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Abstract: To improve the non-uniformity of a multi-cylinder marine diesel engine caused by man-
ufacturing assembly errors and performance degradation of the fuel injection system, with the
instantaneous speed applied as the control target, the feedback variable of each cylinder’s exhaust
temperature was used to obtain the non-uniformity information and the injection quantity of each
cylinder was applied as the control variable; the inhomogeneity control was accomplished by mod-
ifying the injection pulse spectrum. The model of AVL Cruise M was established and validated
by bench test data. The non-uniformity control strategy based on the instantaneous speed and the
exhaust temperature of each cylinder was developed in SIMULINK, and the control effect was com-
pared with the closed-loop control of cylinder pressure by software in-loop simulation. The results
showed that the non-uniformity control strategy based on exhaust temperature could significantly
improve the uniformity of each cylinder; although the improvement effect was not as great as the
non-uniformity control strategy based on cylinder pressure, the cost was significantly reduced, and
the practicality and reliability were better. With the closed-loop control of exhaust temperature and
instantaneous speed, the CV (Coefficient of Variation) of IMEP (indicated effective pressure) was
close to the closed-loop control of cylinder pressure; the maximum occurred at 25% load when it
was 0.199%. This co-simulation provided a theoretical basis for the subsequent hardware-in-the-loop
simulation and actual engine tests.

Keywords: multi-cylinder marine diesel engine; non-uniformity control strategy; closed-loop control;
exhaust temperature

1. Introduction

Marine diesel engines are widely used as power sources and generator sets for large
ships with their advantages of high power, low fuel consumption rate, and high reliabil-
ity [1–3]. Intelligence represents the development trend of marine diesel engines; traditional
electronically controlled diesel engines are based on open-loop control test calibration data,
and diesel engine processing and manufacturing process errors and the wear and aging
of parts easily make the diesel engine work unevenly in each cylinder. As such, there
is room for performance optimization [4–6]. Diesel engine inhomogeneity will intensify
each cylinder’s mechanical load and thermal load fluctuations, severely damaging the
diesel engine.

The number of marine high-powered high-speed HPCR (high-pressure common
rail) diesel engine cylinders can reach 20; because of variations in the production and
manufacturing of electronically controlled injectors, the actual injection quantity of each
cylinder with the same solenoid actuation signal is not consistent. Meanwhile, there may be
installation errors such as eccentricity in the cam mechanism of the diesel engine, resulting
in deviation angles in the TDC (top dead center) signal of each cylinder, thus affecting
the consistency of the injection timing; ultimately, the actual combustion and working
principle of each cylinder are different [7–9]. The CUC (Cylinder Uniformity Control) of
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each cylinder is a basic requirement to ensure diesel engine operation remains steady, and is
a key technology for the improvement of the overall performance of diesel engines [10–14].
Conventional diesel engine control systems are generally based on the test calibration data
of the pulse spectrum for fuel injection control. The control parameters cannot be modified
in response to the changes in the operating conditions of a single cylinder.

At present, the research on the non-uniformity of each cylinder mainly focuses on
the instantaneous speed and cylinder pressure [14–16]. Zheng used the burst pressure,
the IMEP, and the exhaust temperature of each cylinder as control variables to correct the
gas injection pulse width of each cylinder for the multi-cylinder unbalance problem of
marine micro-ignition dual-fuel engines. The burst pressure equilibrium was less than
1.2%, the IMEP equilibrium was less than 0.8%, and the exhaust temperature equilibrium
was within 11 ◦C [17]. Ou proposed an anomaly identification and reconstruction method
for combustion analysis systems. The effectiveness of the anomaly identification and re-
construction algorithm in locating the abnormal cylinder pressure on a crank-angle basis,
and in reconstructing the cylinder pressure by rejecting measurement noise without losing
valuable sensing information was determined [18]. Yu performed a study of the com-
bustion stability and uniformity of marine low-speed and medium-speed diesel engines;
a closed-loop control strategy for cylinder pressure was developed, and the in-cylinder
combustion state indicators such as the IMEP and MFB50 (50% of the mass fraction burned)
were calculated to adjust the injection parameters, which had an improvement effect on
the combustion imbalance between each cylinder and cycle [19,20]. Yang presented a
dynamic model for simulating the instantaneous angular speed, and the instantaneous
angular speed waveforms both in the fuel leakage condition and in the normal condition
were measured under various engine speeds and loads in laboratory conditions. The
characteristic parameters for detecting the faults relating to the gas pressure in the cylinder
were obtained successfully [21]. Wang used a TBD314V8 diesel engine as a research object
to improve the unevenness of each cylinder. The IMEP and MFB50 of each cylinder based
on the cylinder pressure calculation were used as the feedback variables, and the injection
quantity and injection advance angle of each cylinder were used as the control variables to
establish a joint simulation model of GT-Power and Simulink [5].

