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Abstract: Traditional batch ethanol fermentation poses the problems of poor production and economic
viability because the lag and stationary phase always demand considerable fermentation time; plus,
downtime between batches is requested to harvest, clean, and sterilize, decreasing the overall
productivity and increasing labor cost. To promote productivity and prolong the production period,
avoid process instability, and assure a substantial production of ethanol and a minimal quantity
of residual substrate, this paper proposed a nonlinear adaptive control which can realize global
stabilizing control of the process starting from batch mode to achieve batch/washout avoidance.
Due to the dynamic nature and complexity of the process, novel estimation and control schemes are
designed and tested on an ethanol fermentation model. These schemes are global stabilizing control
laws including adaptive control to avoid input saturation, nonlinear estimation of the unknown
influential concentration through a higher-order sliding mode observer, and state observers and
parameter estimators used to estimate the unknown states and kinetics. Since the temperature is
an important factor for an efficient operation of the process, a split ranging control framework is
also developed. To verify the process performance improvement by continuous fermentation, tests

performed via numerical simulations under realistic conditions are presented.

Keywords: adaptive control; washout/batch avoidance; observer-based estimation; fermentation control

1. Introduction

With the growth of the bio-manufacturing industry, the design of bio-conversion
systems has drawn considerable attention due to their potential to improve production
efficiency, plant profitability, and sustainability [1,2]. As a renewable source of fuel, ethanol
represents a great opportunity to help meet future energy demands and reduce greenhouse
gas (GHG) emissions. Consequently, the production of ethanol has been attracting plenty
of interest from all over the world, especially with the breakthroughs in the pretreatment
and enzymatic hydrolysis of lignocellulosic feed-stocks that hold an annual yield of about
180 billion tons [3] worldwide.

Despite well-recognized technical barriers to viable commercialization of bio-ethanol
having been overcome, the fermentation process itself is now identified as a limiting factor
and poses a multi-scale challenge. First of all, current fermentation is mainly batch/fed-
batch based, which demands intensive labor for both prior- and post-production; plus,
the lag and stationary phase occupies considerable time, causing relatively low produc-
tivity. The second challenge is on the design of suitable mathematical models to describe
this complex bioprocess; and because bioprocesses use living microorganisms that act
as biocatalysts, they are sensitive to extracellular environment, and obtaining accurate
and reasonably priced sensors for real-time measurement of the bioprocess variables uti-
lized in the control systems is problematic [4—6]. Moreover, appropriate design of the
regulator demands strict and multidimensional defining of critical process parameters for
the used microorganism strain, but start-up or maintaining the bioreactor is a long-term
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process during which objectives, physicochemical variables, and dynamic behavior can
be changed by the operator. Nonetheless, the International Energy Agency [7] forecasts
that in 2050, 27% of the global transport fuel can be sustainably supplied from biomass and
waste resources. As a result, the ethanol fermentation process design and optimization are
inherently synergistic and multidisciplinary.

The design of the fermentation configuration is expected to improve metabolic inten-
sity, increase productivity, and accelerate substrate conversion. Correspondingly, continu-
ous culturing eliminates downtime between batches, as well as the requested interval to
harvest, clean, and sterilize; hence, this intensifies production and reduces labor cost. By
chemostats or turbidostats, a continuous culture device dilutes cells and waste products
at the same rate that they are being produced. But a typical drawback of the continuous
fermentation is the presence of multiple outputs (which would easily shift the process to
the washout condition), as well as oscillations under certain conditions (the effect being the
decrease in ethanol productivity, the loss of a high quantity of substrate). To stabilize the
process, the cause of the reactor instability [8-12] is investigated; and, in view of the fact
that the osmotic pressure formed at high ethanol concentrations (~50-60 g/L [13,14]) might
inhibit or even kill yeast cells, hybrid designs through in situ ethanol removal to alleviate
ethanol stress [15] are proposed. However, the accompanied instrumental cost as well as
possible membrane fouling and degeneration are unbearable in industry.

On the other hand, formulating a feedback control loop through manipulating dilution
rate, dissolved oxygen level, pH, or inlet substrate concentration [16-23] to eliminate the
fermentation-separation mismatch is a cost-effective way to stabilize the process. The
research in this domain is oriented both to the developing of suitable mathematical models
and to the design of appropriate monitoring and control strategies able to assure the stability.
To summarize, the ethanol fermentation process is influenced by a number of parameters,
such as temperature, substrate, pH value, fermentation time, mixing speed, and inoculum
size, as well as the concentration of ethanol in the system [24]. Hence, the system to control
is multidimensional and complex, and their models contain kinetic parameters that are
uncertain and time-varying. A number of stabilization techniques necessitate software
sensors for the estimation of biological states, kinetic parameters, and even kinetic reactions
based on detectable signals. However, the estimation of input substrate concentration is a
difficult task in practice, the input conditions are unknown and time-varying because of
upstream disturbances, especially for the continuous production mode where a series of
CSTR tanks are connected to decrease the overall substrate run-off.

Observer-based estimation of the fermenter states and kinetics with limited on-line
measurements and knowledge of the process model information could minimize the capital
cost of the formulated closed-loop system, but process—-model mismatch is an in-avoidable
factor. Moreover, the control objectives become fuzzy as the main biological state variables
vary extremely slowly; for instance, the duration of one batch fermentation that account
for 87% of the world ethanol production scale is about 60-72 h, where almost no control
intervention is added in classic flow-sheet. To clarify the objectives to control, intensive
experimental and theoretical research [25] applications concentrate on growing cultures
under different conditions in order to properly characterize the microorganisms and to find
optimum productivity. To make the most profit from the process, it is also demanded to
minimize the transition time between consecutive steady state operating points. For this
reason, global stability is essential for their successful control.

To approach maximum metabolic intensity, this paper works on global stabilizing
control (GSC) of the fermentation process which starts from batch mode, and the control is
implemented to prolong the production period, where the ladder pattern trajectory of sub-
strate concentration is tracked to approximate toward the unknown substrate consumption
capabilities. Previously reported GCS approaches are mainly linearizing controllers [26],
but the main drawback of these global approaches is that they use perfect model knowledge.
Other global control techniques assuming model uncertainties arise [27], using interval
observers’ results. However, a drawback common to most of the aforementioned control
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strategies is that they often do not explicitly take into account the non-negativity constraints
on the manipulated variables.

In this paper, a globally adaptive feedback law is adopted that the feedback gain
dynamically adapted in such a way that control never saturates, and the unknown in-
put substrate concentration is explicitly related in the control law to accommodate the
time-varying disturbance. For reconstructing the unknown states and disturbed input
concentration information from the measurements of ethanol and substrate concentrations,
a sliding-mode observer (SMO) is derived. The design of state observers and parameter es-
timators depends on the information provided on-line by the previous. The distinguishing
properties of the discontinuous generalized super-twisting observer (GSTO) compared to
other smooth observers are convergence in finite time and insensitivity to time-varying but
bounded perturbations [28].

