → Rn g : Rn → Rn are nonlinear functions of the states x, and h : Rn → R is the output map.
From Equation (8), the output dynamics are given by the following:

ẏ =
∂h
∂x

[ f (x) + g(x)u] = L f h(x) + Lgh(x)u (9)

where L f h(x) = ∂h
∂x f (x) is the lie derivative of h along f .

The idea is to force ẏ to follow a prescribed dynamics defined by a specification input û, i.e., ẏ = û.
If Lgh(x) 6= 0 (i.e., the system is of relative degree 1), the control input is then given by the following:

u =
1

Lgh

(
−L f h + û

)
(10)
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The specification signal û can be defined using a proportional integral controller in the
following form:

ẏ = û = G1(yre f − y) + G2

∫ t

0
(yre f − y)∂τ (11)

where yre f is the reference output and where G1 and G2 are tuning gains, for which the values are chosen
according to the desired dynamic behavior.

From Equation (11), it is obvious that the resulting closed-loop transfer function (Figure 1) is
given by the following:

Y(s)
Yre f (s)

=
s(G1 + G2)

s2 + G1s + G2
(12)

where Y(s) and Yre f (s) are respectively the Laplace transforms of y and yre f . s is the Laplace variable.
Although the controlled system response is different from the classic second-order system due to

nonlinearity, similar plots of the closed-loop response for different values of ξ and ω0 can be obtained.
An example is given in Figure A1 in Appendix B with multiple responses for the studied process.

yre f
PI Controller

ε Linearizing lawû System
Fin y

−

Figure 1. Generic Model Control (GMC) structure.

G1 and G2 can be tuned so as to confer the desired damping ratio ξ and a natural frequency ω0 in
the following steps:

• Choose ξ according to the desired response shape from Figure A1.
• Choose an appropriate rise time tr and the corresponding ω0 = 3

tr
.

• Calculate G1 and G2 using the following equations:

{
G1 = 2ξω0

G2 = ω2
0

(13)

The nonlinear closed-loop stability and the performance analysis of the GMC are detailed in [28].
Nominal stability is ensured for any positive values of G1 and G2. The proof is based on finding a strict
Lyapunov function for the nominal process and on applying a perturbation theorem. Another stability
proof for a similar control structure with kinetic parameter estimation is given in [11].

3.1. GMC Applied to E. coli Cultures

The specific control objective in the fed-batch cultures of E. coli is to favor biomass production
and to reach high cell densities while avoiding acetate accumulation and its growth inhibiting effect.
This is achieved by determining a feed manipulation strategy tracking the imposed operating conditions,
ideally at the boundary between the respiro-fermentative and the respirative modes, where the substrate
concentration is neither limiting nor in excess (S = Scrit and qs = qscrit).

The classical control approaches consider either controlling the substrate concentration accurately at
the critical level (optimal) or controlling the byproduct (acetate) concentration at a low value (suboptimal).
The main obstacles to implement these two approaches are the metabolic switches between modes in
the neighborhood of the critical substrate concentration and the sensitivity limitations of the available
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online acetate and substrate measurement devices. Indeed, the glucose critical level is very low (O (10−2)
gL−1), and the acetate concentration at this critical level is equal to zero. Therefore, soft sensors with
high estimation accuracy and robustness are required.

In this work, we consider the tracking of a predetermined suboptimal biomass trajectory.
This approach has the merit of being pragmatic and inexpensive, as only an online biomass measurement
is required using a turbidity probe, with an advantage being the low measurement noise level of
such probes.

3.1.1. GMC Design Using the Full-Order Model

Considering biomass as the sole online measurement (y = X) and using the model Equation (4a)
and Equation (9), we obtain the following control law:

Fin =
V
X
(
(kX1µ1 + kX2µ2 + kX3µ3)X− F̂

)
(14)

provided that X 6= 0. In this expression, F̂ is given by the following:

F̂ = G1(Xre f − X) + G2

∫ t

0
(Xre f − X)∂τ (15)

The main limitation of the straightforward application of GMC is the difficulty to accurately
determine the specific growth rates, since the kinetics are based on the overflow metabolism paradigm
and are represented by metabolic switches. Moreover, an imposed biomass trajectory could possibly
lead to high flow-rates.