The closed-loop control technique based on cylinder pressure is not suitable for multi-
cylinder diesel engines because of the high cost of cylinder pressure sensors and the large
amount required [14]. The cylinder uniformity control of marine diesel engines based on
exhaust temperature has the advantages of low-cost sensors, straightforward operation,
and suitability for long-term online measurement, despite the disadvantage of at least
one operating cycle deferral. Moreover, the in-cylinder method is more accurate than
the exhaust temperature method; the in-cylinder method is therefore suitable for engines
with fewer cylinders. The CUC of diesel engines based on instantaneous speed has the
advantages of economic performance, straightforward operation, and suitability for long-
term online measurement, therein being able to monitor and diagnose the condition of
each cylinder in real time [15]. Currently, this method is mainly applied to diesel engines
with small numbers of cylinders and large firing interval angles. For multi-cylinder diesel
engines with overlapping firing intervals and bad work balances, the general waveform
characteristic parameters cannot easily be used to perform an accurate diagnosis of the
extent of the fault and the location of the faulty cylinder because of the strong inter-cylinder
coupling [22].

Exhaust temperature sensors are applied in the CUC of marine diesel engines because
of their easy installation and low price, despite the disadvantage of at least one operating
cycle deferral. To improve the uniformity of each cylinder caused by the fuel injection
system, a closed-loop control strategy based on the exhaust gas temperature was adopted
to improve the uniformity of each cylinder caused by the fuel injection system. The
effect of the uniformity control strategy of each cylinder and the overall performance of
the marine high-speed diesel engine was investigated, providing a theoretical basis for
hardware-in-the-loop simulation and real engine tests. Combining the characteristics of
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instantaneous speed with exhaust temperature in the CUC, the instantaneous speed and
exhaust temperature of each cylinder were utilized to control non-uniformity. By measuring
the instantaneous angular acceleration of each cylinder in a cycle, the operating differences
between cylinders can be determined. If this variation was out of range, the pulse spectrum
was modified by a strategy that combines the magnitude of the variation with the exhaust
temperature to modify the fuel quantity so that the instantaneous speed was kept consistent.
The exhaust temperature was utilized as a measure of non-uniformity for each cylinder,
and the closed-loop control regulated the fuel injection quantity to complete the CUC.

2. Modeling and Verification

As illustrated in the software in-loop simulation process in Figure 1, the model mainly
consists of modules such as the diesel engine block, turbocharger, fuel system, and gas-
exchanging system. The CHD622V20 marine high-speed engine was studied and a real-time
simulation model was established in AVL Cruise M. The accuracy and real-time of the
model were verified by bench test data. A CUC strategy based on the instantaneous speed
and exhaust temperature of each cylinder was developed in SIMULINK, and the marine
high-speed engine model was integrated into the loop. The CUC of the marine high-speed
diesel engine was investigated and compared with the cylinder-pressure-based control
strategy to provide a theoretical basis for subsequent hardware-in-the-loop and tests.
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Figure 1. Software in-loop simulation process.

2.1. The Test Benches

The basic technical parameters of the CHD622V20 high-speed marine engine (high-
speed engine) are shown in Table 1. The layout of the CHD622V20 test bench is shown in
Figure 2.
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Table 1. The basic technical parameters of the high-speed engine.

Project Parameter

Bore/(mm) 170
stroke/(mm) 215

Number of cylinders 20
Compression ratio 15

Rated speed/(r/min) 1500
Power rating/(kW) 3600
Type of fuel system HPCR

Firing order A1-B7-A2-B5-A4-B3-A6-B1-A8-B2-A10-B4-A9-B6-A7-B8-A5-
B10-A3-B9
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2.2. Modeling
2.2.1. Heat Transfer Model

To calculate the heat between the working medium in the cylinder and the thermal
system boundary, radiation heat transfer is usually neglected, the working medium in the
cylinder is regarded as a uniform field, and an empirical formula is used to establish a heat
conduction model.