The paper is organized in the following manner. Section 2 describes the fermentation
process model, and possible monitoring/control problems under different operation modes
are discussed; this is followed by the development of adaptive estimation and control in
Section 3; in Section 4, experiment validation is conducted on the ethanol fermentation
process, and adaptive control under unknown inputs and undetectable states is imple-
mented in this MIMO system, where to obtain optimal state references the system starting
in batch mode is regulated using the technique of global stabilizing control; finally, Section 5
concludes the paper.

2. Problem Formulation

In this paper, a continuous fermentation process of Saccharomyces cerevisiae used to
produce ethanol is studied; subsequent investigation on batch mode production is realized
by manipulating input/output flow rates (or dilution rate) synchronously. As is shown in
Figure 1, a flow F;;, of culturing broth containing substrate S;, is continuously fed into the
reactor, the volume V is held constant when the outflow F,,; = F;,,. The jacket with control
(Vj, Tiyj, Fj) could maintain the reactor temperature T, as desired. We assume the content is
well-mixed with one substrate-limited material (e.g., glucose) feeding in continuously for
the growth of biomass/yeast, and the same amount of broth liquor is removed to acquire
the product ethanol.
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Figure 1. Schematic of the bioreactor equipped with a jacket.

The nonlinear dynamics of the studied process [29] in Figure 1 can be obtained based
on the mass balance of the substrate (S), biomass (X), and product (P) as follows,

ds
% =DGin—95) -y —v5
&% = DX +11(jm(),S,P,X)
4P — —DP +15(up,S, X, P)

S(O) = Sian(O) = Xo,P(O) =D

(1)
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where F;, = Foy = F, and D = F/V is the dilution rate defined as the reciprocal of the
reactor space—time for the culturing media, which is the control action used to determine
the operating status of the chemostat. One crucial problem in solving Equation (1) is the
formulation of expressions for the kinetic functions #;(-) and r;(-), which could be a large
number of analytical expression candidates. Note that in practical applications, actuators
could be adopted to create the control action D, and their dynamics will be considered in
Section 4.1.

In practice, fermenter control design should consider realistic conditions related to
process inputs, state variables, and reaction kinetics, as well as possible control to enhance
substrate conversion and the production rate. Without a loss of generality, the following
performance requirement and assumption are considered.

1.  Monitoring Information: The quantity ,(-) is available on-line from the plant, and for
a large part of bioprocesses, the production (or consumption) of gaseous components,
as peculiar to ethanol fermentation by S. cerevisiae, CO, is monitored and is directly
related to 7,(-), and the accumulation of CO; evolution rate (CER) is proportional to P
when D is fixed.

2. Dynamic Heat Balance of the Jacketed Fermenter: In order to assure a hospitable
environment, fermentation temperature is regulated to maintain at an optimum. The
aerobiotic respiration effect might cause exothermic reactions and a jacket cooler is
integrated to remove redundant heat, and heat transfer between the broth and coolant
is rendered as perfect convection,

a1, AH,r0 KrAr(L-T;

dar = D(Tm - TT’) + 32‘Pr'che§t/r o V‘PV'(Cheut,r])

aT; KTAT(TY_T')

ar = Dj(Tinj = Tj) + g ?
402 = Kpag - 1.0247-2) (03" — 0,) — 1o, — DO,

T,(0) = Ty, T;(0) = Tinj/ 0,(0) = Osat

where AH, is the mole enthalpy change in the oxidation reaction; KTAr is the heat
transfer coefficient multiples area of heat exchange. Note that O, from the sterilized air
is dissolved into the broth and transported by input effluents, and the aerobiotic effect
of yeast leads to exothermic reactions. Dissolved oxygen (DO) content in the elec-
trolyte solution is influenced by pH, T;, and the global effect of ionic strength }_HyI,

05" = f(Ty) - 10~ EHilk 3)

where Y HiI} is accounted as [28,29] follows,

m M MCaCO; M Mpgcl, My
Y Hi I, = 0.5Hpn, 71\/11\1\’;?1 —‘}V“ + 2H¢ 3 =G0 4 2Hpy 2 —Vg

T Mcaco; V 8 Migcl,
MNaCl MyeCl, \ My Mmcacoy Mcoy 4
+0.5Hcy (MN‘;CI + ZMMgClz ) v +2Hco, Mcaco, V @)

+ 0.5Hy10 PH + 0.5Ho 10~ (14-PH)

3. Temperature influence on the kinetics: The maximum specific growth rate p,;
is correlated with the broth temperature which is provided in the form of the
Arrhenius formula,

—Egp —Ep
]’lm — AleR(Tr+273) — AzeR(Ty+273) (5)

where E;; and E;; are the activation energy, and A; and A, are the preexpo-
nential factors.
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Remark 1. Systems (1)—(5) have been widely used to represent essential characteristics of the
continuous fermentation process. Some advanced controllers have been proposed to requlate temper-
ature and the states [30] and references therein. However, fermentation is an accumulative process
where the substrate conversion rate/productivity is extremely slow, prescribed set-point tracking
is challenged both on stability of the control law, as well as the adequacy for productivity increase.
In view that there exists a maximum handling capability for microorganisms, the control objective
of the chemostat is set as the ladder pattern, and the fermentation starts as batch mode and by so
tracking, the period is prolonged to intensify productive, and by trial-and-error, maximum substrate
conversion capability is obtained. To realize such a control, GSC is mandatory.

Remark 2. Controlling tends to stabilizing, and a primary tool for culturing cells in a static
environment is continuous culture, where inoculated growth medium is continually diluted with
fresh medium. At steady state, a continuous culture device will dilute cells and waste substrates at
the same rate that they are being produced leading to an unchanging environment [31]. To alleviate
substrate run-off, industrial practice adopts CSTRs in series, and the input state S, for a given
fermenter becomes unknown and time-varying, biomass content X is not measurable on-line, and the
biomass growth rate r(-) is completely unknown and time-varying because of uncertainties related
to the maximum specific growth rate y,, and of unavailability of X. Moreover, the control expects
ethanol concentration and substrate conversion rate, as well as bio-conversion rate to be optimal,
but non-linearity of the process might drive the system to washout condition and terminates the
fermentation process. Hence, adaptive control related to the optimal status is to be achieved. It
should be noted that X, rop, and r1(-) are nonlinear and also unknown in this paper, which will be
estimated on-line with observers.