The feeding trajectory Finre f corresponding to a set biomass trajectory Xset is determined hereafter.
The biomass differential equation in respiro-fermentative mode is given by the following:

Ẋ = µXX− Fin
V

X (16)

where
µX = (kX1 − kX2)qscrit + kX2qs (17)

If the imposed biomass trajectory is exponential with a constant rate µset, the following feeding
profile is obtained:

Finre f = (µX − µset)V|X=Xset
(18)

The substrate dynamics is assumed to be fast and, therefore, in quasy-steady state (S = Sset, Ṡ = 0),
implying the following:

Ṡ = µSX− Fin
V

(S− Sin) = 0 (19)

where

µS = qsmax

S
Ks + S

∣∣∣∣
S=Sset

(20)

which leads to the following feed-rate profile:

Finre f =
µS

(Sin − S)
XV
∣∣∣∣
S=Sset

(21)
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From Equations (18) and (21), the reference feeding trajectory depends on the couple (Xset,Sset):

µS
(Sin − S)

∣∣∣∣
Xset ,Sset

= (
µX − µset

X
)

∣∣∣∣
Sset ,Xset

(22)

For each value of Xset, two possible solutions for Sset are obtained:

Sset = (α1 + α2Xset ±
√

α3 + α4Xset + α5X2
set)/α6 (23)

The expressions of the αj coefficients are given in appendix A. A numerical example with µset =
0.18 h−1 and Xset = 10 gL−1 is presented in Table 2. The first solution Sset1 is a low value of S, while the
second solution Sset2 is rejected because it corresponds to a high value and physically non-achievable
operating condition.

Table 2. αj values and Sset solutions for µset = 0.18 h−1 and Xset = 10 gL−1.

α1 = −1.5602 × 104 α2 = 164.0900
α3 = 2.4338 × 108 α4 = −5.1201 × 106

α5 = 2.6926 × 104 α6 = −62.4058
Sset1 = 0.0294 gL−1 Sset2 = 447.4088 gL−1

3.1.2. GMC Design Using a Reduced Model

A control design based on a reduced model is developed by applying the singular perturbation
technique [14]: the dynamics of substrate, oxygen, and carbon dioxide are considered much faster than
the dynamics of biomass and acetate. Thus, the fast variables are considered to be in quasi steady-state
and their dynamics are set to zero.

A fast-slow state partition is therefore proposed as follows:

ξ f =

S
O
C

 ξs =

(
X
A

)
(24)

with indices f and s being respectively related to fast and slow dynamics. The dynamic system for the
fast variables can be written from (4a) to (4f):

 Ṡ
Ȯ
Ċ


︸ ︷︷ ︸

ξ̇ f

=

 −1 −1 0
−kO1 −kO2 −kO3
kC1 kC2 kC3


︸ ︷︷ ︸

K f

ϕ1

ϕ2

ϕ3


︸ ︷︷ ︸

ϕ

−D

S
O
C


︸ ︷︷ ︸

ξ f

+

 DSin
OTR
−CTR


︸ ︷︷ ︸

Ff +Q f

(25)

where

• K f is the stoichiometric matrix.

• ϕ is the reaction rate vector defined as ϕ =
(

µ1X µ2X µ3X
)T

Since the dynamics of these variables (ξ̇ f = 0) as well as the dilution effects (Dξ f = Fin
V ξ f = 0) are

neglected, which are often several orders of magnitude smaller than the reaction terms, the following
equation holds approximately:

K f ϕ + Ff + Q f = 0 (26)
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If K f is full rank, Equation (26) can be rewritten as follows:

ϕ = K−1
f (−Q f − Ff ) (27)

The state space dynamics of the reduced model considering only slow variables is given by
the following: (

Ẋ
Ȧ

)
︸ ︷︷ ︸

ξ̇s

=

(
kX1 kX2 kX3

0 kA1 −1

)
︸ ︷︷ ︸

Ks

ϕ1

ϕ2

ϕ3


︸ ︷︷ ︸

ϕ

− Fin
V

(
X
A

)
︸ ︷︷ ︸

ξs

(28)

Replacing the expression of ϕ from (27) in (28) yields the following:

ξ̇s = K̄(−Q f − Ff )−
Fin
V

ξs (29)

where

K̄ = KsK−1
f =

(
¯k11 ¯k12 ¯k13
¯k21 ¯k22 ¯k23

)
(30)

The following equation are for the biomass:

Ẋ = − ¯k11
Fin
V

Sin − ¯k12 OTR + ¯k13 CTR− Fin
V

X (31)

where the parameters ¯k11, ¯k12, and ¯k13 are functions of the yield coefficients shown in Table 3.