Qwi = Aiαw(Tc − Twi) (1)

where Qwi is the heat between the working substance and the thermal system boundary (J);
Ai is the surface area of the thermal system boundary (m2); αw is the heat transfer coefficient
(W/m2·K); Tc is the working substance temperature in the cylinder (◦C); and Twi is the
temperature of the thermal system boundary (◦C).

2.2.2. MCC (Mixing Controlled Combustion) Model

An MCC combustion model was utilized to simulate the in-cylinder combustion
process of a diesel engine. The model can predict the combustion and heat release of
a diesel engine based on the changes in the injection parameters and the simulated gas
exchange process calculated in real time by the fuel injection model [23].
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The MCC model divides the cylinder into two regions: premixed combustion and dif-
fusion combustion, and the reaction rate in the premixed combustion stage was calculated
by Equation (2).

dQpre

dt
= Cpre · λ · AFST ·

m f ,pre

Vmix
· Hu · e−

κTA
Tc ·

(
t− tign

)2 (2)

where Qpre is the heat in the premixed combustion (J); Cpre is the premixed combustion
exothermic calibration parameter (−); λ is the excess air coefficient (−); AFST is the stoi-
chiometric air/fuel ratio (−); mf,pre is the fuel mass in the premixed (kg); Vmix is the fuel
injection volume (m3); Hu is the low heating value of the fuel (J/kg); κ and TA are the
Arrhenius exothermic model constants (−); and t − tign is the length of time since fuel
ignition (s).

The diffusion combustion stage considers the wall effect and the effect of EGR on
combustion, as shown in Equation (3).

dQdi f f

dt
= Ccomb · Fwall · Fegr · Hu ·m f ,di f f ,net ·

√
k

3
√

Vc
(3)

where Qdiff is the heat in the diffusion combustion (J); Ccomb is calibrated experimentally
and related to speed (−); Fwall is the function of wall effects during fuel injection; Fegr is the
function of residual gas effects; mf,diff,net is the fuel mass during the diffusion combustion
(kg); k is the turbulent kinetic energy intensity (J); and Vc is the cylinder volume (m3).

2.2.3. Intake and Exhaust System Model

d(mc · u)
dα

= −pc ·
dVcyl

dα
− Σ

dQw

dα
+ Σ

dmi
dα
· hi − Σ

dme

dα
· he (4)

where mc is the quality of the working substance in the cylinder (kg); u is the ratio of the
internal energy (J), Pc is the pressure in the cylinder (MPa), Qw is the heat transfer rate (J),
dmi is the quality of the air flowing into the cylinder (kg/s), dme is the quality of the exhaust
gas flowing (kg/s), hi is the inflow enthalpy (kJ/kg), and he is the outflow enthalpy (kJ/kg).

Ts =
TK − Two

exp
[
Csw · (TK − Ts + Twi − Two)/ dmw

dt · cpw · (Two − Twi)
] + Twi (5)

Two = Twi + (
dms

dt
· cps/

dmw

dt
· cpw) · (Tk − Ts) (6)

where TK is the temperature of the air before intercooling (◦C), TS is the temperature of
the air after intercooling (◦C), and Two is the temperature of the coolant after intercooling
(◦C). According to the principle of energy conservation, the heat lost by the compressed
air dQs/dt, the heat gained by the coolant dQw/dt, and the heat transferred from the com-
pressed air to the coolant dQsw/dt are equal, thus deriving the formula for the temperature
of the cooled, compressed air and the coolant at the outlet.

2.2.4. Fuel Injection Model

dPrail
dt

=
E

Vrail
· 1

ρrail
·
(

dmpump

dt
+

dminj

dt

)
(7)

where Prail is the pressure in the common rail (MPa); E is the volume elastic modulus of
the fuel (MPa); Vrail is the volume of the common rail (m3); ρrail is the density of the liquid



Processes 2023, 11, 1068 6 of 21

fuel in the common rail (kg/m3); dmpump is the fuel mass supplied to the high-pressure oil
pump (kg/s); and dminj is the fuel mass supplied to the common rail injector (kg/s).

dminj

dt
=
√

2 · ρ f uel · (Ppipe − Pc) ·
(
ξNS/A2

NS + ξNH/A2
NH
)−1 (8)

where ρfuel is the density of fuel (kg/m3); Ppipe is the pressure in the high-pressure oil pipe
(MPa); ξNS is the flow coefficient of the needle valve seat; ANS is the flow cross-sectional
area of the needle valve seat (m2); ξNH is the flow coefficient of the nozzle; and ANH is the
cross-sectional flow area of the nozzle hole (m2).

