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Abstract: With the introduction of numerous technologies and equipment, the volume of data in
smart substations has undergone exponential growth. In order to enhance the intelligent management
level of substations and promote their efficient and sustainable development, the one-key sequential
control system of smart substations is being renovated. In this study, firstly, the intelligent substation
is defined and compared with the traditional substation. The one-key sequential control system
is introduced, and the main issues existing in the system are analyzed. Secondly, experiments are
conducted on the winding temperature, insulation oil temperature, and ambient temperature of
power transformers in the primary equipment. Combining data fusion technology and transformer
neural network models, a Power Transformer-Transformer Neural Network (PT-TNNet) model based
on data fusion is proposed. Subsequently, comparative experiments are conducted with multiple
algorithms to validate the high accuracy, precision, recall, and F1 score of the PT-TNNet model for
equipment state monitoring and fault diagnosis. Finally, using the efficient PT-TNNet, Random
Forest, and Extra Trees models, the cross-validation of the accuracy of winding temperature and
insulation oil temperature of transformers is performed, confirming the superiority of the PT-TNNet
model based on transformer neural networks for power transformer state monitoring and fault
diagnosis, its feasibility for application in one-key sequential control systems, and the optimization
of one-key sequential control system performance.

Keywords: intelligent substation; one-key sequential control system; fault diagnosis of power
transformer; data fusion; transformer neural network

1. Introduction

The intelligent substation adopts advanced, integrated, and environmentally friendly
intelligent devices. It requires full-site digitization, a networked communication platform,
and standardized information sharing as basic requirements. The system automatically
completes information collection, measurement, control, protection, and monitoring [1–3].
Currently, intelligent substations show a trend of increasing the number of connected
devices and the size of substations, leading to increased complexity and danger in manual
on-site switching operations [2]. To address this, a one-key sequential control system is
proposed to ensure the personal safety of operators and transition from traditional manual
step-by-step operations to remote automatic operations using computers.

The one-key sequential control system deals with a large volume and diverse types of
data, often containing noise and redundancy, leading to low data accuracy, wasted storage
space, and reduced data transmission efficiency and power grid reliability. In this regard,
corresponding measures need to be taken to improve the accuracy of equipment status
information and shorten the system response time [4].
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In the primary equipment of a substation, the power transformer is crucially connected
to various key processes such as generation, transmission, substation, and distribution.
Monitoring the operational status of the transformer and conducting regular fault diagnos-
tics are essential tasks to ensure the safety, stability, and reliability of the power system. This
article focuses on the monitoring and fault diagnosis of transformers as the main research
content, aiming to improve and optimize them, thereby enhancing the speed, stability, and
reliability of the one-key sequential control system.

Power transformers are typically equipped with various types of protective devices.
Selecting appropriate features as triggering criteria is crucial to selectively and correctly
isolate faults.

In the past, fault detection in transformers relied mainly on manual inspections and
de-energized tests. Maintenance personnel had to regularly inspect the transformer’s
external appearance to identify issues like oil leakage or abnormal sounds. Preventive tests
involving periodic power outages were conducted to determine if there were insulation
problems in the transformer. On-site inspections and fault analysis were time-consuming
and labor-intensive. Manual preliminary analysis was prone to errors, and incorrect fault
judgments could lead to mis-operations of the transformer’s relay protection devices, pos-
ing significant safety risks and economic losses. As a result, a series of intelligent algorithms
for transformer condition monitoring and fault diagnosis has emerged. Currently, research
on transformer fault detection can be categorized into three main types: mechanism models,
feature analysis, and machine learning [5–8].

Mechanism models are an analytical approach based on physical principles. They
involve constructing fault diagnosis models for transformers based on their physical
characteristics and operational principles, utilizing disciplines such as electromagnetics,
thermodynamics, and fluid mechanics. These models can accurately capture changes in
parameters such as current, voltage, temperature, and humidity within the transformer,
thereby providing high-precision assessments of its operational state. In [5], an accurate
fault diagnosis for transformers is achieved using a current compensation method. While
mechanism models in transformer condition monitoring offer advantages such as high
accuracy and a foundation in physical principles, they come with a series of drawbacks
and challenges, including dependence on data quality, limitations in model applicability,
real-time requirements, and computational complexity.

Feature analysis is primarily based on the analysis of data characteristics. Intelligent
sensing devices can continuously perceive and acquire various aspects of the transformer’s
condition, such as temperature, acoustic patterns, and discharges in real time. However,
the fault diagnosis methods in the feature analysis category also have certain limitations.
They often heavily rely on data quality and sensor accuracy, and in complex fault scenarios,
they may overlook some subtle or challenging-to-capture fault features. Moreover, for rare
fault types, they might be ineffective in providing a valid diagnosis.

Machine learning primarily relies on artificial intelligence technology, exploring fea-
ture interactions comprehensively through machine learning models and neural networks
to automatically extract features. Various network structures are designed to achieve fea-
ture information extraction for different categories, such as convolutional neural networks,
recurrent neural networks, long short-term memory networks, self-attention networks,
etc. This approach has shown significant effectiveness in processing image, audio, and
time-series data.