3. Controller and Estimator Design

In this section, a GSC is proposed for (1) and (2) to regulate fermentation states and
temperature. The optimal control of fermentation states is realized through the shifting of
batch mode to continuous mode production; and, by ladder pattern trajectory tracking, the
maximum substrate conversion rate of the fermenter is obtained and controlled. For the
control of temperature, feedback linearization is adopted because we render measurement
and modeling of the fermenter temperature which is corrected. Both above-mentioned
controls need to consider bioreactor requirements like DO content, biomass X, and the
time-varying substrate input concentration S;,,.

3.1. Global Stabilizing Control

Demanding on the control purpose, we want to globally regulate the fermentation
states [S, X, P], but ethanol is viewed as primary metabolite and the kinetics r; and ; be-
comes correlative, which leads the values of X and P obtained at equilibrium are completely
determined by the value of the targeted set point S for substrate concentration. Then, we
will only focus on regulation of S in this work.

S € (0, S;,) denotes the desired set points; the corresponding positive equilibrium
values are me = T2YSXy5p(Sm - S”f)/(rl Ysp + 1"2Y5x) and Xref =1 stysp(sin - Sref)/(i’l Ysp
+ 7Y sx). The objective is to formulate a control D(-) to globally stabilize (1) towards the
reference [S™Y, P, X"]. We set B =r1/1p, and the nonlinear control law is obtained,

Lv_ nl) (B 1)
PO = 2 (36 * v ©

which formulates the following closed-loop system,

@ = D)5 =)
@ = DO =X) )

4 — D(-)(P*f — P)
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Since [S, X, P] is positively invariant, for any initial state conditions with physical
meaning, the control D(-) > 0, integrating Equation (7), and we show that for any t > 0,
max(X"f, X(0))
max(5"f, 5(0))

X(t) > min(X"/, X(0)) > 0,

S(t) > min(s"f,5(0)) > 0. ®)

>
2

Hence, the control law (6) is bounded below by a positive constant; plus, (7) provides
[s", P, X"¥] as globally exponentially stable. To mention, (6) is the nonlinear control
that is difficult to realize through error dS = S — S reduction, and the linearization
control of a chemostat based on (6) towards any a set-point S’¢, even unreachable in open-
loop, is also globally stabilizable, which is similarly rephrased by the following fermenter
temperature control.

In this paper, we adopt the linearization control of fermenter temperature using jacket
flow F; as the manipulated variable. We assume the model (2) is precise and full knowledge
of temperature measurement is available. Firstly, given that the jacket volume V; is orders
smaller than the fermenter volume V, the quasi-steady state obtains,

Tr - T = 7p] i Cheat,j

] KrAT (Ti”f B T]) ’ F] ©)

which substituted in the first formula gives

: F; AH,ro pjcheatj
Ty (t) = “2(T; — Ty) + 2 — “—(Tii — Tj) - F; 10
r( ) 14 ( l r) 32prcheat,r Vprcheat,r( " ]) / (10
and by the form of variation, Equation (10) provides the transfer relation,
. Oj Cheat,j
6T, (t) x ——————(T;; — T;) - OF; 11
r( ) VPrCheat,r ( inj ]) j ( )

where 6T, = T, — T,. Moreover, the equilibrium at the reference provides,

E AH .C ;
ﬂ(Ti _T:ef)+ Y0, Pj“heat,j

- Ti—T)-F =0 (12)
14 32prch6ﬂt,r Vpr Cheat,r ( " ])

]

We replace Equation (10) with Equations (11) and (12) and the exact linearization
control gives,

A Hr roz
320, Cheut,r

_pref _
Fi(t) = F + AF, =

; Pr Cheat,r Vv (T”Ef

PSS e o L — Ty(t) —DU}—DO (13)
j“heat,j linj j

Eliminating the derivatives, we have the control law as follows,

OrCheat,r 14 < ref AHrrOz )
Fi(t) = : T, —T,) — —=———— —-D(T;,, — T, 14
i) PiCheat,j Tinj — T 17( ' r) 320y Cheat,r (Tin = Tr) (14)

The closed-loop system adopting Equation (14) provides,
(ﬁd—TJ—Hr(ﬁd—E)—O (15)

and when the tuning parameter 7 is positive, the closed-loop system is globally stabilizable.

Remark 3. Regulating the chemostat by the following linearization control is also globally

stabilizable, 0
ral- ﬁ 1
D(-) = = sref—s -+ — 16
0 Si <771( )+YSX+YSP> (16
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Howeuver, the controller proposed in (16) requires perfect knowledge of the dynamic system, and an
adaptive feedback control law based on on-line information from the plant is provided.

Theorem 1. Assume the kinetics r, is monitored on-line by CER and follows y; = Ary, the adaptive
control law,

D(-) =v(t)yr = v()Ar2(S, X, P---)
v =Ky (8 = S) (v = vm) (vm = 7) (17)
with : ya > v >y > (%—l—%)/()\sm) >0and K> 0

globally stabilizing (1) towards the positive set points [S™, P, X', 4"¢/], where "¢ = (B/Ysx +
1/Ysp)/M(Sin — S9).

Proof. Control law (17) yields to the closed-loop system,

%:yl{W(Sin—S)_(%_._%)//\]
X = y1(B/A —7X) s
48 = y1(1/A — 7P)

=Ky (S =) (v = ym)(ym —7)
Consider the positive initial condition plus ¥(0) € (ym, Ym); then, v is bounded similar
to (8),
max(yp,7(0)) = () = min(Xy, 7(0)) > 0. (19)

Since y1 = Arp is bounded below a positive constant, a time change T = ty;, and obtains
the following standard control,

X =p/A-X

dP _

ar = /A —aP (20)
dv _ ref ref _

i =7v T

dy

D =K(w—0v)(y—vm)(rm—7)

where v = S;, — §™. Since (20) is an autonomous triangular system, it is separable [32],
and for the subsystem in v and «, the initial condition is confined to the set W = {v > 0,
¥ € (Ym, Ym)); then, an analog can be performed that v is viewed as the prey and 7y as the
predator, and the Lyapunov function is formulated,

vy —yref v y—1"f
Vv, :/ d +/ d 21
(07) vt xS Ky —m) (o —y) @

We check that V(v, 7) is defined, non-negative on W, and vanishes only on v = v and
v =9, and

VvV = — (,),ref(vref_)z/v) (22)

which is non-positive. From Lasalle’s theorem, (v, 7"%) is a globally attractive fixed point,
and so are (X"¥, P'?), considering that (20) is the triangular system. Thus, moving back to
the original time and state variables, the control law (17) globally stabilizes the system (1)
towards the nominal reference represented by 5. [J

Remark 4. In addition to the information of CER, control (17) also demands the substrate (glucose)
content available on-line, which could be detected in real time using automated approaches, like
near-infrared, Fourier transformed infrared and Raman spectroscopy, or soft sensors [33,34]. The
detection of r5(-) is challenging, but for a large part of bioprocesses, the production/consumption of
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gaseous components (dissolved oxygen, CO;) is monitored and is directly related to kinetics. For
yeast cell growth, CO; is usually released form the fermenter as a by-product, and this makes CER
another feedback control parameter for the control system, defined as follows,

P
- RTV

CER {m"l}

L h Q(COZgasout - COZuirinput) (23)

where P is the pressure (atm), R is the ideal gas constant (atm-L/(mol-K)), T is the temperature
of the venting gas mixture (K), V is the working volume of the liquid inside the fermenter (L), Q
is the volumetric gas flow rate for the existing gas stream (L/h), CO; gas out is the gaseous CO,
concentration read by a near-infrared sensor in the venting line of a fermenter, and CO; air input is
the gaseous CO; concentration obtained from the constant air flow.