Table 3. Theoritical dependency of k̄ij parameters.

Parameter Expression

¯k11
1
δ̄
(kX3(kC1kO2)− kC2kO1 − kX2(kC1kO3 − kC3kO1) + kC3kO2) + kX1(kC2kO3 − kc3kO2)

¯k12
1
δ̄
(kC3kX1)− (kC3kX2)− (kX3(kC1 − kC2))

¯k13
1
δ̄
(kO3kX1)− (kO3kX2)− kX3(kO1kO2))

δ̄ (kC1kO3 − kC3kO1 − kC2kO3 + kC3kO2)

From Equations (9), (15) and (31), the following control law is obtained:

Fin =
− ¯k12 OTR + ¯k13CTR− F̂

X + ¯k11 Sin
V (32)

where Fin is still given by Equation (15) and assuming that X + ¯k11 Sin 6= 0.
The advantage of the model reduction is that the desired operating condition (low substrate

concentration) is directly embedded in the control algorithm.
Since OTR and CTR are not available for online measurement in our experimental setup and the

biomass X is the sole measured variable, a parameter estimator is developed in the next section to
reconstruct the unavailable signals, also adapting the control law subject to parameter uncertainty.
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4. Parameter Estimation

Equation (31) for the biomass dynamics can be rewritten as follows:

Ẋ = γ − D (X + ¯k11Sin) (33)

where D = Fin
V and γ is the uncertain and unmeasurable time-varying parameter given by the following:

γ = − ¯k12 OTR + ¯k13CTR (34)

Let
X∗ = X + ¯k11Sin (35)

Hence, Equation (33) can be written in a compact form:

Ẋ∗ = γ− D X∗ (36)

γ can be estimated using a linear Kalman filter in the same way as presented in [11], where the production
rate of lactic acid is estimated in continuous mode.

Two estimation approaches are presented in the following, based on the classical discrete Kalman
filter which offers simplicity and easy implementation.

4.1. Constant Evolution of γ

First, γ is assumed to be constant, which is described by an exogeneous system:{
Ẋ∗ = γ− DX∗

γ̇ = 0
(37)

As biomass measurements are collected at discrete time (sampling time Ts), it can be convenient to
discretize Equation (37) using, for instance, the Euler scheme:[

X̂∗k+1
γ̂k+1

]
=

[
−DkTs + 1 Ts

0 1

] [
X̂∗k
γ̂k

]
+

[
v1,k
v2,k

]
(38)

X̂∗k =
[
1 0

] [X̂∗k
γ̂k

]
+ wk (39)

where Dk is the dilution rate at the time instant tk (Dk =
Fink

Vk
), assumed to be piece-wise constant. vk and

wk are respectively the process and measurement noises, assumed to be centered Gaussian white noises
with covariance matrices Qconst and Rconst, respectively. The covariance matrix of the error on the state
vector [Xk γk]

T is denoted Pconst.

4.2. Ramp Evolution of γ

Considering a ramp evolution of γ, Equation (37) becomes the following:{
Ẋ∗ = γ− DX∗

γ̈ = 0
(40)



Processes 2020, 8, 772 10 of 28

As in the previous case, the model is discretized and additive noises are considered:X̂∗k+1
γ̂k+1
˙̂γk+1

 =

−DkTs + 1 Ts 0
0 1 Ts

0 0 1


X̂∗k

γ̂k
˙̂γk

+

v1,k
v2,k
v3,k

 (41)

X̂∗k =
[
1 0 0

] X̂∗k
γ̂k
˙̂γk

+ wk (42)

The covariance matrices of vk and wk as well as the error on the state vector [Xk γk γ̇k]
T are denoted

QLin, RLin, and PLin, respectively.

4.3. Kalman Filtering

A discrete Kalman filter is then used to estimate X∗ and γ [29]. The control structure with the
Kalman filter estimation is illustrated in Figure 2.

Xre f
PI Controller

ε Linearizing lawû = F̂
Reactor

u = Fin X

Kalman Filter

γ̂

−

Figure 2. GMC combined with the Kalman filter.