Based on this foundation, various fault diagnosis algorithms related to deep learning
have been derived. In [6], fuzzy logic and an Adaptive Neuro-Fuzzy Inference System
(ANFIS) model are employed for transformer fault diagnosis based on Dissolved Gas
Analysis (DGA). Reference [7] proposes a self-decision model that considers fault charac-
teristics and the adaptability of traditional deep concise networks. Reference [8] introduces
a new method for transformer fault diagnosis based on an integrated Adaptive Neuro-
Fuzzy Inference System and the Dempster–Shafer theory (DST). Fault diagnosis algorithms
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based on deep learning show significant potential in practical applications but come with
various limitations.

These deep learning methods often require a large amount of labeled data during the
training process, and they may create black-box models that are challenging to interpret.
Additionally, they demand high computational resources during operation, face issues
related to imbalanced fault data categories, and have limited model generalization.

This paper proposes a power transformer state monitoring and fault diagnosis model
based on transformer neural networks. Due to its unique auto-correlation structure, it can
fully exploit the relationships between different feature dimensions, making the transformer
neural network model more sensitive to data relationships between feature dimensions
compared to other deep networks. Moreover, the transformer neural network model, being
a complex multi-layer network model structure, can provide superior nonlinear mapping
capabilities for the decision-making layer, making it more suitable for the development of
transformer state monitoring and fault diagnosis methods.

By collecting a large amount of multi-dimensional operational historical data from the
internal and external sensors of the power transformer, the designed transformer network
model is trained. In the data preprocessing stage, data fusion is employed to reduce the
data volume required for model training and to accelerate model convergence. Through
comparative experiments and cross-validation, the superiority of the PT-TNNet model
based on transformer neural networks in transformer state monitoring and fault diagnosis,
as well as its feasibility for application in one-key dispatching and control systems, can
be demonstrated.

In Section 2, the definition of an intelligent substation is provided, and a compari-
son is made between intelligent substations and traditional substations, elucidating the
short-circuit level of the substations under study in this paper. Section 3 provides a de-
tailed introduction to the novel one-key sequential control system applied in intelligent
substations, outlining the main problems encountered in such systems. Section 4 summa-
rizes the types of faults in power transformers and their corresponding causes. Section 5
specifically discusses data fusion technology. Section 6 presents the theoretical analysis,
formula derivation, and framework proposal of the PT-TNNet model based on transformer
neural networks. Section 7 introduces the dataset and evaluation metrics, conducts ablation
verification of input data, and summarizes the results of comparative experiments and
cross-validation. Finally, Section 8 provides a summary and conclusion of the research
achievements presented in this paper.

2. Intelligent Substation

An intelligent substation is an upgraded and reformed version of a traditional substa-
tion based on advanced monitoring, control, and communication technologies, utilizing
artificial intelligence (AI) and the Internet of Things (IoT). Its aim is to enhance the oper-
ational efficiency, reliability, and safety of the power system. The intelligent substation
employs digitalization, automation, and intelligence to achieve real-time monitoring, re-
mote control, and intelligent management of power equipment and systems.

2.1. Comparison between Intelligent Substation and Traditional Substation

The intelligent substation exhibits several significant differences compared to tradi-
tional substations, primarily encompassing the following aspects:

1. Automation Level: Intelligent substations employ advanced automation technologies
and digital control systems, enabling functionalities such as remote monitoring, intel-
ligent diagnosis, and fault prediction. Figure 1 depicts a remote monitoring device.
In contrast, traditional substations heavily rely on manual operations and simple
control equipment.

2. Data Processing Capability: Intelligent substations can collect a vast amount of data
in real time and process it through techniques like data analysis and artificial intelli-
gence, enhancing the efficiency and security of the power grid operation. Conversely,
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traditional substations have relatively weaker data processing capabilities, mainly
relying on manual data analysis and handling.

3. Equipment Status Monitoring: Intelligent substations are equipped with various
sensors and monitoring devices that can monitor parameters such as equipment
operation status, temperature, and vibration in real time, promptly detecting equip-
ment anomalies and issuing warnings. Figure 2 shows an intelligent inspection robot.
Traditional substations typically require manual inspections and regular maintenance.

4. Response Speed: Due to the adoption of advanced control systems and communica-
tion technologies, intelligent substations can quickly respond to changes and faults in
the power grid, improving the response speed and reliability of the power system.

5. Safety and Reliability: Intelligent substations can identify potential fault risks in a
timely manner through data analysis and intelligent algorithms, taking preventive
measures to enhance the safety and reliability of the power grid operation. In contrast,
traditional substations rely more on manual experience and regular maintenance to
ensure safety.
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2.2. The Short-Circuit Current Level of the Intelligent Substation

The short-circuit current level of a substation refers to the maximum current that can
flow through the system in a short-circuit state. The short-circuit current level depends on
the size and configuration of the power grid, the impedance of transformers, the impedance
of transmission and distribution lines, and the impedance of loads connected to the system.

The short-circuit current values for intelligent primary equipment are as follows:

1. The short-circuit current for the 110 kV voltage level is 40 kA.
2. The short-circuit current for the 10 kV voltage level is as follows: 40 kA for the

main transformer incoming line and sectional isolators and 31.5 kA for the outgoing
lines of 10 kV, 10 kV capacitor banks, 10 kV grounding transformers, and parallel
low-resistance sets of arc suppression coils.