Remark 5. The above control (17) is implemented on a chemostat where the substrate is measured
and controlled; if the system is designed to requlate cell content X by turbidostats with the aid of an
on-line ODgg sensor, we can build the adaptive control as follows,

v =K(x =) (ym — 1) (vm — )
with: 0 < 7~ <y < Lo < ymand K> 0

Similarly, the requlation of P can also be developed with the same kind of adaption.

3.2. Observer-Based Estimation

Taking in account the whole knowledge concerning the process, the realistic conditions
related to inputs, states, and reaction kinetics are listed in Figure 2: the input substrate con-
centration Sj, is unknown and time-varying; the process state variable X is not measurable;
the biomass growth rate r1(:), production rate r,(-), and oxygen consumption rate rp»(-)
are unknown and time-varying because of uncertainties related to the maximum specific
growth rate y,;, and X; the variables S, P, and CER are available on-line; the temperatures
T, and Tj,;j are time-varying.

Unkonwn Inputs

sat
Sin O, To, Ty 12

Input(u) l l 1 Output(y)

——— S

D — (x —R" — X
———a P
. . Xxspr1,T,0 Qco,
I Yi-y2
v
Unmearsurable

Figure 2. Diagram of the plant information.

3.2.1. Estimation of the Input Substrate Concentration

To facilitate the control of fermentation states, the input information S;, in (17) is
mandatory, which might be unknown and time-varying when shifting to continuous mode.
To alleviate residual substrate loss and upgrade ethanol content, common industrial practice
adopts cascade fermentation with a series of tanks and partial reuse of end effluent, as is
shown in Figure 3. For one casually assigned medial fermenter i in the series, problems
arise as the input S;;, is influenced by both upstream effluent and the supplement, causing
the feed to be unknown and time-varying. Plus, it is assumed that the optimal set-point
S is a function of S;, (since bio-conversion intensity is relatively constant for a given
cell environment); hence, the reference might be time-varying if optimal operation of the
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process is expected. Hence, for the control of a fermenter 7 (labeled with red box), S;, is
both unknown and time-varying, even S;, from saccharification section is fixed.

S,/ F;

in’ Cell-mass
_l_ * Sins E, separator
Sin/ F
Sl/ X]/ Pi Sn! Xn/ Pn Sy xn(l_a)/ P2
Fementer1 ——— <4+ | Fementeri |+q+| Fementern > >
> F+Fy F+F+F, F+F;

S, aX, P, Fg

Figure 3. Continuous ethanol fermentation flow-sheet and the corresponding state relations. Contin-
uous fermentation with bio-reaction tanks in series, with partial reuse of the yeast cell separation;
ethanol production efficiency increases, and the series of reactors form a gradient decline in substrate
content loss.

Based on the assumptions given in Figure 2, the estimation of the input substrate
concentration is proposed. Firstly, y =S + P/Yxp + X/Yxs is constructed which gives
dyp/dt = D(—¢ + S;,,). Clearly, the auxiliary variable ¢ is highly correlated with S;, through
mass balance,

Sin =S5+ 0X/Yxs +0P/Yxp

with : 6X = X — Xo, 0P = P — Py (24)

and when the initial states Xy and Py approach zero, ¢ and S;, are identical. From the
state estimation perspective, the varying of S;,, because of upstream disturbance could
be reflected by changes in the time-derivative of ¥, and one can adopt observer-based
estimation (OBE) on S;,, through .

Assuming ¢ is available on-line, a linear observer is shown,

dA A ~
W — Dy + DSiy — k1 Ap(§ — ¢)

. (25)
=i -9)
With appropriately designed gains k1 > 0, the parameters x; > 0 and Ay > 0 are
known to provide an exponentially convergent estimate of S;, in the absence of unknown
perturbations. However, strict equivalence of S;;, and ¢ is inappropriate in practice and the
deviation is manifested as unknown inputs. In synthesis, the linear observer (25) is not able
to converge to the true value of the unmeasured states in the presence of unknown inputs.
In fact, finite-time convergence is impossible for any observer having locally Lipschitz
continuous perturbations, and convergence in the presence of persistent unknown inputs
is also impossible for any continuous observer.
In order to alleviate the problem, SMO is introduced for trade-off of the perturbation
terms, and to further estimate S;,, correctly and obtain the convergent effect in finite time,
the GSTO technique is adopted,

= —Dy + DS, — k1 Ap1 (P — )

*KZA (PZ(#) 47) (26)

o1 — ) = | — | Psign(d — ¢>+m<¢ w)
$2( — 9) = Judsign(— ) + o] — 9| sign(p— 9) + 13 — )

where y1 > 0, yp > 0. The observer (26) is independent of the process kinetics and the
tuning variables k1, k3, Ay, pt1, and pip are usually selected through a trial-and-error method.
Comments can be drawn as follows: setting y1 = 0 and pp > 0, (26) becomes a linear
Luenberger observer, which can asymptotically estimate the true value only when S;, is
constant. For varying inputs of substrate concentration, the estimation error of the linear
observer is proportional to the size of the derivative and inversely proportional to the
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observer gains. The observer (26) could achieve finite-time convergence for an arbitrary S;,
with bounded derivatives. The relative gain values suggested by Levant [35] are k1 = 2.2
and x = 1.5, which should be chosen to obtain good convergence with the GSTO algorithm.
Finally, Ay affects both the convergence velocity and insensitivity to the change in S;,, as
well as measurement noise.

3.2.2. Estimation of the Un-Measurable Biomass Concentration

To calculate i as well as the control (14) and (17), the biomass content X is needed
besides the information of S and P. X is rendered difficult to measure on-line, and OBE
is performed. Considering ethanol is the primary metabolite that is closely related to the
content of biomass, X could be estimated through the construction of the observer on P.
The procedure begins with the linearization of the subsystem in (1),

dX __

G = ~Dlsy,xo,m X+ T1lu0,50.8

P _ _p P (27)
r = ~Dlsy x5, P+ 12ls,p,

When (27) is non-singular, and D satisfies the persistent exciting (PE) condition, the
non-biased estimation of P drives X to stably convergent to the real value [36]. In the
following, a Luenberger observer is constructed for P,

d/I; n < s

E——DP+§-X+a)1(P—P) (28)
where the hat represents the estimated value, and w; is the observer coefficient. For the
estimated P to converge to the measured one, the right-hand side of Equation (28) needs to
approach zero, and the variation form gives an estimation of X,

d? f ra
==/ (Z) 29)

where 71 is a positive tuning parameter. Combining (28) and (29), the OBE on biomass
concentration is formulated.