The control law after including the estimated parameter γ̂ becomes the following:

Fin =
γ̂− F̂

X + ¯k11 Sin
V (43)

An anti-windup mechanism is also added to the integral term of F̂ to avoid integration accumulation
under input saturation:

F̂ = G1(Xre f − X) + G2

∫ t

0
[(Xre f − X) + Kω(usat − u)]dτ (44)

where Kω is the anti-windup gain.
As it will become apparent in the next section, both exogeneous models yield similar performances

in simulations.

5. Numerical Simulation

The model parameters used in the simulation study are taken from [24] and are given in Table 4.
The initial conditions and the different parameters of the controller and the estimator are presented in
Table 5.

The imposed exponential feed rate corresponding to a constant and low subtrate concentration is
given by the following:

Finre f =
µS

(Sin − S)
XV
∣∣∣∣
S=Sset

(45)
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From the model equations (4) and since µX is constant, we obtain the following:

d(XV)

dt
= µXXV (46)

Hence,

XV = X0V0eµX t (47)

where V0 and X0 denote the initial volume and biomass concentrations, respectively. The following
feeding profile is obtained:

Finre f =
µS

(Sin − S)
X0V0eµX t (48)

In this study, the considered Finre f profile given in [24] is applied:

Finre f =
µset

kXS

X0V0eµset t

Sin
(49)

where µset is the setpoint specific growth rate and kXS is the yield coefficient defined as grams of produced
biomass per grams of consumed substrate.

Table 4. Numerical values of the E. coli fed-batch model parameters (as in [24]).

Parameter Value Unit

kX1 0.184 g g−1

kX2 0.2899 g g−1

kX3 0.0412 g g−1

kA2 0.4324 g g−1

qsmax 3.2818 h−1

qomax 1.4032 h−1

KS 0.0502 gL−1

KiA 2.0410 gL−1

KA 0.3928 gL−1

kOS/kOA 1 -
kO1 0.7374 g g−1

kO2 0.3194 g g−1

kO3 1.3418 g g−1

kC1 0.7608 g g−1

kC2 0.1055 g g−1

kC3 0.8461 g g−1

Sin 500 gL−1

First, the Kalman filter is tested with both the constant and ramp exogeneous models for γ. Figure 3
shows the evolution of the variable γ constructed with the computation of OTR and CTR and its estimate
using both the constant and ramp exogeneous models. The estimator convergence is achieved in 20 mn
after a transient phase. Both exogeneous models yield good performance of the Kalman filter. In the
following (and in the experiments), the ramp model is selected for its slightly better results, shown in
Table 6.

Next, the control strategy is tested assuming that the variables are directly measurable (no Kalman
filter). The biomass reference trajectory is chosen as an exponential feed rate, corresponding to a constant
growth rate, an initial substrate concentration lower than the critical value (S∗ < Scrit), and an initial
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acetate concentration equal to zero. This operating trajectory allows the process to evolve close to
the edge between the respirative and respiro-fermentative modes, where cell growth is maximized.
The biomass reference trajectory should be carefully selected: µset ≤ µ?

X , where µ?
X is the optimal growth

rate. Simulation of biomass productivity and acetate production for different values of µset are given in
Figure 4. Biomass productivity increases for increasing µset values until µset = 0.24 h−1. For the sake
of security with respect to possible model uncertainties offsetting µX , µset will be selected in the range
[0.18, 0.22] in order to avoid acetate accumulation.

Table 5. Control and estimation parameters.

Initial conditions


X0
S0
A0
V0




1.42 gL−1

0.5 gL−1

0.5 gL−1

3.15 L


Te = 0.05 h

Control parameters G1 = 6, G2 = 9
ξ = 1, tr = 1 h

ω0 = 3
tr
= 3 rad/h

Reference characteristics Finre f
=

µset
kXS

V0X0eµset(t)

Sin
µset = 0.18 h−1, kXS = 0.2

Estimator covariance matrices PLin = diag([0.1 1 1])
QLin = diag([0.01 0.1 0.1])

PConst = diag([0.1 1])
QConst = diag([0.01 0.1])

RConst = RLin = 0.1

0 2 4 6 8 10 12 14 16 18 20
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time (h)

γ
(g
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γ estimation

Real
γ̂ constant
γ̂ ramp

Figure 3. γ̂ estimation based on biomass measurement using both constant and ramp exogeneous models.

Table 6. Root Mean Square error (RMSE) comparison between the constant and ramp exogeneous models.