Processes 2024, 12, 824 5 of 21

3. One-Key Sequential Control System
3.1. Overview

The power system is developing rapidly, and the level of automation is gradually
increasing. However, at the same time, adjustments to the maintenance and operation
methods of the power grid are becoming more frequent. The number of operation tickets
that dispatchers need to formulate daily is increasing. During manual operations, errors
and omissions are prone to occur, leading to the waste of human resources, increased
time costs, and reduced efficiency. Especially in harsh weather conditions and complex
environments, manual operations become difficult and risky [3,4].

In response to this, the intelligent substation proposes a one-key sequential control
system. The one-key sequential control enables quick and convenient drafting of operation
tickets and switching operations, effectively reducing the operational risks and costs of
maintenance and strengthening the control capabilities of maintenance personnel over
equipment. This system achieves the transformation from traditional manual step-by-step
operations to computer-aided remote automatic operations.

3.2. The Platform Architecture of One-Key Sequential Control System

The overall architecture of the one-key sequential control system platform is shown in
Figure 3. Within the substation, it deploys a monitoring host, an independent intelligent
anti-misoperation host, and an I-zone operation and inspection gateway. The monitoring
host connects to the I-zone station control layer network through dual-network redun-
dancy, collecting and processing information such as the operating status of primary and
secondary equipment, real-time electrical measurements, and indications of power grid
anomalies from the station control layer network. It possesses functions such as one-key
sequential control, anti-misoperation interlocking, operation monitoring, and operation
control for on-site equipment. Before controlling each operation item, the monitoring host
communicates with the auxiliary equipment monitoring system, sends out remote control
linkage signals, initiates camera linkage, and transmits data such as device status and
measurement information once.
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The independent intelligent anti-misoperation host provides operation interlocking
functions for all station equipment, interacts with the monitoring host to exchange anti-
misoperation safety information, and performs dual-set anti-misoperation verification. It
facilitates one-key sequential control operations by offering functions such as simulated
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rehearsal, comprehensive/single-item operation project anti-misoperation verification,
and more.

The I-zone operation and inspection gateway are equipped with vertical encryption
devices and routers at the front end, ensuring secure access to remote data. It interacts with
the monitoring host to exchange one-key sequential control information, forwards one-key
sequential control commands, uploads execution results, and provides an operational
channel for remote one-key sequential control.

3.3. Execution of One-Key Sequential Control Operation
3.3.1. Determination of Device Status

The status of primary and secondary equipment in the substation is divided into
operational status, hot standby status, cold standby status, and maintenance status which
includes circuit breaker maintenance status and line maintenance status. The determination
of device status is a necessary condition for the execution of one-key sequential control
operations. It is defined based on information such as the device’s position, operation or
energy storage air switch position, energy storage status, and protection status. Real-time
device status data in the substation are collected and transmitted through position sensors,
status collectors, high-definition network cameras, infrared thermal imagers, inspection
robots, and other means.

3.3.2. Generation of Operation Tickets

A one-key sequential control operation ticket includes items such as the operating
object, current device state, target device state, operation task name, operation items,
operating conditions, target status, etc. The monitoring host receives and executes one-key
sequential control commands issued locally and remotely in real time. Based on a typical
operation ticket library, it accomplishes tasks such as generating, modifying, deleting,
storing, and managing sequential control operation tickets.

3.3.3. Simulation Rehearsal and Instruction Execution of Operation Tickets

The one-key sequential control operation ticket needs to undergo a simulated rehearsal
within the monitoring host and the independent intelligent anti-misoperation host to
confirm the correctness, feasibility, and safety of the operational logic. After the successful
simulated rehearsal, the execution of the operation ticket, anti-misoperation verification,
and operation log recording are completed, and the execution results are uploaded.

3.4. The Main Problems with the One-Key Sequential Control System
3.4.1. Low Data Transmission Efficiency and Long System Response Time

Due to the increased connection of communication equipment in the substation, the
addition of double confirmation devices for isolating switches and circuit breakers, the
extensive integration of image monitoring systems, and the deployment of dual-set safety
verification systems for independent intelligent anti-misoperation hosts and monitoring
hosts, the data redundancy, duplicate data, and data noise in the substation have increased.
For example, the existing communication network bandwidth may not be able to handle
the video streams from high-definition cameras in the monitoring system, leading to data
congestion and subsequently causing the paralysis of the communication network. When
there is a high volume of user requests, the system response time is prolonged. If there is a
delay in updating real-time status information for primary and secondary equipment, it will
result in an extended verification and execution time for operation tickets, failing to meet
the rapid response performance requirements of the one-key sequential control system.

3.4.2. Low Data Quality and Low Data Accuracy

Currently, the data volume and complexity of equipment status data measured by
various sensors in the substation are immense. The use of double confirmation criteria for
isolating switches and circuit breakers leads to issues such as data repetition, anomalies,
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errors, omissions, and structural mismatches. When high-definition cameras are used as
auxiliary criteria for monitoring, there are some blind spots due to the fixed position of the
cameras. In adverse weather or environmental conditions, the clarity and visibility of the
equipment decrease, affecting the judgment of the equipment’s positional status. Addi-
tionally, different measuring devices have varying errors in signal reception, transmission,
and processing, leading to inaccuracies in system judgment and decision-making. This can
result in operational errors and negatively impact the reliability, stability, and accuracy of
the one-key sequential control system.