3.2.3. Estimation of the Fermentation Kinetics

As it can be seen, the specific reaction rate r; is involved for the aforementioned control
and estimation, hence, estimation is performed in this section. Similar to the previous
section, the OBE on r; is obtained using the on-line measurement of substrate concentration.

dg . o /1?1 ro ~.

where wj is another observer coefficient. And the estimator is given by,

dry o T T o
I <Y5X>/(P)’72(5 -9) 31)

where 7, is another positive tuning parameter.
The same procedure is conducted for the estimation of 7o with the aid of on-line
detection on dissolved oxygen O,

&, (32)

7 =713(02— 0y)

{ 02 — Kpag - 1.024(T=20) (057 — 05) — #0, — DO, + w3(0; — Oy)

where w3 and 73 are positive tuning parameters. Note that the estimated rp; is able to
accomplish the temperature control law (14).
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The schematic of the nonlinear control stat from batch mode production is shown in
Figure 4. The control system contains two coupling loops, and the control laws are (14)
and (17), respectively. For the temperature control, we assume the modeling is precise
and the regulator adopts exact linearizing control as the backbone and the unknown or
varying parameters are obtained using the techniques of OBE and GSTO. For the control
substrate concentration, the nonlinear GSC technique is formulated and batch and washout
avoidance are embedded.

Respiration effect
S [T [Ty
T,

Fermentation
e : rocess
s »()-| Global stabilicing Bn | P s
+ control " g
A A Y
— A L R P
4 Csa | Cx
R State
observer
I ~
‘Cx
—> SMO
=
¢C5z1=
g Reaction rate & ¢
» respiration rate <
estimator

Figure 4. Structure of the coupled control loops for ethanol fermentation.

4. Results and Discussion

In this section, fermentation that starts from batch mode is controlled with the expec-
tation to prolong the production period, avoid process instability, and assure a substantial
production of ethanol and a minimal quantity of residual substrate, meanwhile regulating
the temperature inside the bioreactor at suitable values. We start from investigation on
suitable mathematical models that describe the complex kinetics. Furthermore, since the
fermentation process is an exothermic one, detailed regression to characterize heat balance
is essential for the control system. Then, controls in the perfect model, as well as a possible
process—-model mismatch by introducing field data, are tested and discussed.

4.1. Fermentation Modeling Issues

Here, we introduce a benchmark example with complete known kinetics to investi-
gate relations of the states against S;,, which together with their measurement units are
presented in Table 1 [37],

s _ . _ g\ _ (H#uS/Ysx  ,—KgP | BpS/Ysp  ,—KgiP
= D(Sin = 5) (WE Ft e e )X

dt
dd—)t( = —DX+71(S,X,P) = —DX+ S’:_Lg(i ,E*KEPX (33)
%’ = —DP+ry(S,X,P) = —DP + #Kﬂ .e—KeiPx

However, considering the benchmark case is mainly applied for a scenario of continu-
ous production, we regressed the kinetics (under 30 °C) using batch experiment data [37],
and the updated parameters are listed Table 1. To regress the reaction kinetics, the mass
conservation relation is revealed by Ysx and Ygsp, which are obtained by fitting batch
data; the kinetic parameters p,;, Ks, and K; are estimated using least squares regression
of the integrated system (ode45 subroutine with the unknown parameters as the handle)
against the field data, and the results are shown in Figure 5. Moreover, the empirical
correlation of O, with varying T, in Equation (3) is fitted under pH = 6 and represented
as f(T;) = 14.16 — 0.39T, + 0.00772T,? + 0.000064T,> [38].
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Table 1. Process and kinetic parameters—description and values [38].

Label Description Value Label Description Value
Ay Exponential factors in Arrhenius law 1.57 x 10° Mc, Mol mass of Ca 40 g/mol
Ay Exponential factors in Arrhenius law 4.20 x 103 Mg Mol mass of Mg 24 g/mol
Ar Heat transfer area 1m? Mgy Mol mass of Cl 35.5 g/mol

Cheat,r Heat capacity of culture medium 418]/g/°C Mco, Mol mass of COj3 60 g/mol

Cheatj Heat capacity of the cooling agent 418]/g/°C Mpnacr Mol mass of NaCl 58.5 g/mol
Ex Activation energy 55,000 J/mol Mcaco, Mol mass of NaCOj3 100 g/mol
Exn Activation energy 220,000 J/mol Mg, Mol mass of NaMgCl, 95.2 g/mol

Hon Specific ionic constant of OH 0.941 R Universal gas constant 8.31]J/mol/°C
Hy Specific ionic constant of H —0.774 Ysp Ethanol produced yield 0.3989¢g/¢g

Hcos Specific ionic constant of Hcos 0.485 Ysx Biomass produced yield 0.607g/g
Hg Specific ionic constant of C1 0.844 14 Bioreactor volume 1000 L

Humg Specific ionic constant of Mg —0.314 Vi Cooling jacket volume 50 L

Hc, Specific ionic constant of Ca —0.303 Yo, O, consumed rate 0.970 mg/mg

Hng Specific ionic constant of Na —0.55 AH, Aspiration heat 518 kJ /mol
Ii Ionic strengths - Ho2 O, consumption rate 0.5h~1!

Krap O, mass-transfer coefficient 38h~! Uup Ethanol production rate 1.79h7!
Ko, O, consumption constant 8.886 mg/L 0; Density of jacket liquid 1000 g/L
Kg Inhibition constant by ethanol 0.139g/L or Density of the medium 1080 g/L
Kg1 Inhibition constant by ethanol 0.07g/L MNaCl Quantity of NaCl 500 g
Ks Substrate constant for growth 1.03g/L MCaCOs Quantity of CaCO3 100 g
Ksp Substrate constant for production 1.68 g/L Mpgcl, Quantity of MgCl, 100 g
Kr Heat transfer coefficient 3.6 x 10° J/h/m?2/°C My, Molecular mass of Na 23 g/mol