2.2.5. AVL CRUISE M Model

As shown in Figure 3, the CHD622V20 marine high-speed engine real-time model
was established in AVL Cruise M. The model mainly consists of modules such as the heat
transfer, MCC, exhaust, and fuel injection.
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2.2.6. Simulation of Cyclic Fluctuations

As the combustion parameters of the diesel engine obey Gaussian distribution [24],
the Marsaglia–Bray algorithm was applied to Gaussian distribution on the boundary
conditions [25], mainly including the fuel injection and gas exchange processes which have
an impact on the combustion state, simulating its random fluctuation process during the
operation of the diesel engine. The calculation steps are as follows:

(1) Generate two independents, identically distributed U(0, 1) random numbers U1
and U2;

(2) Vi = 2Ui − 1(i = 1, 2), S = V1
2 + V2

2;
(3) If S>1, return to step (1); conversely, calculate Y =

√
((−2)lnS/S), output X1 = V1Y.

A pair of mutually independent random sequences of standard normal distribution
can be obtained using this algorithm [26]. The algorithm is faster in calculation, simpler
in programming language, and requires less storage space, thereby meeting the real-
time requirements of the real-time model of the marine high-speed engine. The exhaust
temperature of each cylinder is shown in Figure 4. The high-speed engine was simulated
with large cyclic fluctuations under different loads.
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2.3. Real-Time Model Verification

Figure 5 shows the comparison between the simulated and the tested cylinder pressure
at rated speeds and different loads. Except for the test data in the low-pressure part, which
have some measurement errors because of the limitation of the sensor, the maximum error
between the simulation data and the test data in the high-pressure part did not exceed 5%;
therefore, the real-time model can better reflect the performance of the diesel engine.
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Figure 6 shows the cylinder pressure curves of twenty cylinders in a high-speed engine
under 100% load, and Figure 7 shows the cylinder pressure curves of different cycles of the
A1 cylinder under 100% load.
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Figure 8 shows a comparison of the IMEP and output power for the high-speed engine.
The error between the IMEP and output power was within 5% for each load, with the
maximum error occurring at 25% of the operating conditions, i.e., 4.90% for IMEP and
2.37% for output power. The mean error between the simulation and test IMEP was 3.01%,
and the mean error between the simulation and test output was 1.79%.
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Figure 8. The comparison of the IMEP and output power for the high-speed engine.

Figure 9 shows the comparison between the simulation data and the test data of
exhaust temperature (Tex) of each cylinder. Figure 10 shows the comparison between the
simulation data and the test data for each load of the high-speed engine. The error between
the simulation data and the test data for each load was within 5%, and the maximum error
was 4.20%, which occurred at 100% working condition.
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The performance of each cylinder can be shown by the feedback variable in real time, 
which should be easily accessible, reliable, and accurate [27]. The fluctuating characteris-
tics of instantaneous speed that depend on factors such as gas pressure and reciprocating 
inertia forces contain a wealth of information about the performance of each of the en-
gine’s cylinders. Exhaust temperature (Tex) is an essential indicator of the multi-cylinder 
operation uniformity, which is utilized to visually detect abnormal combustion such as 
misfires and becomes a feedback variable for closed-loop combustion control. However, 
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Figure 10. Comparison of Tex for each load.

The high-speed engine model needs to operate in real-time while ensuring computa-
tional accuracy to meet the commissioning needs of the inhomogeneity control strategy.
The real-time factor can be used as a criterion to determine the real-time performance of
the model. When the real-time factor is less than 1, it means that the diesel engine model
calculates faster than the real diesel engine works. The real-time factor of the high-speed
engine model at rated speed is shown in Figure 11; with an Intel 3.2 GHZ CPU (central
processing unit) configuration, the maximum value of the real-time factor was 0.89 and the
average value was 0.5825, both of which are less than 1, thereby meeting the requirements
of debugging and verification of the inhomogeneity control strategy.
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3. Non-Uniformity Control Strategy
3.1. Feedback Variable and Control Variable

The performance of each cylinder can be shown by the feedback variable in real time,
which should be easily accessible, reliable, and accurate [27]. The fluctuating characteristics
of instantaneous speed that depend on factors such as gas pressure and reciprocating
inertia forces contain a wealth of information about the performance of each of the engine’s
cylinders. Exhaust temperature (Tex) is an essential indicator of the multi-cylinder operation
uniformity, which is utilized to visually detect abnormal combustion such as misfires and
becomes a feedback variable for closed-loop combustion control. However, the exhaust
temperature is a slow-varying and real-time signal and has a certain lag when used as a
feedback variable. Hence, it needs to be combined with the instantaneous speed as the
feedback variable for closed-loop control.