Model Constant Ramp

RMSE (gL−1h−1) 0.0872 0.0860
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Figures 5–7 show the simulation results of the GMC strategy based on the nominal and reduced
models. The initial conditions and control parameters are the same in both scenarios, and all the state
variables are assumed to be measurable. In both cases, the biomass is regulated and the exponential
reference trajectory is tracked after 0.8 h; the convergence time is identical for the two models, as can be
seen in Figure 6. The offset due to initialization and model mismatch is forced to zero by the integral
term in the GMC control formulation.

However, in the case of the controller based on the full-order model, simulation shows that the
feed-rate reaches unrealistic high values as well as the substrate concentration, which gets close to
Sin. Indeed, as established in Section 3.1.1, for every set biomass value Xset, two possible substrate
concentrations can be obtained from the model and only one corresponds to realistic growth conditions.
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Figure 4. Biomass productivity (green) and acetate production (red) for different µset values.

Conversely, in the case of the control law derived from the reduced model formulation, the system
converges to the desired trajectory corresponding to low substrate concentration. The substrate and the
acetate concentrations are in the expected practical range, and the calculated flow rate is more realistic.

While the full-order system may indeed converge to both substrate solutions, the reduced model,
established under the assumption of low dilution rates, i.e., Dξ f = 0 and therefore Fin, will always
converge to the expected realistic trajectory.

To test further the robustness of the proposed controller, a sequence of Monte Carlo simulations is
achieved, with 15% relative uncertainty on the plant parameters following a normal distribution and
with the same control setting as the previous simulations. Five hundred Monte Carlo (MC) simulations
were performed, and the histogram of the parameter k̄11 during the MC runs is shown in Figure 8.
The biomass, substrate, acetate, and flow rate time evolutions are presented in Figure 9.

In all the runs, the corresponding reference substrate concentration Sset is reached and the acetate
concentration is equal to zero at the end of the culture, ending in respiratory mode. However, parameter
variations imply a distribution of the final biomass concentration. Nevertheless, the goal of reaching
high biomass concentrations while keeping the culture in good operating conditions is achieved in all
experiments.

The GMC scheme responses to disturbances and setpoint change are illustrated in Figures 10 and 11
respectively. The considered disturbance is a step of 0.3 gL−1 in the measured biomass concentration by
the turbidity probe, introduced at t = 5 h and lasting until the end of the simulation, since experiments
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have shown that the addition of antifoam can result in a bias on the online biomass signal. The results
show a good disturbance rejection and a fast tracking recovery. Compared to the set-point change,
the same simulation is achieved with a trajectory change from µset = 0.18 h−1 to µset = 0.22 h−1 at t = 3 h,
before returning to µset = 0.18 h−1 at t = 6 h. Obviously, the controller is able to handle all of these
disturbances, providing a fast and robust behavior.
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Figure 5. State variable evolutions with the full-order model (Right) and the reduced model (Left).
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Figure 6. Biomass tracking with the full-order model (Right) and the reduced model (Left).
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Figure 8. Histogram of the parameter k̄11 during 500 Monte Carlo runs.

Figure 9. State variables and feed-rate evolution during 500 Monte Carlo runs.

In order to compare the performance of the proposed GMC strategy with other regular control
schemes, a simulation is performed with a GMC controller, a first-order linearizing controller
(FOC) [22,23], and a proportional–integral–derivative controller (PID). A reference profile is imposed
with µset = 0.18 h−1, and a step perturbation of 0.3 gL−1 is added to the output signal. The first-order
linearizing controller has the same structure as the GMC but without the integral term:

F̂ = G1

(
Xre f − X

)
(50)

The PID controller has the following transfer function:

C(s) = Kp + Ki
1
s
+ Kd

s
1 + Tf s

(51)
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Figure 10. Closed-loop response to a setpoint change µset = 0.18 h−1 and µset = 0.22 h−1.

The PID parameters are chosen to have an overall dynamic behavior close to the one obtained by
the GMC, the parameters values are Kp = 0.07, Ki = 0.01, Kd = 0.01, and Tf = 0.5. The first-order
controller gain G1 is chosen equal to the GMC proportional gain.

Figure 12 shows state variable (X, S, and A) responses, the controller output (Fin), and the
biomass output tracking error (y − yre f ) for the three controllers (GMC, FOC, and PID). As can be
seen, the three controllers managed to track the biomass trajectory correctly, with slightly better
convergence charasteristics for the GMC controller, until the introduction of the disturbance at t =
7 h which provokes different controller reactions. The GMC control scheme presents by far the best
robust behavior. Furthermore, parameter tuning is straightforward in the GMC case compared to the
PID controller due to the nonlinear nature of the process, which is imbedded in the design of the GMC.