(a) ' ' ' ' ' ' () I— ; , ; ; ,
20 | ® Exp.data |
FitofY,, e ° Exp. data
—Fitof Y,
s 5| ° o
E]
E 15| . E Al . |
':‘E; 10 | y=-0.3989x +20.273 _ Dé 3 !/:-0.1M7x+5.5‘134. i
E o
= ) 2+ -
3 st 1
=}
& 2 1
oF e 1 o b 4
(I) 1|o zlo 3|0 ;0 5|0 60 1; 1|0 2‘0 3|0 4ID ;0 60
Substrate concentration S (g/1) Substrate concentration S (g/1)
(0) ‘ ' ' ' ‘ ‘ d o : : : : 6
® X ® Exp.S —s
3L Fit of X . ® Exp.P —p o o
= ° 50 ® Exp.OD,, ——OD,, 5
2 E
>: K] %40 4
8 i
g 1 RS
z . £ g™ g
g y=0.6158x +0.0063 w % o
oql 4 g @
g A
& .[?_:' " 10 1
0+ (] - 0 0
o 1 2 s p s 6 0 s m 1 2 »

Time t (h)

Figure 5. Experimental validation of the batch ethanol fermentation process. (a) Regression of Ysp

(0.3989) by experimental data of substrate concentration against the product ethanol; (b) Regression

of Ysx (0.105) by experimental data of substrate concentration against ODgy; (¢) Proportional relation

of ODgq with the calculated biomass content, where the initial biomass is set as 0.01 by corrected

inoculum size, and the biomass concentration is computed using literature data; (d) Fitting of the

kinetics of Equation (33) using batch fermentation data.
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4.2. Analysis of the Open-Loop System

Before conducting quantitative analysis, the general system (1) is revisited for a
glimpse of the open-loop system stability. For a given initial condition (Sp, X, Pp), Equation
(1) is well-posed and, since S(t — +o0) < S;;, < +00, P(t = +00) < (1/Ysp + B/Ysx)Sin < +00,
and r,(., P) decreases with the increase in P, all non-negative set () = {(S, X, P): >0} values lie
in the bounded set () eventually as time approaches infinity, indicating that the unlimited
duplication of cells or sustained accumulation of ethanol is not possible. Note that output
multiplicity exists for this system, where, apart from the trivial solution (S;,, 0, 0), we
represent the non-trivial one as (S*, X', P*), and the global stability property is provided by
the following Theorem 2.

Theorem 2. Assume r1/ry = B is a constant, the stability criterion provides D < D, the travail
solution (S, 0, 0) is asymptotically stable; D, > D, the non-travail solution (S", X', P") is
asymptotically stable; D, = D, both solutions are coincident and a branch point (BP) emerges, where
De = 71(Sin, PY/X'.

Proof. With a high-substrate environment and to avoid ethanol inhibition, § is viewed
as a constant, X and P share identical dynamics, and (1) is reduced to second order. The
equilibrium of the reduction system presents output multiplicity, and besides the travail
solution (S;,, 0, 0), the non-trivial one gives,

*+K 1
Hm Ysx = Ysp
As for the exploration of asymptotic behavior, we first implement dimensional reduc-

tion analysis. Laplace transform of the second and third formula in (1) gives,

(%:Dx+r1>:sX=—DX+”1 X(S):/z (35)

=
%:—DP—l—rz sP=—DP+rp P(s)

which indicates that P(t) and X(t) share identical dynamic trajectories, and for any casually
assigned initial states (Xp, Py), the ethanol accumulation rate is proportional to the increase
in yeast. Then, the characteristic equation of the limited system [S, X] provides,

B 1) } )=
[A/(st+Ysp +D|(D+A—p)=0 (36)

Since Ay = —D X (B/Ysx +1/Ygp) is negative, local stability is determined by Ay = 4 — D,
where (S, P) decreases with the increase of P because of the inhibitory effect. Moreover,
the asymptotic property of the limiting system provides,

X — (u(Su— (& + v5 )P)f(P) = D)X = (B(P) ~ D)X -
P _ 1 _
% = 2u(Sw— (¥ + v5)P) f(P)X — DP = F(P)X — DP.

where f(P) is the product-inhibition term. Then, F;(P) = u(S;;, — (B/Ysx + 1/Ysp)P)f(P) for
i=1,2. Hence, F;(0) = u(S;»), Fi((B/Ysx +1/Ysp)Siy) =0, and F;'(P) < 0if 0 < P <(B/Ysx +
1/Ysp)Siy. The vector form gives,

Y' = F(Y),Y(0) = Y. (38)

when D, = u(S;,, P = 0) < D, (0,0) is the only equilibrium and it is locally stable; when
D.>D, (X ,P)=(DF,”YD)/F1(F,~ D)), F, (D)) is locally stable and (0, 0) becomes unstable.
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When D = D, (X, P") degenerates to the washout condition. Substituting F(P) to
system (24), one has,

(£F) = % (F1(P) = D) + & (R(P) — BE)

(39)
=F(P)-R <o

By the Poincare-Bendixson theorem, the equilibrium is globally stable. [

In the following, process states with varying parameters D and S;,, are analyzed.
Although process—model mismatch is inevitable, quantitative analysis undertaken with
fully known kinetics is essential because certain guidelines could be provided to aid in
finding out optimal working conditions. As is shown in Figure 6, with the increase in
D, P decreases rapidly till approaching zero, and the washout condition emerges and is
labeled as BP, where all substrate is left unconsumed. For a given D, increasing S;, results
in a limited effect on production P in the low D region, but the curves coincide at the
high D region, which indicates that extra substrate supply is not constructive for process
enhancement (Figure 6b). Moreover, the emergence of the washout condition is insensitive
with varying S;,. Further plots of (S;,, S) and (S;;,, P) reveal that the identical slope k exists
when the substrate content is adequate, which means AS” is proportional to deviation of
Sin, and from Equation (33) we have,

(1—K)ASy = [ — + )A((SP) (40)
( Ysx  Ysp
(a) 40 . . . . - T (b) 25 50
/
35 | - 80
gl e 2T 1“2
AN . g g
sl _— T g
5 25 / e 1%2 2 &
R e s Bl 13
s / H 5] 1 S
E e 2 2 2
€20 | P 2 € 8
I w4 2 g 2
2 v s g o
1 X £ S SR
s /)X 3 El 5
= /A @ ] 2
: // & B 2
Rdv /74 g £ )
E // st w0
5 [/
/
0 / 1 1 1 1 1 0 0 e = i
0.0 0.1 0.2 03 0.4 0.5 0.6 0 120
Dilution rate D (h™) Input Substrate concentration S, (g/1)

Figure 6. Numerical continuation of the ethanol fermentation process with varying parameters.
(a) Ethanol production under varying dilution rate and input substrate concentration; (b) Influence
of input substrate concentration on fermentation rate.

Since the limiting substrate is expected to be adequate in continuous fermentation,
the (D, P) plots are identical with varying S;,,, then, A(6P) = 0 and k = 1. In Equation (40),
which indicates regulating substrate 5"/ under a chemostat by law (17) and regulating the
cell number X" using turbidostats in Remark 5, there are dual problems [39] so long as
washout avoidance [40] conditions are promised.

