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Abstract: The residual antibiotics in livestock excreta (LE) have been regarded as a potential threat
to the ecosystem and human society. Some photoautotrophic microalgae, however, were found to
metabolize them during active biomass photosynthesis. This study investigates how the strength
of the antibiotics impacts the overall biodiesel yield and composition of the harvested microalgal
biomass grown from LE. The microalgal growth results demonstrate that increasing the concentra‑
tion of residual antibiotics suppresses the microalgal growth rate from 0.87 d−1 to 0.34 d−1. This
61% lower biomass production rate supports the proposition that the kinetic impact of antibiotics
may slow lipid synthesis. Moreover, the analytical results of fatty acid methyl ester (FAME) demon‑
strate that amoxicillin substantially reduces the C16:0 content by over 96%. This study evidences
that the functional group similarity of amoxicillin may competitively inhibit the esterification reac‑
tion by consuming methanol. This explanation further highlights that residual antibiotics interfere
with microalgal lipid synthesis and its transesterification. Moreover, it was confirmed that the pres‑
ence of residual antibiotics may not affect the major nutrient removal (total nitrogen: 74.5~78.0%,
total phosphorus: 95.6~96.8%). This indicates that residual antibiotics inhibit the metabolism associ‑
ated with carbon rather than those associated with nitrogen and phosphorus, which is connected to
the decrease in the biodiesel yield. Overall, these results reveal that the frequent abuse of antibiotics
in livestock may harm the eco‑friendly conversion of waste‑into‑bioenergy strategy.

Keywords: livestock excreta; microalgae; antibiotics; biodiesel; bioenergy conversion

1. Introduction
In recent decades, factory farming has caused various environmental problems in the

development of the livestock industry because it is inevitably associated with the large‑
scale generation of livestock excreta (LE) [1,2]. In addition, the feed can influence not only
the quality of the livestock but also the characteristics of the LE [3,4]. The LE contains not
only well‑known environmental pollutants but also residual pharmaceuticals that can be
harmful to the ecosystem and human health [5]. Due to the continuous abuse of antibiotics,
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they enter receiving water in the form of point or non‑point source pathways [6]. Unlike
other pollutants, they are present at very low concentrations, but even at the parts per
billion (ppb) levels, they may cause bioaccumulation and toxicity in living organisms [6,7].
Moreover, LE treatment cannot be free from problems such as eutrophication, antibiotic‑
resistant bacteria, antibiotic‑resistant gene transfer, greenhouse gases, and odor [8,9].

Antibiotics are commonly overused on most farms for excessive disease prevention,
growth promotion, and efficient management of livestock’s productivity [10,11]. Among
the well‑known antibiotics, amoxicillin (AMX) is a penicillin antibiotic with significant
broad‑spectrum and semi‑synthetic characteristics [12]. AMX belongs to the beta‑lactam
group of antibiotics, which is active against awide spectrum of Gram‑positive bacteria [13].
AMX in the ecosystem, however, may increase the spread of antibacterial‑resistant genes
and ultimately result in the reproduction of beta‑lactam‑resistant bacteria [14]. Further‑
more, long‑time exposure to AMX may lead to liver injury, which is stimulated by
amoxicillin‑clavulanate‑acid‑secreted IFN‑γ [15]. If AMX remains in the water environ‑
ment, it poses a potential threat to both the ecosystem and human health [16–18]. There‑
fore, it is necessary to eliminate AMX in a highly efficient and sustainable way tominimize
its potential hazard to humans. Additionally, antibiotics may potentially reduce the treat‑
ment efficiency of pollutants in the wastewater treatment process [19]. Moreover, due to
their complex chemical structures, physico‑chemical processes may be necessary for effec‑
tive treatment [20].

From a viewpoint of waste‑into‑energy conversion and the circular economy, how‑
ever, LE may be a valuable resource for renewable and sustainable energy that can con‑
tribute to replacing fossil fuels [21,22]. Thus, intensive research on biofuel (e.g., biodiesel,
biogas, and bio‑alcohols) generation from LE has been conducted internationally [23,24].