It is noteworthy to point out that, in the case of the PID controller, a metabolic switch from
the respirative to the respiro-fermentative modes occurred at t = 10.5 h, leading to acetate formation
due to substrate excess (S > Scrit), and thus, the control output (feed-rate) strayed from its initial
exponential curve.
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Figure 11. Closed-loop response to a disturbance on the biomass signal at t = 5 h.
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Figure 12. Comparison of the GMC performance with a first-order controller (FOC) and a PID controller.

6. Materials and Methods

6.1. Microbial Strain

The E. coli BL21 (DE3) strain was used in the bioreactor experiments. BL21 is known to lead to a low
acetate formation compared to E. coli K12, which is suitable for high cell-density cultivation as well as a
lower sensitivity to varying growth conditions [30].
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6.2. Growth Media and Culture Conditions

The media used during the different stages of the cultures are the Lysogeny broth (LB) medium and
a minimal growth medium (M9) [23,26]. Their respective compositions for the batch (precultures and
bioreactor) and fed-batch cultures are given in Tables 7 and 8. During the preparation, solutions were
filtered and sterilized in autoclave (121 ◦C at >15 psi for 30 minutes) to avoid contamination.

Table 7. Composition of the Lysogeny broth (LB) medium.

Component Concentration (gL−1)

Peptone 10
yeast extract 5
NaCl 6

Table 8. Composition of the M9 medium.

Component Batch (gL−1) Fed-Batch (gL−1)

Glucose 5–10 500
Na2HPO4 6 -
KH2PO4 3 -
NH4Cl 1 10
NaCl 0.5 -
MgSO4 · 7H2O 0.12 4

The cryogenic culture was incubated for 24 h on LB-agar petri dishes at 37 ◦C. A single colony was
transferred to 125 mL shaking flasks containing 20 mL LB-medium and incubated for 8 h on a shaker.
A volume of 10 mL of this culture was then inoculated into 500 mL shake flasks containing 250 mL of the
M9 media and incubated overnight (14–16 h) at 37 ◦C and 200 RPM. This culture is used to innoculate
the reactor and to start the batch phase.

6.3. Reactor Setup

The cultivations were performed in a bioreactor consisting of a 5 L jacketed glass vessel and a Digital
Control Unit (DCU) (BIOSTAT B plus, Sartorius Stedim Biotech, Germany). The reactor is equipped with
a water jacket and an agitation motor.

6.4. Online Measurements

The monitoring of the cultures is possible thanks to a potentiometric pH sensor (Hamilton,
Switzerland), an optical dissolved oxygen (pO2) probe (Hamilton, Switzerland), and a temperature sensor
(Sartorius, Germany). In addition, biomass concentration is available online via an absorption-based
photometric turbidity prepared probe (Fundalux II, Sartorius, Germany).

6.5. Offline Measurements

During the fermentation, samples were taken every hour. The biomass concentration was obtained
by measuring the optical density at 600 nm (OD600) in a Shimadzu UV Spectrophotometer (Pharmacia
Biotech, USA) correlated with dry cell weight (DCW) using a calibration curve. The conversion factor for
OD600 to DCW was 0.39. The supernatant was stored at −8 ◦C for later analysis using enzymatic assay
kits for acetate (Megazyme, Ireland), and the Dinitro Salicylic Acid (DNS) method was used for glucose.
The sensitivity level of analytical methods is considered around 0.1 gL−1.
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6.6. Operating Conditions

The batch and fed-batch fermentations were conducted under controlled conditions. The pH is
regulated at 7 by adding solutions of 12.5% ammonium hydroxide (base) or phosphoric acid 0.5 M (acid).
Dissolved oxygen was ensured to be above 30% air saturation by manipulating in cascade the agitation
speed and, when the maximum agitation is reached, the air flow. Minimum values for airflow and
agitation were imposed (1 L min−1 and 200 rpm, respectively). The temperature is controlled by the
DCU at 37 ◦C using a heating water jacket.

6.7. Cultures

The cell cultures consist in a batch phase followed by a fed-batch operation. The preculture is
prepared and incubated overnight as explained in Section 6.2. The initial OD600 in the reactor reaches
0.3–0.6. The batch fermentation had a starting volume of 3.5 L. A lower volume was not possible,
since the biomass probe would not be completely immerged.