3.4.3. Lack of Monitoring and Diagnosis of Equipment Failures

Based on the historical operational status data, electrical parameter data, meteorologi-
cal data, and external loss data measured by intelligent inspections of substation equipment,
a comprehensive evaluation of the state of intelligent substation equipment is conducted,
and the operational environment is comprehensively simulated. The changes in various
status parameters of substation equipment are analyzed to assess the severity of equipment
degradation. Timely and accurate state evaluation and prediction are performed, and
warnings and alarms are issued for abnormal equipment conditions. Fault spatiotemporal
logs are recorded, and the causes of faults are diagnosed. The prediction of short-term
spatiotemporal data in the substation and the comprehensive perception of the overall
operational environment are achieved. Currently, substations still need to strengthen the
identification, localization, and diagnosis of equipment failure issues to ensure the integrity
and accuracy of monitoring content.

4. Types of Power Transformer Faults

The external faults of a power transformer include lightning strikes, overvoltage,
overcurrent, electrical breakdown, etc. These are caused by influences from the power
system itself or external factors such as lightning, voltage fluctuations in the power grid,
and short circuits, leading to transformer burnout, insulation breakdown, and winding
open circuits [9–12]. Internal faults of transformers can be classified into thermal faults
and discharge faults based on the nature of the faults, with these two categories account-
ing for 80% of all faults. This article mainly focuses on the study of thermal faults in
power transformers.

4.1. Thermal Faults

Transformer thermal faults refer to various issues caused by excessive temperatures,
which can significantly affect the performance of the transformer and may even result in
equipment damage or fire. Here are some common thermal faults of transformers:

1. Overheating of windings: Prolonged operation at loads exceeding rated capacity
can cause overheating of windings and insulation materials, ultimately leading to
insulation aging, winding short circuits, or other internal faults.

2. Cooling system failure: The transformer’s cooling system includes components such
as cooling oil and radiators. If the cooling system fails, such as due to oil leaks, radiator
blockages, or improper cooling system design, the transformer may not effectively
dissipate heat, leading to overheating.

3. Insulation aging: After years of operation, distribution transformers may experience
insulation expansion, resulting in blocked oil passages between winding sections,
poor oil flow, and insufficient cooling of inter-turn insulation, and aging insulation
layers may peel off under prolonged electromagnetic vibration, leading to inter-turn
or inter-segment short circuits and eventual transformer failure [10].

4. Overheating of tap changers: Mechanical wear, electrical corrosion, and contact
contamination resulting from long-term switching operations can cause poor contact,
loosening, and overheating of tap changers.



Processes 2024, 12, 824 8 of 21

5. Faults in transformer leads: Broken leads, poor contact of lead joints, and loose
conducting rods can increase contact resistance, generating excessive heat during
current flow and leading to localized overheating.

6. Magnetic circuit overheating: During operation, transformers generate stray magnetic
fields, and eddy currents generated in areas with high stray magnetic flux can cause
significant heat buildup, leading to localized overheating.

7. High ambient temperatures: If transformers are installed in locations with excessively
high ambient temperatures or poor ventilation, the transformer itself may overheat.

Regular inspection, maintenance, and upkeep are crucial for preventing thermal faults
in transformers. This includes monitoring the transformer’s temperature, ensuring the
cooling system remains unobstructed, and conducting periodic inspections of the insulation
materials. Timely detection and resolution of potential thermal fault issues can ensure the
safe and stable operation of the transformer.

4.2. Discharge Faults

A discharge fault in a transformer refers to the phenomenon of discharge occurring
inside or around the transformer, which can lead to equipment damage, unstable operation,
or even fires. Discharge faults are typically caused by issues with the insulation system or
external environmental factors. Here are some common discharge faults in transformers:

1. Partial discharge: Partial discharge is a localized electrical discharge phenomenon
that occurs in the insulation system due to defects in insulation materials, air bubbles,
or impurities in the oil. Partial discharge can lead to insulation material damage, gas
generation, oil contamination, and accelerated transformer aging.

2. Oil discharge: If the insulation oil in the transformer is contaminated or the gas
dissolution rate increases abnormally, it may lead to oil discharge phenomena. Oil dis-
charge can generate gas, heat, and sediment, leading to oil contamination, decreased
insulation performance, and equipment damage.

3. Flashover discharge: Flashover discharge is a sudden discharge phenomenon that
occurs on the surface of insulation or between windings, usually due to insufficient in-
sulation strength or excessive voltage stress. Flashover discharge can lead to insulation
material damage, thereby reducing the insulation performance of the transformer.

4. External discharge: External discharge refers to discharge phenomena occurring in
the atmospheric environment around the transformer, possibly caused by lightning,
arcing, pollution, etc. External discharge can generate high-energy arcs, causing
severe damage to the transformer.

The key to preventing discharge faults in transformers lies in regular inspections of
the insulation system, keeping the transformer clean, and promptly addressing insulation
oil contamination. Additionally, the rational design of the transformer’s insulation system
and surrounding environment is also an important measure to prevent discharge faults.

4.3. One Fault Detection Method for Transformers

A common fault in transformers is a phase-to-phase short circuit, which refers to a
short circuit between two phases of the transformer. Failure to detect and address this issue
promptly can result in the overheating of windings, insulation damage, and equipment
malfunction. Differential relays can be used to detect phase-to-phase short circuit faults
in transformers.