Although using microalgae could significantly remove both the total nitrogen and to‑
tal phosphorus from LE while recovering the resources of bioenergy and biomass [25,26],
traditional wastewater treatment facilities have shown a limited capability to treat residual
pharmaceuticals [27]. Previous reports on microalgal treatment suggest that bioremedia‑
tion of antibiotics is possible as an ecologically broad and sustainable approach which is
gaining scientific attention [28].

Among various microalgae, Chlorella spp. are suitable species that can treat LE and
antibiotics; however, the previous focus has been to verify biomass productivity [29]. In
contrast to the effect of antibiotics on biomass, their impact on the bioenergy yield or com‑
ponents remains largely unknown. Hence, this study tests a microalgal treatment using
C. sorokiniana to reduce the contaminants in LE together with antibiotics. Experiments
were designed to confirm how the strength of the antibiotics affects the photosynthesis of
C. sorokiniana and what factors causes the deterioration in the biodiesel potential. Specifi‑
cally, the experiments were designed to evaluate the growth kinetic constants ofC. sorokini‑
ana according to the amount of AMX, to reveal the inhibitory mechanisms associated with
AMX affecting nutrient and antibiotic removal, and to identify the causes that change the
biodiesel yield and its components according to the antibiotics dose.

2. Materials and Methods
2.1. Inoculum and Culture Conditions

This study used C. sorokiniana as the inoculum, which was obtained from the Korean
Collection for Type Cultures (KCTC). It has been reported that C. sorokiniana easily adapts
to various environmental conditions and reduces the total nitrogen and total phosphorus
significantly inwastewater [30]. Themediumused for culturing themicroalgaewas BG‑11,
which is an artificial medium commonly used for culturing microalgae [31]. The composi‑
tion of BG‑11 is as follows based on 1.0 L: 1 mg EDTA disodium salt, 40 mg K2HPO4·3H2O,
6 mg citric acid, 1.5 g NaNO3, 36 mg CaCl2·2H2O, 75 mg MgSO4·7H2O, 6 mg ferric am‑
monium citrate, 20 mg NaCO3, and 1 mL mixed trace metal solution. Each liter of trace
metal solution contained 49 mg Co(NO3)2·6H2O, 2.9 g H3BO3, 1.8 g MnCl2·4H2O, 0.39 g
NaMoO4·2H2O, 79 mg CuSO4·5H2O, and 0.22 g ZnSO4·7H2O.
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Th microalgae culture was carried out under the following conditions: the tempera‑
ture was 28 ◦C, the light cycle ratio was light/dark = 16:8, the light intensity was
180 µmol/s·m2, and it was incubated for a total of 6 days in a batch reaction. The cultured
microalgae biomass was harvested using centrifugation at 8000 rpm for 10 min using a
centrifuge. The harvested biomass was lyophilized for 96 h at −40 ◦C and 5 m Torr using
lyophilization because the moisture content reached about 80 wt%.

2.2. Livestock Excreta Characteristics and Antibiotics
The LE used for the microalgae cultivation was obtained from a pig farm in K‑City

of Korea. The LE was sourced from a factory pig farming facility with a liquid manure
handling system. We performed the collection of the livestock excreta (20 L) on a clear day
with a temperature of approximately 25 ◦C. The initial characteristics of the LE are shown
in Table 1. The antibiotic, used to achieve the purpose of this study, was≥900 µg/mgAMX
(Sigma‑Aldrich, St. Louis, MO, USA). In this study, a large amount of amoxicillin (0.01 to
20 ppm) was tested to confirm its negative effects on the biological treatment of the LE
according to the microalgal growth kinetics, biomass yield, and composition of biodiesel.

Table 1. Initial characteristics of LE.