To avoid washout, cell duplication should exceed cell loss, and the upper bound of D

is provided as follows,
. 1(0,S,)
lim ———~=

—D >c¢ 41
X—0+ X (1)

where ¢ > 0 is the minimal allowable cell accumulation rate. To mention, ¢ is difficult to
quantify in real applications. Hence, we provide to start the control from batch fermentation
and GCS is implemented to promise shifting from a batch model to a continuous one. With

the control law (17), D is unprovoked at the beginning and lasts for a while under very
small initial ¢ = y(tg = 0), and the influence of varying S;, during this interval is avoided.
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To mention, the control starting by traditional batch mode production is easily applicable
in practice, and after the cell is substantially accumulated, CER becomes detectable and
r1 > 0 makes the actuator functional; then, with the bounded co-state 7, the control can
track any reference S"f < S;,, even it is unreachable.

However, the above-mentioned control is conducted on a casually assigned S'¢, where
extra substrate would not increase ethanol production once the supply is adequate; hence,
a well-prescribed reference trajectory is crucial, especially when S;;, is time-varying and
productivity increase is one of the main purposes. From Figure 6a, the chemostat method
expects the depletion of substrate to increase feed conversion and downsize subsequent
ethanol separation/purification burden, but the unlimited decrease of the dilution rate
might not be a reasonable choice, since when D approaches zero, the process becomes
batch mode. Moreover, the capability of cells to consume a trace quantity of substrate
varies from stain to stain, and when the substrate is not adequate, ethanol productivity
decreases rapidly. One can give the batch avoidance condition similar to Equation (41) to
construct the lower bound D in the control system. On the condition that the substrate in
the fermenter needs to exhibit a decreasing trend, i.e., assume the initial Sy > 0, and without
the interference of feed supply, 5(t) is repellent to Sy; then, the lower bound is provided,

lim p — 11X/ 5)

> ¢ 42
S—0t+ X ( )

Likewise, Equation (42) is difficult to apply in practice. Concerning this, any fermenter
i in the series (Figure 3) is expected to work with adequate substrate to promise a high
ethanol conversion rate, and k = 1 in Equation (40) could be provided as the indicator to
explore D in the lower bound that minimizes residual substrate. Hence, in this work, we
formulate S to maintain k = 1 for the deterministic system, and for the case of unknown
metabolic capabilities, the ladder pattern S¢ is constructed as the reference trajectory and
D in the lower bound is obtained by a trial-and-error method.

4.3. Numerical Simulation on the Closed-Loop System

In the present section, the behavior of OBE under the control prescribed in Figure 4 is
compared with the simulation results of the perfect model with parameters provided in
Table 1 (fermentation kinetics are validated). The process starts from batch mode, and the
initial states (So, Xo, Pg) = (52.64, 0.01, 0) g/L are verified against the experimental settings.
Other operating conditions are the inlet substrate temperature T;, = 25 °C and the jacket
cooling agent Tj,; = 15 °C. Furthermore, T;, and Tj,; are introduced with sinusoidal-like
perturbations to mimic the influence of the feedback stream in Figure 2.

Temperature change in the fermenter is led by two factors: (1) the aerobic effect
caused by the dissolved oxygen would lead to a gradual temperature increase; (2) the
enthalpy deficit with the action of D might lead to rapid temperature decline. Therefore,
we formulate the split-ranging control exhibited in Figure 7 to regulate the temperature
inside the bioreactor. We set AH,, as the phase changing heat for per kg steam, and
if roughly taking & = AHy/ Cpeatj/(Tiuj — Tj) as a constant, say 5.0 in the current case, a
control simulation can be implemented under the unified control law (14). F; being negative
indicates steam being injected to the jacket, while positive means cooling water is used.
We assume F; is bounded with [-1000, 2000] L/h, where negative values indicate the “B”
valve is open and positive values mean the “A” valve is in operation.

Since the fermenter volume V is much bigger than the jacket volume V;, the response of
the manipulated variable is slow, and hysteresis led by inertia is expected to be compensated
by actions ahead of time. Therefore, PD control is integrated to (14) to account for the
change in T,

)= f)rc:e”ir T (17(<k+ le—i—N/s) (Trref - Tr)) o D(T;, — Tr)) (43)
j>~heat,j Linj j

a 32Prcheut,r
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where k represents the gain, T is the differential time, and N is the filter constant. Be-
cause the response of fermentation states is slower than that of temperature, fine-tuned
temperature control is exploited first, and we expect T, is well-controled so as to alleviate
interference between loops.

Tsp
/P I TC TT
H T,

m

Cooling water Y I
Circulating i
“A” Exothermic
Steam §3<} = fermentation

o al

Figure 7. The split-ranging control schematic. When the actuators are off, “A” is in operation to
remove the extra heat, and when the discharge/refill valves are open, “B” is in operation to remit the
enthalpy loss.

The behavior of the closed-loop system adopting the adaptive law (43) under the
specific F;, =26 g/L is shown in Figure 8. The graphics in Figure 8a—c represent the behavior
of the estimation variables X, rop, and S;,,, while the graphic plotted in Figure 8d is related
to the control input F; and response T;. For the estimation of biomass concentration, P is
assumed to be on-line measurable, and during the observation of P, OBE is implemented
to obtain an estimation of X; hence, the estimation of P (P" in Figure 8a) is convergent to
the real value faster than that of X. Similarly, oxygen demand is detected on-line which is
used for estimation of 1oy, but the aspiration effect is also influenced by biomass content;
therefore, in Figure 8b, the estimation effect of 1 is also affected by X" in Figure 8a.

The estimation of the input substrate concentration is more difficult because no direct
one-on-one detectable signal could be mapped on S;;,;, and we introduce an extra variable ¢
defined in Equation (24) to represent S;,. The underlying idea follows principle of substrate
conservation; hence, for the detection of ¢, all three fermentation related states (S, X, P) are
required, from measurement instruments or by estimation. When the estimation of i tracks
the real value well, OBE could be adopted to estimate S;,,. In this work, a second-order
SMO by the technique of GSTO is proposed for the estimation of S;,, and the tracking effect
is provided in Figure 8c, and one can expect that the higher-order SMO tracks the real value
better; however, the tuning parameters also increase.

Figure 8d presents the result of temperature control using the adaptive regulator (43),
where the estimation of rp; is essential because the respiration effect is one of the main
sources for temperature increase; note that an estimation of rp; is provided in Figure 8b
through the observation of X. The trajectory for F; reveals that steam is supplied at the
beginning to warm up the fermentation process, and with the duplication cells, oxygen
consumption leads the split-range control to gradually close the steam valve, then open up
the cooling water. Compared to Figure 8a—c, we can infer that temperature inputs/states
have limited influence on fermentation temperature; moreover, the feed-forward effect of
(43) is revealed by a longer duration of settling in the time for F; than for T;.