Differential relays compare the current entering and leaving the winding of a trans-
former to detect any imbalances that may indicate a fault. Differential relays are connected
to three-phase transformers, measuring the current entering the winding (Iin) and leaving
the winding (Iout) for each phase. Under normal operating conditions, the current entering
the winding for each phase is equal to the current leaving the winding. However, if a
phase-to-phase short circuit fault occurs (for example, a short circuit between phase A
and phase B), the currents entering and leaving the winding for phases A and B will no
longer be equal. The differential relay can detect this imbalance. When the differential relay
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detects an imbalance exceeding a preset threshold, it triggers an alarm or circuit breaker,
isolating the faulty part of the transformer to ensure the safe and reliable operation of the
transformer system.

5. Data Fusion

Multiple-source data fusion technology refers to the aggregation, correlation, integra-
tion, analysis, and evaluation of data from multiple sensors or other types of information
sources. It aims to make short-term predictions for a specific event, enhance the accuracy
of target detection and feature estimation, achieve situational awareness, and obtain a
comprehensive description of a confined space from all perspectives [13–15].

In the one-key sequential control system, the use of data fusion technology allows
encryption and compression of upper-level dispatch instructions and simulated/execution
instructions issued by the monitoring host. This ensures the security and accuracy of
instruction issuance while improving the speed of instruction transmission. After the
instructions are issued, various sensors, monitoring devices, and measurement and con-
trol devices transmit equipment location information and equipment operational status
information, extracting the main data attributes.

In theory, this can reduce data redundancy and noise, enhance data quality and
accuracy, improve data transmission efficiency, reduce system response time, alleviate data
transmission layer pressure, and simultaneously increase the accuracy of equipment status
monitoring and fault diagnosis [16,17]. This optimization contributes to enhancing the
performance of the one-key sequential control system.

Data fusion includes data-level fusion, feature-level fusion, and decision-level fusion.
The architecture of three types of fusion is shown in Figure 4. The selection of the fusion
hierarchy for the new power system needs to comprehensively consider factors such as data
structure, fusion accuracy requirements, data layer communication capability, real-time
data requirements, fusion costs, and backend computing capabilities [15,18].
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The key to achieving data fusion is to use data processing algorithms to coordinate the
data generated by all sensors or data sources, integrate effective data, and thereby obtain
target-oriented, high-quality, and more valuable information. Regardless of the algorithm
used, it must meet a fundamental requirement, which is to have robustness and the ability
for parallel processing to adapt to the diversity and complexity of data information.

6. Power Transformer-Transformer Neural Network

Due to the complex structure and harsh operating environment of transformers, their
fault characteristics contain a lot of uncertain information. A single algorithm cannot fully
identify them. Considering the limitations of a single method and issues related to the
resistance to interference and poor robustness of single-state data, it is necessary to adopt a
transformer fault diagnosis method based on data fusion [19,20].

The transformer neural network model is a deep learning model based on the self-
attention mechanism. Compared to convolutional neural networks (CNNs) or long short-
term memory networks (LSTMs), the transformer network model can thoroughly explore
the relationships between data dimensions of different features. As the transformer model
has a relatively complex multi-layered structure, it provides excellent non-linear mapping
capabilities for the decision-making layer, making it more suitable for the state monitoring
and fault diagnosis of transformers [21–24].

This paper proposes a Power Transformer-Transformer Neural Network (PT-TNNet)
model for power transformer condition monitoring and fault diagnosis. The model is
trained using a large amount of multidimensional operational historical data collected
from sensors inside the transformer. In the data preprocessing stage, data fusion is em-
ployed to reduce the model’s training data volume requirements, thereby accelerating
model convergence.

6.1. Overview

The framework for power transformer condition monitoring and fault diagnosis
consists of three main parts: data preprocessing, transformer network model training,
and model testing, as shown in Figure 5. By deploying sensors inside and outside the
transformer, various types of status data of the transformer are measured to obtain raw
data. The raw data undergo Fourier transform to obtain frequency-domain features, while
the original data inherently contain time-domain features. The time-domain features and
frequency-domain features obtained from the transformation are fused through a data
fusion module. The data are then divided into training and testing datasets, which are input
into the transformer model for training. The training process continues until the accuracy
on the test set reaches a predetermined value, at which point the training is terminated,
and the model is saved [25].
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During model inference, real-time data from sensors on the transformer are input
into the trained model, and the inference process yields the current transformer state
corresponding to the input data.

6.2. Data Preprocessing

The Fourier transform is a linear integral transformation. When a time-domain signal
undergoes Fourier transform, the frequency-domain expression of the signal is obtained,
revealing features that may not be observable in the time domain. For a continuous signal
f (t), its transformation formula is given by Equation (1):

F(ω) = F[ f (t)] =
∫ +∞

−∞
f (t)e−jωtdt (1)

Sampling the continuous signal x(t) in the time domain yields discrete samples x(n),
and applying the discrete Fourier transform to these samples results in Equation (2):

X(ω) =
+∞

∑
n=−∞

x(n)e−jωn (2)

In the frequency domain, the samples are obtained as shown in Equation (3):

X(k) =
N−1

∑
n=0

x(n)e−j 2πkn
N (3)

The time-domain features and frequency-domain features obtained after the Fourier
transform are fused through a data fusion module, completing the preprocessing of the
original data.