Characteristics Unit Value

pH ‑ 7.5
CODcr (Chemical Oxygen Demand) mg COD/L 280

T‑N (Total Nitrogen) mg N/L 120
T‑P (Total Phosphorus) mg P/L 1.5

2.3. Biodiesel Production from the Microalgae Biomass
The experimental method used for the biodiesel production in this study is direct

transesterification (DT). First, lipids are extracted from the microalgae biomass by destroy‑
ing the cell walls using physical, chemical, and biological methods [32]. Next, the extracted
lipid is transesterified with alcohol in the presence of a catalyst to obtain methyl ester and
glycerol. Finally, the final reactant is centrifuged to produce high‑purity free fatty acid
methyl ester (FAME).

In this study, two homogeneous catalysts (HCl and NaOH) were used to produce
high‑quality biodiesel of the same concentration (0.5 M based on methanol). The applied
temperature varied based on the characteristics of the catalysts reported previously, mean‑
ing the acid catalyst (HCl) was optimized at a higher temperature (90 ◦C), while the base
catalyst (NaOH)was optimized at a lower temperature (25 ◦C) [33]. The ratio of the biomass,
catalysts, and n‑hexane was adjusted to 1 g, 10 mL, and 10 mL, respectively. For the
biomass, the microalgae were cultured using artificial growth medium (BG‑11), the LE,
and the LE containing antibiotics. At each temperature condition, the catalyst and the mi‑
croalgal biomass were put into a test tube and mixed for 1 h for the DT reaction. After the
reaction was completed, the FAMEwas extracted from the n‑hexane layer. A flow chart of
the overall DT process is shown in Figure 1.

The yield of FAME was calculated by dividing the total mass of the FAME by the
total mass of the dried microalgae biomass. The yield of FAME was calculated using
Equation (1) below [34].

FAME yield (%) =
Total mass of FAME (g)

Total mass of dried microalgae biomass (g)
(1)
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2.4. Analytical Methods for Water Quality and Fatty Acid Methyl Ester (FAME)
The water quality characteristics of the wastewater influent and effluent were ana‑

lyzed following the standard methods. We employed the Standard Methods for the deter‑
mination of total nitrogen (T‑N) and total phosphorus (T‑P): 4500NC (persulfate digestion)
and 4500 PE (ascorbic acid), respectively [35]. The chlorophyll‑a (chl‑a) concentrations
were analyzed using a method based on acetone extraction using spectrophotometry.

The analytical parameters for the LC‑ESI/MS/MS analysis of amoxicillin were estab‑
lished employing an LC‑ESI/MS/MS Triple Quadrupole (6410 LC/MS/MS, Agilent, Santa
Clara, CA, USA) equipped with HPLC and an electrospray ionization source (Agilent
Technologies). The mobile phase comprised a blend of 0.1% formic acid in distilled wa‑
ter and 0.1% formic acid in acetonitrile (ACN), employed on a Synergi Hydro‑RP 80 Å
(150 × 2 mm) (97:3, v/v) and introduced into the system at a flow rate of 0.2 mL/min. The
column oven temperature was 30 ◦C and the sample injection volume was 5.0 µL. Mass
spectrometric detection was performed using a series 6410 LC‑MS/MS Triple Quadrupole
(Agilent Technologies) using multiple reaction monitoring.

The yield and composition of the extracted FAME were analyzed using a gas chro‑
matograph (GC) (GC 2020, Shimadzu, Kyoto, Japan). The GC was equipped with a flame
ionization detector (FID) and an SPTM‑2330 capillary column (30 m × 0.25 mm × 0.20 µm;
Sigma‑Aldrich, USA). The methods used for the analysis are as follows: (1) Helium was
used as the carrier gas (constantly 1 mL/min and the split ratio was 10:1); (2) The temper‑
ature of the FID detector and injector was set to 240 ◦C; (3) The oven temperature was
programmed from 140 ◦C to 220 ◦C at a rate of 4 ◦C/min. The peak was interpreted based
on the FAME mixture (CRM 18918, Supelco, Bellefonte, PA, USA) from C8:0 to C24:0.