The batch phase was monitored during the day. Once the glucose was nearly depleted, the fed-batch
phase started, and the feeding solution was added with a rate determined by the controller and applied
by a reglo-digital peristaltic pump (Ismatec, Germany).

6.8. Algorithm Implementation

The control and estimation algorithms were coded in Matlab for simulations and implemented
online in LabView using shared library and MathScript nodes. The measurements provided by the DCU
(pH, pO2, temperature, etc.) were monitored and saved by the MFCS software (Sartorius, Germany),
and imported to LabView by shared libraries. The biomass signal was measured separately by a data
acquisition device from national instruments (NI USB-6000USB Multifunction DAQ Device, National
Instruments, USA) and squired in LabView using DAQMax library. Figure 13 shows the diagram of the
different devices used for the online implementation.

NI
USB-6000USB

MFCS

LabView Pump Reactor

Figure 13. Real-time implementation diagram.

7. Experimental Results and Discussion

Two fed-batch experiments were performed to challenge the controller under real experimental
conditions. The control and estimation parameters are given in Table 9. The control parameters G1

and G2 were tuned in simulation, the chosen response time tr is equal to 1 h (ω0 = 3 rad/h), and the
damping ratio is fixed at ξ = 1. As far as the parameter γ estimation, the ramp model was used during
the experiments.

Biomass, glucose, and acetate concentrations as well as the feed flow rate are shown in Figures 14
and 15. Operating conditions are also shown in Figures 16 and 17 and Tables 10 and 11.
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Table 9. Control and estimation parameters used in the experiments.

Sampling Time Ts = 0.05 h

GMC parameters G1 = 6, G2 = 9
ξ = 1, tr = 1 h, ω0 = 3 rad/h

Reference Finre f
=

µset
kXS

V0X0eµset(t)

Sin
µset = 0.18 h−1, kXS = 0.22

Estimator covariance matrices PLin = diag([0.1 1 1])
QLin = diag([0.01 0.1 0.1])

RLin = 0.1

During the fermentations, the initial biomass concentration ranged from 0.1–0.3 gL−1 and reached
1.5–1.7 gL−1 by the end of the batch phase, characterized by glucose depletion. The online flag for
the end of the batch phase was the sudden increase of the pH and, consequently, the decrease of base
addition, as can be seen in Figures 16 and 17. The fed-batch phase starts around 6–8 h of culture time,
and the control algorithm is launched. During this period, the RPM increases due to the important
glucose oxidation inducing an increasing cell demand for oxygen. The base is added to compensate the
pH decrease.
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Figure 14. Experiment 1: Time evolution of the measured biomass, reference profile, glucose, acetate
concentrations, and feed rate.
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Figure 15. Experiment 2: Time evolution of the measured biomass, reference profile, glucose, acetate
concentrations, and feed rate.

The imposed reference trajectory is µset = 0.18 h−1, and the algorithm is launched with an initial
biomass concentration lower than the measured one to avoid excessive feeding at the start of the
fed-batch. In Figures 14 and 15, the biomass maintains an exponential growth close to the reference
trajectory, showing that the regulation is efficient. The glucose concentration remains close to zero
and almost constant during the fed-batch phase of both experiments, confirming the fast dynamics
assumption presented in the model reduction section (Ṡ = 0).

The acetate concentration remains under 2 gL−1 during both experiments. The evolution indicates
a metabolic switch between respirative and respiro-fermentative modes, as can be seen in Figure 14,
where the acetate concentration increases from 0.5 to 1.7 gL−1 due to overflow, and when the glucose is
nearly depleted at t = 4 h, the acetate concentration starts to decrease, i.e., the culture is in respirative
mode. This behavior is reproduced during experiment 2 (Figure 15).

The generic model controller performance, in term of robustness, is quite satisfactory. The controller
is able to maintain the biomass tracking error close to zero in both experiments despite the model
mismatch resulting from modeling uncertainties and the use of basic minimal growth media (M9).
The controller manages to adapt to the variations in the biomass signal by acting on the feed-flow rate.
We can be seen in experiment 1 (Figure 14), the flow rate follows an exponential rate but is however
heavily distorted due to the noisy estimation signal provided by the Kalman filter. We can see in Figure 18
that measurement noise indeed affects γ estimation and, in turn, the calculated controller input.
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Table 10. Experiment 1: State variables and operating conditions during the culture.