6.3. Design of PT-TNNet Model
6.3.1. Positional Encoding

Blocks composed of transformer encoders are leveraged to capture both short-term and
long-term dependencies among all input feature sequences. The input to the transformer is
typically represented as a sequence. Such sequences are further processed to incorporate
a trainable class token for positional encoding. To make full use of the order of feature
sequences, some positional information is injected into the sequences for computing the
dependency between any two ones [24–26]. As a result, the sinusoidal positional encoding
scheme is employed to establish global dependencies among input sequences, ensuring
the positional relationships of signal features across different times. Mathematically, this
encoding scheme can be expressed as follows:

PE(pos,2i) = sin(pos/100002i/dmodel )

PE(pos,2i+1) = cos(pos/100002i/dmodel )
(4)

where pos represents the position of the current input, dmodel is the dimensionality of
input and output, and i is the value of the dimension from [0, dmodel]. After the afore-
mentioned transformations, a batch of input embeddings is delivered into the designed
transformer blocks, followed by fault diagnosis estimation through the classifier. In this
paper, dmodel = 128 is employed.

6.3.2. Transformer Encoder

The encoder is composed of a stack of N identical layers. Each layer has two sub-layers.
The first is a multi-head self-attention (MSA) mechanism, and the second is a position-wise
fully connected feed-forward network. A residual connection around each of the two
sub-layers is employed, followed by layer normalization. The output of each sub-layer is
LayerNorm (x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
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itself. To facilitate these residual connections, all sub-layers in the model, as well as the
embedding layers, produce outputs of dimension dmodel.

Multi-head self-attention can enhance feature expressiveness by combining multiple
self-attention layers to focus on different aspects of information. The architecture of the
MSA mechanism is with h self-attention layers. Specifically, for the ith head of self-attention,
the embeddings are transformed into three matrices of query Qi, key Ki, and value Vi
through a learnable linear projection. Self-attention is performed h times in parallel on each
projected version of these three matrices [23–25]. Finally, the output values of multiple
attentions are concatenated together, and a trainable weight matrix WO is utilized to
transform the output into a matrix of identical size as input. In detail, the formula of MSA
is expressed as follows:

Multihead(Q, K, V) = Concat(head1, . . . , headh) · WO

headi = Attention
(

QWQ
i , KWK

i , VWV
i

) (5)

where K, Q, and V are the calculation features and are learnable Params. Wi
Q, Wi

K, and
Wi

V are the i-th head of linear projection for matrices of query Qi, key Ki, and value Vi,
respectively. In this work, we employ h = 8 parallel attention layers, or heads. For each of
these, dk = dv = dmodel/h = 16 is set.

In addition to attention sub-layers, each of the layers in the encoder contains a fully
connected feed-forward network:

FFN(x) = max(0, xW1 + b1)W2 + b2 (6)

which is applied to each position separately and identically. This consists of two linear
transformations with a Relu activation in between. The inner layer has dimensionality
dff = 256.

6.3.3. Structure of PT-TNNet

Transformer is a sequence transduction architecture that uses multi-head self-attention
mechanisms to capture long-distance dependency information. Taking advantage of the
transformer, this article creatively proposes a PT-TNNet. The overall architecture of the
proposed PT-TNNet is shown in Figure 6, which mainly contains three parts: feature
extraction module, feature fusion module, and fault classifier.

The feature extraction module first reprojects the time-domain and frequency-domain
features obtained after preprocessing, mapping them to the same feature space. Finally, an
additional positional encoding is provided through a learnable parameter to offer extra
positional information.

In the feature fusion module, features from the two branches are transformed to the
same feature space through fully connected layers and concatenated together to obtain the
fused feature fm. This feature serves as the input to the fault classifier, ultimately yielding
the diagnostic result.
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7. Experimental Results
7.1. Dataset Description and Evaluation Metrics

The internal faults of transformers can be divided into thermal faults and discharge
faults, which account for 80% of the total faults. This article focuses on the detection and
diagnosis of the transformer’s thermal faults, including winding overheating, tap changer
overheating, magnetic circuit overheating, and high ambient temperatures.

As shown in Figure 7, the temperature, voltage, and current of various components of
the transformer are measured by sensors placed inside and outside the transformer. The
experimental dataset obtained includes data such as transformer winding temperature,
insulation oil temperature in the tank, the ambient temperature of the power transformer,
and the three-phase voltage and current of the power transformer [10–12]. The data were
collected from 12 September 2023 to 12 February 2024, with updates made every 15 min
each day. The information regarding samples contained within the dataset is shown in
Table 1.
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Table 1. The samples contained within the dataset.

Total Number of Samples: 14,760 Rows × 4 Columns
(Including the First Column, Which Is the Device Time Stamp.)

Number of Valid Samples
Number of Invalid SamplesNumber of Samples

during Normal Operation
Number of Samples

during Fault Occurrence

Winding Temperature 14,354 242 164

Oil Temperature 14,335 239 186

Ambient Temperature 14,294 246 220

Below are the sources of data in the dataset:

1. Winding Temperature

In transformers, the winding is one of the key components that carries the current, and
it is monitored by a winding temperature indicator. The winding temperature indicator is
typically installed on the winding of the transformer and measures the winding temperature
in real time through sensors or probes. When the winding temperature reaches or exceeds
the set warning or protection threshold, the temperature indicator will sound an alarm or
trigger protective devices to ensure that the transformer operates within a safe temperature
range, avoiding damage caused by overheating.