3. Results and Discussion
3.1. Negative Effect on the Microalgae Growth of AMX

Figure 2 presents the change in chl‑a, T‑N, and T‑P at the various concentrations of
AMX while treating the LE. It was observed that the control experiment with no AMX
showed an exponential growth pattern for chl‑a. When the residual AMX concentration
varied from 0.01 to 20 mg/L, the amount of chl‑a was higher than the control for 4 days.
On the fifth day, that of the control exceeded all the reactors due to the active exponential
growth phase. This higher chl‑a content in the initial startup periods implies that AMX
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might stimulate the growth of C. sorokiniana, which uptakes AMX according to bioaccu‑
mulation and bioadsorptionmechanisms [36], and the transferred AMXmust have caused
a hormetic effect [37]. It seems that the stimulation may not last longer than 5 days, possi‑
bly due to the increasing oxidative stress within algal cells induced by AMX, which leads
to the overturn in the chl‑a content [38,39].
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Figure 2. Variations in (a) chlorophyll‑a, (b) T‑N, and (c) T‑P according to the change in antibiotic
concentration in the microalgal treatment of LE.

Table 2 compares the final chl‑a content, averagedaily growth rate, and specific growth
rate of each experiment quantitatively after 5 days of culturing. The chl‑a content of the
control increased from 327.7 mg/m3 to 8583 mg/m3 while that of 0.01~20 ppm AMX in‑
creased to 7947~6052 mg/m3. Compared to the control, the results evidence that the pho‑
tosynthesis is inhibited more significantly by the end as the concentration of residual an‑
tibiotics increases. This is consistent with a previous study that revealed the metabolic
inhibition of AMX in microalgae [40]. The specific growth rate obtained from a regression
of growth pattern further supports the overall inhibitory effect of AMX. In the control, the
specific growth rate was 0.87 days−1. However, the rates gradually reduced to as low as
0.34 days−1 as the concentration of residual AMX increased from 0.01 to 20 ppm.

AMX, known as a beta‑lactam antibiotic, can disrupt penicillin‑binding proteins and
interfere in the biosynthesis of the cellwalls, causing osmotic rupture of themicroalgae [41].
Also, beta‑lactams significantly inhibit the growth and physiological processes of the al‑
gae by disturbing the primary photochemistry, photophosphorylation, electron transport,
and carbon assimilation [42], which can lead to a reduction in biomass growth, a reduction
in various syntheses [43,44], and even cell death [45]. Thus, the experimental results evi‑
dence that as the concentration of residual antibiotics increases, this reduces themicroalgal
growth rate by ~26.1% according to the prescribed inhibition mechanisms. These decreas‑
ing trends are consistent with those of other studies, which presented more significant
inhibition by 25.6~79.9% in the biomass growth due to AMX [40,46].
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Table 2. Chl‑a concentration and specific growth rate according to residual AMX strength.

AMX
Strength
(mg/L)

Initial Chl‑a
(mg/m3)

Final Chl‑a
(mg/m3)

Average Daily
Microalgae Growth

(mg/m3/Day)

Specific Growth
Rate

(Days−1)

0

328 1

8583 1651 0.87
0.01 7947 1519 0.46
0.5 7108 1345 0.35
1 7475 1435 0.43
5 6194 1150 0.34
20 6052 1080 0.35

1 Initial average chl‑a value of control experiment. Standard deviation was ±56 mg/m3.

Overall, despite the initial growth stimulation, these results indicate that residual
AMXmaydeteriorate the treatment performance of LE due to unavoidable inhibition, lead‑
ing to decreased photoautotrophic cell synthesis.