The injection quantity was taken as the control variable. The fuel injection quantity was
adjusted by changing the injection pulse width to modify the work capacity of each cylinder,
which in turn determined the exhaust temperature of each cylinder. The variation in
operation between the cylinders could be obtained by measuring the instantaneous angular
acceleration of each cylinder after one operating cycle [28]. The CV of the instantaneous
angular acceleration, i.e., the ratio of the standard variation to the mean value, was utilized
as the evaluation index. If the variation was unreasonably out of range, the base fuel
quantity of each cylinder was corrected in the next cycle based on the size of the variation
combined with the strategy of exhaust temperature so that the instantaneous speed of each
cylinder converged.

The instantaneous speed was utilized as the evaluation index of the non-uniformity
of the performance of each cylinder, the exhaust temperature signal of each cylinder was
utilized as the feedback variable, and the injection quantity was used as the control variable
of the non-uniformity control strategy. The strategy flow is shown in Figure 12.
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3.2. Exhaust Temperature Signal Analysis

The instantaneous speed was taken as the control target in this control strategy. When
performing the initial determination of instantaneous speed for diesel engines, the speed
fluctuation rate should not exceed the speed regulation requirement of secondary accuracy.
The instantaneous speed decision module is shown in Figure 13. The exhaust temperature
was calibrated and analyzed to obtain information that can work as a feedback signal to
reflect the non-uniformity of each cylinder. The exhaust temperature signal analysis was
conducted as follows: the exhaust temperature signal validity was judged; the exhaust
temperature rose slowly during the starting process, and could not be transient. In the
validity judgment, the exhaust temperature was measured after a certain period. Signals
that exceeded the range of the exhaust gas temperature sensor were judged as invalid
signals by the sensor failure judgment module.
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The exhaust temperature calculation modules are shown in Figure 14. The calculation
of the mean and the mean squared deviation values for exhaust gas temperatures, etc.
was performed. The difference between the exhaust temperature of each cylinder and the
average was calculated to provide data for subsequent judgments.
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3.3. Misfire Detection and Determination

A misfire is an extreme case of non-uniformity of each cylinder where the exhaust
temperature is significantly lower than the normal working cylinder. Numerical analysis of
the exhaust temperature shows whether there is a misfire.
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The misfiring cylinder was identified. According to the exhaust temperature analysis
and calculation results, if the exhaust temperature of a certain cylinder or certain cylinders
is significantly lower than that of other cylinders, and the difference with other cylinders
exceeds a certain limit, it will be judged as a misfire, and the number of misfired cylinders
is greater than a certain limit. When the value is set, it will set off an alarm or even stop; if
the multi-cylinder misfire flag is determined as the misfired cylinder, the flag signal will be
given, and the misfired cylinder will be shielded and the fuel injection quantity will be set
to 0. The misfired cylinder will also be shielded when the non-uniformity of each cylinder
is calculated. Other cylinders normally perform fuel quantity compensation.

3.4. Closed-Loop Fuel Quantity Compensation

The exhaust temperature compensation calculation modules are shown in Figure 15.
Figure 16 shows the fuel quantity compensation ratio calculation module of each cylinder.
According to the base fuel quantity injection pulse spectrum, the fuel quantity compensation
of each cylinder was adjusted. A compensation ratio of 1 means that no compensation was
made for this cylinder’s fuel quantity, 0 means the cylinder did not inject fuel, more than
1 means an increase in the quantity of energy for this cylinder, and more than 0 but less
than 1 means the fuel quantity of this cylinder was reduced. The compensation ratio was
determined according to the range of the difference between the last exhaust temperature
and the average exhaust temperature. A more considerable difference means a more
significant discrepancy between the compensation fuel quantity and the base fuel quantity.
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Figure 16. Fuel quantity compensation ratio calculation modules.