2. Oil Temperature

Insulation oil is used as a cooling and insulation medium, and its temperature is
measured in real time by an oil temperature indicator installed in the transformer’s oil
tank or oil circuit. When the oil temperature reaches the set warning threshold, the oil
temperature indicator will sound an alarm, reminding maintenance personnel to check the
transformer’s cooling system, reduce the load, replace the insulation oil, etc., to prevent
further increase in oil temperature and ensure the safe operation of the equipment.
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3. Ambient Temperature

The ambient temperature indicator measures the temperature of the surrounding
environment of the transformer. By monitoring the ambient temperature, measures can
be taken promptly to prevent the equipment from overheating or becoming too cold, thus
ensuring the safe operation of the equipment. For example, if the ambient temperature is too
high, ventilation can be increased, or the load can be reduced; if the ambient temperature
is too low, the equipment can be heated, or additional insulation protection measures can
be implemented.

In traditional transformer fault diagnosis, accuracy is typically used as a single diag-
nostic result, which cannot distinguish between misclassifications and missed detections.
To evaluate the proposed PT-TNNet model, four evaluation metrics are used to assess the
model’s performance, including accuracy, precision, recall, and F1 score.

7.2. Input Data Ablation Validation

The time-domain features and frequency-domain features obtained from data prepro-
cessing are fused through the data fusion module to construct the model training dataset
and testing dataset, which are then fed into the transformer model for training. The abla-
tion validation is performed on different combinations of input data, as shown in Figure 8.
When the original data are combined with the Fourier transform, the model exhibits higher
evaluation metrics, and the accuracy of PT-TNNet achieves 95.68%. This is attributed to
the data fusion, which expands the feature dimensions of the data. The PF-TNNet model
can efficiently conduct feature exploration and accelerate model convergence.
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Figure 8. The ablation validation performed on different combinations of input data.

7.3. Analysis of Results and Comparison with Different Methods

In order to investigate and compare the performance of the proposed PT-TNNet model
for transformer state monitoring and fault diagnosis, we further conducted comparative
experiments using various methods, including SVC, Decision Tree, AdaBoost, Random
Forest, Extra Trees, Gradient Boosting, Multiple Layer Perceptron, KNeighbors, Logistic
Regression, and Linear Discriminant Analysis algorithms. Comparative experiments were
conducted on the datasets described above.

As shown in Figure 9 and Table 2, experimental results on winding temperature data
indicate that using the PT-TNNet model yields an accuracy of 95.68%, precision of 94.25%,
recall of 95.46%, and an F1 score of 94.85%, all of which are higher than those of other
models, demonstrating the superiority of the transformer neural network. However, the
values of the evaluation metrics are also relatively high when using Random Forest and
Extra Trees. Therefore, further comparative experiments on insulation oil temperature and
ambient temperature are needed to select suitable and efficient models.
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Table 2. The statistical results of winding temperature via different methods.

Methods Accuracy (%) Precision (%) Recall (%) F1 Score (%)

PT-TNNet 95.68 94.25 95.46 94.85
SVC 85.28 81.61 90.14 85.66

Decision Tree 90.44 87.13 87.84 87.48
AdaBoost 91.37 88.3 89.14 88.71

Random Forest 92.45 90.36 93.23 91.77
Extra Trees 92.58 90.66 93.07 91.81

Gradient Boosting 90.99 87.07 90.99 88.98
Multiple Layer Perceptron 86.06 81.74 89.01 85.22

KNeighbors 90.39 86.61 89.08 87.82
Logistic Regression 85.26 80.65 87.05 83.72

Linear Discriminant Analysis 84.01 80.36 88.63 84.29

As shown in Figure 10 and Table 3, the experimental results on transformer insulation
oil temperature data indicate that using the PT-TNNet model yields an accuracy of 99.95%,
precision of 99.89%, recall of 95.45%, and an F1 score of 97.61%, all of which are higher
than those of other models. When using Decision Tree, AdaBoost, Random Forest, Extra
Trees, and Gradient Boosting, the values of the evaluation metrics are also relatively high.
However, Random Forest exhibits a lower recall rate, at only 90.89%. Next, comparative
experiments will be conducted on the transformer’s ambient temperature.

As shown in Figure 11 and Table 4, experimental results on transformer ambient
temperature data indicate that using the PT-TNNet model yields an accuracy of 97.96%,
precision of 96.72%, recall of 94.65%, and an F1 score of 95.67%, which is not optimal.
When using Random Forest and Extra Trees, the values of the evaluation metrics are higher
than those of the PT-TNNet model. External ambient temperature is influenced by natural
climate and geographic location, resulting in complex and fluctuating variations. Therefore,
the internal winding temperature and insulation oil temperature of the transformer are
crucial for transformer condition monitoring and fault diagnosis.
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perature data indicate that using the PT-TNNet model yields an accuracy of 97.96%, pre-
cision of 96.72%, recall of 94.65%, and an F1 score of 95.67%, which is not optimal. When 
using Random Forest and Extra Trees, the values of the evaluation metrics are higher than 
those of the PT-TNNet model. External ambient temperature is influenced by natural cli-
mate and geographic location, resulting in complex and fluctuating variations. Therefore, 
the internal winding temperature and insulation oil temperature of the transformer are 
crucial for transformer condition monitoring and fault diagnosis. 
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Figure 10. The comparative experiment results of oil temperature via different methods.

Table 3. The statistical results of oil temperature via different methods.