3.2. Nutrient and AMX Removal in Microalgae Treatment
3.2.1. Effect of AMX on T‑N Removal

Figure 2b shows the T‑N reduction according to the residual antibiotic concentration.
Table 3 tabulates the initial and final contents of T‑N and the corresponding T‑N removal
efficiency in each experiment. The monitored T‑N removal efficiency ranges from 78.0 to
74.5%. It was revealed that variation in the residual AMX concentration demonstrated no
significant change in the removal efficiency. This indicates that C. sorokiniana actively as‑
similates nitrogen via its photoautotrophic metabolism despite the existence of AMX [47].
This non‑correlated T‑N removal means that AMX has little impact on the microalgal ab‑
sorption of T‑N despite the restriction of microalgal growth, and the free ammonia level
of this study seems much lower than that of the inhibition level. This is consistent with
previous batch studies which demonstrated an approximate 98% nitrogen removal, a re‑
sult achievedwithout the influence of specific antibiotic inhibition [48,49]. Previous studies
have also indicated that existing co‑substrates, which are plentiful in livestock excreta, may
enhance the degradation of AMX and promote the synthesis of proteins associated with
T‑N absorption [41].

Table 3 compares the nitrogen removal efficiency according to the microalgal species
and the existence of antibiotics. Despite the presence of antibiotics, the T‑N removal ef‑
ficiency of the microalgae was maintained higher than seen in the literature [50]. Other
studies showed a high nitrogen treatment efficiency even when wastewater contained
the antibiotics AMX and sulfamethoxazole (SMX) but showed a longer operation period
(7~18 days), and the initial concentration (45~55.4 mg N/L) was also lower than our
study [43,49]. Also, microalgae without antibiotics presented a relatively similar or lower
removal efficiency (29.4~70.4%) although the treatment timewas longer (7~10 days) [50–53].
Overall, T‑N removal by C. sorokiniana is not significantly affected by AMX even at a con‑
centration of 20 mg/L. It seems that the interactions related to the co‑substrates influence
the maintenance of photosynthetic activity if the free ammonia level is kept below the in‑
hibition level [47,54].

3.2.2. Effect of AMX on T‑P Removal
Figure 2c shows the T‑P reduction for each AMX concentration. And Table 4 shows

the initial, final, and corresponding removal efficiency according to the experimental con‑
ditions. The exact initial T‑P concentrations were 1.53~1.55 mg P/L and the final concen‑
trations were 0.04~0.07 mgP/L. The T‑P removal efficiency reached as high as 95.6~96.8%.
Although a slight decrease (about 1.2%) in the overall T‑P removal efficiency was seen,
AMX seems to have an effect on the T‑P removal because the maximum removal rate of
T‑P at around day 2~3 decreased from 0.77 to 0.61 mg P/L/day. This seems to be associated
with microalgae growth inhibition, but the consequences on the whole seem negligible.
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Table 3. T‑N concentration and removal efficiency according to residual antibiotic concentration.

Microalgae Antibiotic
Type

Antibiotic
Strength
(mg/L)

Initial
T‑N

(mg N/L)

Effluent
T‑N

(mg N/L)

Removal
Efficiency

(%)

Operation
Period Reference

Chlorella sorokiniana AMX

0 106.9 23.5 78.0

5 This study

0.01 109.4 25.5 77.0
0.5 106.0 27.0 76.0
1 110.4 28.0 75.2
5 101.7 30.5 74.6
20 114.2 28.5 74.5

Chlorella vulgaris and
Scenedesmus dimorphus ‑ ‑ ‑ ‑ 70.4 10 [51]

Chlorella vulgaris and
Scenedesmus dimorphus ‑ ‑ ‑ ‑ 64.5 10 [52]

Chlorella sorokiniana ‑ ‑ 214.9 150.3 29.4 7 [50]
Chlorella vulgaris ‑ ‑ 113.3 51.8 54.3 7 [53]
Chlorella vulgaris SMX 0.5 55.4 0.84 98.5 7 [49]
Chlorella regularis AMX 3 45 7.92 82.4 18 [43]

Table 4 compares the T‑P treatment results with previous studies to confirm the ap‑
plicability of the microalgal leachate treatment. Including the results of this study, an‑
tibiotic application cases (95.6~98.7%) [43,49] show a better T‑P removal efficiency than
those without antibiotics (37.0~79.7%) [51,55–57]. The better removal of nutrients seems
to be attributed to either the rapid absorption for the initial stimulation of growth or the
enhanced photosynthesis of existing co‑substrates, even thoughwe admit that the microal‑
gae, wastewater source, and antibiotics used were different.