First case scenario. In this scenario, the set-points of the two controlled variables were
fixed at two constant values, respectively, S/ = 60 g/L and T," = 30.0 °C. By analyzing
Figure 9a,b, it results that the proper domain ¢ € (v, YMm) promises anti-saturation of
the control F;,. As in this case, S is higher than the initial Sy = 56.2 g/L staring from
batch mode production, 7y reaches ) and keeps the maximum value, whilst F;,, decreases
gradually after a quick supplement of substrate at the beginning, though the deviation
s — g always exists. Hence, the control could avoid input saturation; moreover, the
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Figure 8. State estimation and temperature control through control law (43) with constant F;, = 26 1/h.
(a) Estimation of X by observation of P, where w; = 0.5 and 77 = 0.75. (b) Estimation of rp, by
observation of X, where w3 = 0.5 and y3 = 1.0. (c) Estimation of S;;, by 2nd order SMO of i, where
k1 =0.075, 13 =25, Ay =2.5, A\yp1 =25, wp = =1, 1 =3.8, yp =2.1, 13 =1.0. (d) | Kp =0.5,K; =0,

KD =15, 1y = 0.5.
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Figure 9. Global stabilizing control through (17) with estimation, where S"¢ = 60 g/L and
T4 =30.0 °C. (a) Adaptive control with fixed parameters ,; = 0.02 and 7yy; = 0.03. (b) Con-
trol performance under K = 2.5 and fermenter states. (c) Control with adaptive parameters
(Ym, M) = 'y"’f +05 x S(y'¥/ Sin). (d) Control performance under K = 2.5 and fermenter states.
(e) Control with adaptive parameters (v, yam) = 7 +0.3 x S(v¥¢/S;,). (f) Control performance
under K = 2.5 and fermenter states. (g) Control with adaptive parameters (v, yp) = 74 +£0.1 x

S(y"¥/S;,). (h) Control performance under K = 2.5 and fermenter states.

In the following, we consider the practical case that 7y;; and ) are time-varying when
inputs vary. As is shown in Figure 9¢,d, 7, and s follow the trend of S;,, estimation and
when the scope between (v, Yum) is set as S(Y"%/S;,), v reaches 7 and follows the trend
(Figure 9c), and results in S to increase and maintain a high substrate run-off (Figure 9d).
We can narrow down the regime (¥, ypm) to force S — sref: Figure 9e,g are the adaptive
parameters under 0.6 and 0.2 times S(Y%/S,), respectively, and the corresponding control
results are shown in Figure 9f,h. The control becomes aggressive when the domain of y
narrows down. Note that the fermentation reaction is very slow, and it is probable that the
delay in response to the broth changes might deteriorate the control performance in real-
time practice; hence, our purpose is not to precisely maintain the values at their reference
but to shift between different operation modes with the least possible substrate loss.

Second case scenario. To increase ethanol conversion and decrease substrate loss, the
second scenario is carried out considering that the reference S/ has a decreasing evolution
under piece-wise constant steps, where the domains of the adaptive parameters (v, yYm)
are set as 0.2 times S(y"¥/S;,). As is shown in Figure 10a, the reference jumps att=50h,
15 h, and 300 h directly correspond to the scope change in 7, and y; however, the
adaptive law promises <y to vary continuously, which is advantageous for system sensitive
to external interference.
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Figure 10. Global stabilizing control with ladder form reference tracking, where S = 60 g/L
and T,”Y = 30.0 °C. (a) Adaptive control with fixed parameters 7, = v — S(v¢/S;,) and
Ym =7 + S(v"¥/S,,). (b) Control performance under K = 2.5 and fermenter states.

One problem related to the economically viable control is the selection of optimal
reference 5"/, To make the system continuous and functional, batch /washout avoidance is
essential; hence, we wish the control input F;, to be somewhat inert to changes. As is shown
in Figure 10b, for the ladder form decrease of Sfatte (0, 300) h, F;,, tends to decrease after
a quick increase at the beginning. Though S/ =20 g/L is hard to reach, ethanol production
continuous to increase. Here, we can expect an optimal S in this case of around 30 g/L,
and the corresponding F;, decrease to about 11 L/h. Further increase 5" = 60 g/L and
the results show that ethanol production decreases and F;, increases slowly, indicating
that the adaptive control is capable of maintaining continuous production whilst keeping
F;,, at a low flowrate, so as to decrease substrate loss. To mention, the process shift from
batch mode to continuous mode is critical for the fermentation process, and we have
noticed a time during exists before the start-up operation in dilution rate, which allows
for cell accumulation, and during this time interval, the system is in batch mode. In the
following, we introduce experimental collected CER signals and tests on this control system
to evaluate the start-up procedure.

4.4. Assessment of Process Improvement [41]

To appreciate how the implementation of the continuous strategy could potentially
impact ethanol production goals over a long-term period, we compared the results of
Figure 9g,h with a batch in terms of ethanol productivity, substrate conversion, and sub-
strate loss. For a reactor with a working volume (V) of 10° L, the downtime between
batches was estimated at 6.0 h and the batch results repeated the regression of Figure 5d,
as is exhibited in Figure 11a. The simulation results in a ~200 h interval show that the
averaged ethanol productivity for continuous fermentation reaches 0.669 g L~! h~!, which
is 19.7% higher than the batch mode with the same start-up condition.

To evaluate substrate utility, the substrate conversion ratio (dP/dS) and substrate loss
are presented in Figure 11a; the average conversion ratio in continuous mode is 0.369,
while batch mode could be Ysp = 0.3989 because the substrate loss of batch fermentation
is very small. However, the substrate loss of continuous fermentation is substantial,
for the current case where S'¢ is set as 60 g/L, the average outlet reaches 60.78 g/L.
To mention, the configuration exhibited in Figure 3 is an effective solution to enhance
substrate utility.
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Figure 11. Comparison of batch and continuous fermentation with the same start-up condition for
200 h interval. (a) Volumetric productivity for batch and continuous fermentation. (b) Substrate
conversion ratio and substrate loss of the continuous mode.

5. Conclusions

In this paper, a mathematical model for ethanol fermentation is proposed and val-
idated with experimental data. Then, an innovative global stabilizing control scheme
is developed and applied for continuous ethanol production that is started from batch
mode. To address the problem of fermentation state monitoring, observer-based estimation
strategies are developed, and for the estimation of unknown inputs, the technique of a
higher-order sliding mode observer is adopted. Despite being in harsh, realistic operating
conditions (unknown input substrate concentration, time-varying and uncertain kinetics,
noisy measurements), the adaptive control structure behaved well, and the control achieves
a 19.7% increase in volumetric productivity. The reported simulation results are encour-
aging, and the proposed control structure can be adapted to other types of fermentation
processes.
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