Age Biomass Glucose Acetate pH pO2
h gL−1 gL−1 gL−1 - %

0 0.165 5.915 0.563 6.96 72
1 0.232 4.995 0.868 6.95 56
2 0.439 4.548 1.095 6.94 29.8
3 0.945 3.275 1.223 6.96 29.3
4 1.156 2.148 1.754 6.95 29.8
5 1.219 0.549 1.898 6.94 31.4
6 1.282 0.437 1.871 6.98 29.5
7 1.594 0.256 1.615 7.02 30.4
8 1.893 0.282 1.212 7.1 29.5
9 2.007 0.239 1.015 7.06 28.4

11 2.492 0.162 1.135 7.05 28.7
13 3.183 0.291 1.077 6.94 29.9
15 4.122 0.308 1.01 6.94 29.5
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Figure 16. Experiment 1: Time evolution of pO2, acid and base concentrations, pH, and stirring.
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Table 11. Experiment 2: State variables and operating conditions during the culture.

Age Biomass Glucose Acetate pH pO2
h gL−1 gL−1 gL−1 - %

0 0.312 5.49 0.370 7.1 71.2
1 0.472 5.13 0.716 7.01 40.6
2 0.801 3.97 1.349 6.93 26.1
3 1.123 3.43 2.090 6.94 26.6
4 1.504 1.64 2.061 6.95 30.5
5 1.582 0.99 1.958 6.95 27.8
6 1.982 0.21 1.755 6.94 26.4
7 2.191 0.32 1.773 6.95 27.1
8 2.347 0.02 1.944 6.95 26.9
9 2.644 0.38 1.524 6.94 26.3

10 2.809 0.66 1.102 6.95 28.6
11 3.174 0.51 0.655 6.95 29.7
12 3.741 0.75 1.035 6.94 28.9
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Figure 17. Experiment 2: Time evolution of pO2, acid and base concentrations, pH, and stirring.

In order to compare the experimental results with the model predictions, a simulation using the
nominal model is performed with the reference profile of the first experiment and under the same
operating and control conditions (same parameter values). As shown in Figure 19, the ideal model
control input Fin follows the same tendency as the expertimental one.
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Moreover, the initial biomass trajectories are different, indicating a probable model/experiment
parameter mismatch. The GMC controller is therefore able to track the right biomass concentration
trajectory despite model uncertainties and measurement noise.
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Figure 18. γ̂ estimation during experiment 1 (left) and experiment 2 (right).
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Figure 19. Experiment 1: Comparison between the simulated and experimental biomass response and
the corresponding feeding profile Fin.

8. Conclusions

The goal of this study is to develop a control strategy to regulate the biomass growth of E. coli
BL21 (DE3) cultures in a fed-batch mode. The proposed strategy is generic model control, based on
input–output linearization and a proportional-integral control law. Model reduction is applied to a
mechanistic model describing the overflow metabolism. This model reduction allows obtaining a control
law which is independent of the specific growth rates. GMC is combined to a parameter estimator
provided by a linear Kalman filter.

Numerical simulations are carried out to test and tune the control and estimation algorithms.
Results show that the accuracy and robustness of the proposed control strategy are quite satisfactory.

Fed-batch experiments of a BL21(DE3) E. coli strain are achieved with a lab-scale bioreactor,
and results show that the biomass profile correctly tracks the given reference and that the controller
manages to keep the culture in suitable growth conditions.

The combined GMC–Kalman strategy has the advantage of great simplicity of implementation and
adaptability to the measurement environment. In the present setup, only online biomass measurements
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are used, but the availability of a gas analyzer could provide missing information on OTR and CTR,
leading to a simplification of the control law.
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Appendix A

Theoritical expression of the αj coefficients presented in Equation (23), calculated using Matlab
Symbolic Toolbox:

α1 = 9SinKOS − 9KSKOS + 50KSkX1qOmax − 50KSkX2qOmax − 50SinkX1qOmax

+ 50SinkX2qOmax − 50SinKOSkX2qSmax
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α6 = 2(9KOS − 50kX1qOmax + 50kX2qOmax − 50KOSkX2qSmax ) (A1)
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Figure A1. GMC biomass tracking response specification with parameters ξ and tr for the E. coli
BL21 model.
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