Table 4. T‑P concentration and removal efficiency according to residual antibiotic concentration.

Microalgae Antibiotic
Type

Antibiotic
Strength
(mg/L)

Initial
T‑P

(mg P/L)

Effluent
T‑P

(mg P/L)

Highest
Removal Rate
(mg P/L/day)

Removal
Efficiency

(%)

Operation
Periods Reference

Chlorella sorokiniana AMX

0 1.55 0.04 0.77 96.8

5
This
study

0.01 1.54 0.05 0.73 96.5
0.5 1.54 0.06 0.69 96.1
1 1.53 0.06 0.64 95.8
5 1.53 0.06 0.60 95.8
20 1.53 0.07 0.61 95.6

Chlorella sp. ‑ ‑ 57.3 18.1 0.89 68.4 45 [56]
Asterarcys

quadricellulare ‑ ‑ 0.40 0.20 ‑ 50.0
8 [55]

Neochloris aquatica ‑ ‑ 0.40 0.25 ‑ 37.0
Chlorella vulgaris and

Scenedesmus
dimorphus

‑ ‑ ‑ ‑ ‑ 79.7 10 [51]

Chlorella vulgaris and
Ganoderma lucidum ‑ ‑ ‑ ‑ ‑ 70.3 10 [57]

Chlorella vulgaris SMX 0.5 27.2 0.41 3.82 98.5 7 [49]
Chlorella regularis AMX 3 9.1 0.12 ‑ 98.7 18 [43]

3.2.3. Reduction of Amoxicillin
Figure 3 shows the variation in AMX according to different initial concentrations. Re‑

gardless of the concentrations, the AMX content rapidly decreased down to the detection
limit (0.001 mg/L) within a day. It is well known that antibiotics can be removed by mi‑
croalgae via various mechanisms, which include adsorption [58], bioaccumulation [59],
biodegradation [60], photolysis [61], and hydrolysis [62]. Not only is the main removal
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mechanism known as adsorption [37] but also Chlorella spp. are famous for the effective
removal of various antibiotics, including AMX [28]. The results of C. sorokiniana are con‑
sistent with other Chlorella studies demonstrating an almost complete removal of AMX.
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Figure 3. Antibiotic reduction according to different AMX concentrations in LE by microalgae.

In addition, because natural photoautotrophic growth uses light as an energy source,
this couldmake photolysis contribute toAMX removal because intensive light can increase
the dissolved oxygen and pH, which creates favorable conditions for photolysis. These re‑
action conditions may be able to induce reactive oxygen species that can support antibiotic
clearance [61]. Overall, the results demonstrate that the microalgae can remove antibiotics
from the water body appropriately. However, the statistical correlation and degradation
mechanisms should be further demonstrated.

3.3. Inhibitory Effect of AMX on Biodiesel Production
3.3.1. Negative Effect of AMX Inhibition in Transesterification

In this study, biodiesel (FAME) was recovered from the microalgae biomass that was
grownwhile treatingLEwith residualAMXaccording to the experimental design. Figure 4
presents the FAME yield obtained from the direct transesterification of the microalgal
biomass using HCl and NaOH catalysts. It was observed that the yield decreases as the
concentration of antibiotics increases. This negative correlationwasmore significant in the
case of the HCl catalyst. The FAME yield reduced from 4.3% to 1.5%, while that of NaOH
catalyst decreased from 4.3% to 2.9%. The cause of the decrease in the FAME yieldmust be
associated with AMX’s inhibition of the microalgal growth. A previous study confirmed
that the higher the concentration of antibiotics, the more the microalgal photosynthesis
was inhibited [28]. The results of this study were consistent with this and verify that the
base catalyst might be preferable to prevent severe losses in the overall biodiesel recovery.