Methods Accuracy (%) Precision (%) Recall (%) F1 Score (%)

PT-TNNet 99.95 99.89 95.45 97.61
SVC 99.79 99.89 70.45 82.62

Decision Tree 99.95 97.6 95.45 96.5
AdaBoost 99.95 97.6 95.45 96.5

Random Forest 99.9 94.97 90.89 92.88
Extra Trees 99.95 97.6 95.45 96.5

Gradient Boosting 99.92 95.21 93.17 94.17
Multiple Layer Perceptron 99.79 99.89 70.45 82.62

KNeighbors 99.8 87.44 84.05 85.7
Logistic Regression 99.79 99.89 70.45 82.62

Linear Discriminant Analysis 99.79 99.89 70.45 82.62
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Table 4. The statistical results of ambient temperature via different methods.

Methods Accuracy (%) Precision (%) Recall (%) F1 Score (%)

PT-TNNet 97.96 96.72 94.65 95.67
SVC 94.71 94.56 75.39 83.89

Decision Tree 98.14 95.16 94.65 94.9
AdaBoost 98.03 94.87 94.3 94.58

Random Forest 98.73 96.72 96.32 96.52
Extra Trees 98.83 97.31 96.23 96.76

Gradient Boosting 98.36 95.2 95.9 95.54
Multiple Layer Perceptron 97.96 94.81 93.98 94.39

KNeighbors 95.57 89.1 85.85 87.44
Logistic Regression 93.57 93.42 69.72 79.84

Linear Discriminant Analysis 89.92 71.7 63.73 67.48

Next, cross-validation is conducted on the accuracy of the PT-TNNet, Random Forest,
and Extra Trees models for winding temperature and oil temperature. In cross-validation,
the dataset is divided into several subsets, with one subset used as the test set and the
remaining subsets used as the training set in rotation. This process is repeated multiple
times, and the results of each validation are summarized to obtain the final evaluation
metrics. CrossValMeans averages the results of each cross-validation, helping to reduce
fluctuations in evaluation results caused by random data partitioning and providing a more
stable assessment of model performance. CrossValErrors indicate the standard deviation
of the evaluation metrics, providing information about the performance of the model on
different data subsets and helping to evaluate the robustness and generalization ability of
the model. The cross-validation results are shown in Tables 5 and 6.

Table 5. The cross-validation of the winding temperature via different methods.

Methods CrossValMeans CrossValErrors

PT-TNNet 0.964832 0.005056
Random Forest 0.933822 0.005558

Extra Trees 0.938290 0.004977

Table 6. The cross-validation of the oil temperature via different methods.

Methods CrossValMeans CrossValErrors

PT-TNNet 0.999142 0.000682
Random Forest 0.999162 0.000814

Extra Trees 0.999023 0.000640

The statistical results of three kinds of input data using the PT-TNNet model are shown
in Table 7. The PT-TNNet model outperforms other algorithms in terms of monitoring
and diagnosing accuracy, precision, recall, and F1 score for winding temperature and oil
temperature. This is attributed to the unique self-attention mechanism of the transformer
model, allowing PT-TNNet to explore the relationships of different dimensional inputs
and increase model accuracy. Feature fusion during data preprocessing removes data
redundancy and noise, accelerating model convergence. However, as the depth of the
PT-TNNet model increases, its accuracy can continue to improve, but the complexity of the
model also increases, which may not be favorable for systems requiring rapid response.
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Table 7. The statistical results of three kinds of input data using the PT-TNNet model.

Input Data Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Winding temperature 95.68 94.25 95.46 94.85
Oil temperature 99.95 99.89 95.45 97.61

Ambient temperature 97.96 96.72 94.65 95.67

The experimental results above validate the effectiveness of the PT-TNNet model in
detecting and diagnosing the status of power transformers, improving the accuracy of
collecting transformer status information. Moreover, by employing data fusion, the model
helps to remove data redundancy and noise to a certain extent, accurately capturing the
operating status of the transformer. This improvement could reduce the response time of
the one-key sequential control system, thereby providing a more reliable guarantee for the
formulation of one-key sequential control operation tickets.

8. Conclusions

This paper addresses several significant issues present in the one-key sequential con-
trol system of intelligent substations, including low data transmission efficiency, prolonged
system response time, low data quality and accuracy, and a lack of equipment fault moni-
toring and diagnosis. To mitigate these challenges, the PT-TNNet model, which integrates
data fusion and transformer neural network, is introduced for power transformer state
monitoring and thermal fault diagnosis. Comparative experiments are conducted on the
measured winding temperature, insulation oil temperature, and ambient temperature
of transformers. Utilizing PT-TNNet, Random Forest, and Extra Trees—three efficient
models—the cross-validation of the accuracy of winding temperature and insulation oil
temperature of transformers is performed, affirming the superiority of the PT-TNNet model
for transformer state monitoring and fault diagnosis, as well as the feasibility of data fusion
technology for one-key sequential control systems, thereby enhancing the accuracy of
equipment state information.

In the event of equipment failure, the system receives monitoring alerts, enabling
timely fault removal. Under conditions satisfying power supply requirements, the refor-
mation of operation tickets, simulation rehearsals, instruction execution, and equipment
deployment or withdrawal are carried out, thereby enhancing data transmission speed,
data quality, and accuracy and reducing system response time in the power grid. Conse-
quently, the execution time of each sequential control operation is shortened, efficiency is
improved, and the performance of the one-click sequential control system is optimized.
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