3.3.2. Changes in FAME Composition of Biodiesel Due to AMX
Figure 5 illustrates the variation in the FAME composition according to the residual

AMX concentration and catalyst type. As a fuel, important FAME components are palmitic
acid (C16:0) and stearic acid (C18:0) [63].
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In the case of transesterification using HCl, the palmitic acid (C16:0) presented a dras‑
tic decrease as the residual AMX increased, while little change was observed in the case
of the base catalyst. For the HCl catalyst, major elements of the FAME composition were
transitioning from C16:0 to C18:2 (Figure 5b–e) and C18:3 (Figure 5b–d).

The cause of this change might be found in the esterification reaction. As shown in
Equation (2), free fatty acids react with methanol and produce water through the esterifi‑
cation reaction.

HOOC‑R (free fatty acid) + CH3OH↔ R‑COOCH3 (FAME) + H2O (2)

Figure 6 compares themolecular structure ofAMXwith those of free fatty acids. Itwas
observed that bothAMXand free fatty acids similarly contain a carboxylic functional group
(RCOOH). The carboxylic functional group of AMX also can be esterified bymethanol [64].
This fact can reasonably explainwhy the FAMEyields decrease in this study as the residual
AMX concentration increases. Moreover, transesterification using an acid catalyst usually
uses a temperature of 90 ◦C for optimal FAME recovery [65]. This high temperature may
accelerate the reaction rate between the methanol and AMX, which results in methanol
consumption due to this unnecessary reaction. Furthermore, Equation (2) also shows the
production of water. Because the presence of water and the remaining free fatty acids may
trigger soap formation, which consumes the catalyst, water also results in a low conver‑
sion rate. From these analyses, it can be confirmed that the presence of antibiotics in the
transesterification process deteriorates the biodiesel yield and composition.

3.4. Limitations and Implications
This study primarily focuses on the effects of AMX in LE on microalgal growth, as

well as the yield and composition of the biodiesel generated. Cultivating microalgae using
LE is an eco‑friendly method of converting waste into biofuel, effectively removing N and
P. Additionally, the AMX in LE is degraded by microalgal metabolism, indicating that
microalgae‑based LE treatment can manage not only the nutrient levels but also the levels
of antibiotics such as AMX.

With a continuous increase in antibiotic usage in the livestock industry, considera‑
tion of the type and concentration of antibiotics used is important. Not only AMX but
various other antibiotics are used, including tetracyclines, quinolones, penicillin, cephems,
ionophores, and sulfonamide [66–68]. Investigating the detailed interactions between these
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antibiotics and microalgal growth, as well as optimizing the conditions of cultivation, is
essential. Additionally, evaluating the efficiency of continuous cultivation is essential for
the industrial application of LE treatment.
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4. Conclusions
This study confirms that the presence ofAMXwhile treating LEwithmicroalgae leads

to negative consequences in terms of the microalgal growth kinetics, biomass yield, and
biodiesel composition. Specifically, an increase in the AMX concentration from 0.01 to
20 ppmresulted in a reduction in the averagemicroalgal productivity from1651mg/m3/day
to 1080 mg/m3/day and the growth kinetics from 0.87 days−1 to 0.35 days−1. The overall
biodiesel yield from the produced biomass significantly decreased from 4.3% to 1.5% with
the acid catalyst and 4.0% to 2.9% with the base catalyst. The similarity in molecular struc‑
ture between AMX and free fatty acids explains howmethanol is consumed unnecessarily,
leading to a low biodiesel yield while altering the FAME composition, in transesterifica‑
tion. The results show that residual AMX is strongly associated with a decrease in the
C16:0 content in the FAME composition, which is an important constituent of biodiesel.
Importantly, the findings of this study can be utilized to manage LE in animal breeding
facilities using effective AMX controls. The harvested microalgae biomass resulting from
this process can be effectively converted into biodiesel, offering an eco‑friendly solution in
waste‑into‑bioenergy conversion strategies.
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Abbreviations

LE Livestock excreta
FAME Fatty acid methyl ester
ppb Parts per billion
AMX Amoxicillin
COD Chemical oxygen demand
T‑N Total nitrogen
T‑P Total phosphorus
DT Direct transesterification
Chl‑a Chlorophyll‑a
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