Figure 17 shows the flow of fuel compensation and calibration. The fuel compensation
count was prepared for identifying the blind spots of the non-uniformity algorithm of
each cylinder. When the fuel quantity compensation exceeded the specified frequency and
the non-uniformity of each cylinder was not improved in any way, the adjustment of the
fuel quantity of each cylinder was stopped. The compensation fuel ratio of 1 represented
non-uniformity in each cylinder caused by the fuel injection system.
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Figure 17. The fuel quantity compensation and calibration process.

In the cycle of progressive split-cylinder fuel compensation, the calculated compensa-
tion ratio is larger when the difference between the single-cylinder exhaust temperature
and the average exhaust temperature is larger. A large difference in fuel quantity causes
speed fluctuation. Progressive fuel compensation is adopted to gradually improve the
non-uniformity of each cylinder when the difference is above a specific value.

The abovementioned control strategy was used on the SIMULINK platform for the
software in-loop regulation of cylinder non-uniformity in MATLAB R2017a. The informa-
tion was obtained through the calibration and analysis of the feedback signals. Finally, the
non-uniformity of each cylinder due to the fuel injection system was achieved by correcting
the injection pulse spectrum.

4. Non-Uniformity Control Co-Simulation

To evaluate the effectiveness of the cylinder exhaust temperature based on the CUC
strategy, software-in-the-loop simulations are carried out.

4.1. Simulation Scheme

As shown in Figure 1, the joint simulation of SIMULINK and AVL-Cruise M is based
on the compilation of the engine model into a SIMULINK executable Cruise.mdl file using
the CMC Interface module in AVL Cruise M. The engine model was loaded into a library of
modules in SIMULINK. It was loaded into the module library in SIMULINK and dragged
and dropped directly into SIMULINK for direct invocation when building the simulation
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control model, which was used to provide objects for subsequent controller development.
Figure 18 shows the joint simulation on the SIMULINK platform.
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The input and output interfaces of the real-time model were defined according to the
requirements of the control strategy. The model inputs consisted of 125 signals, including
the timing and pulse width of the three injections, starting signals, etc. The model outputs
consisted of 56 signals, including the engine speed, supercharger speed and pressure,
exhaust temperature and pressure of each cylinder, and output power.

4.2. Verification of the Control Strategy

Figure 19a shows the instantaneous speed and fuel injection curves for the starting and
idling conditions. When the speed of the high-speed engine reached 150 r/min, the injector
started to inject fuel; when the speed reached 600 r/min, the starting process ended and the
idling condition began. Additionally, the transition from the starting condition to the idling
condition was smooth, and the fluctuation rate of speed under the idling condition was
less than 1%, thereby meeting the secondary accuracy requirements of speed regulation.

Figure 19b shows that the speed of the high-speed engine was stable at 1500 r/min;
after experiencing a sudden load reduction, the speed could still be stabilized at 1500 r/min,
and the steady-state speed regulation, transient speed regulation, and stabilization time all
met the requirements of the classification society for speed control.

4.3. Software-In-The-Loop Simulation Results

To compare the effects of the non-uniformity control strategy based on the exhaust
temperature of each cylinder and the control strategy based on the cylinder pressure, a
comparison was performed in the software in-loop, as shown in Figure 20; the high-speed
engine was under the calibrated speed and 100% load. The comparison charts of IMEP,
Pmax (the maximum burst pressure), and Tex are shown in the figure.
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IMEP provides a direct indication of the dynamics and economy of combustion, so
controlling IMEP reduces the non-uniformity of the work performed by each cylinder [29],
and IMEP reduces the effect of random errors and has high data reliability. Pmax indicates
the maximum value of cylinder pressure within an operating cycle. Pmax directly reflects
the maximum mechanical shock that the engine is subjected to in the current cycle, and is
also an important indicator of abnormal in-cylinder combustion [28].

The CV of IMEP, Pmax and Tex were selected as the index of the in-cylinder combustion
inhomogeneity. Cylinders A1, A5, A10, B4, B6, and B8 were selected for demonstration
in the figure. The indicators IMEP, Pmax and Tex were compared under no closed-loop
control, closed-loop control based on the exhaust temperature of each cylinder, and closed-
loop control based on the cylinder pressure. The dispersion of IMEP and Pmax for each
cylinder was significantly smaller for the high-speed engine when operating in the exhaust
temperature inhomogeneity control and cylinder pressure control modes compared with
the no closed-loop control. The non-uniformity of each cylinder was significantly improved
under both closed-loop controls.

Figure 21 shows a comparison of the CV of the combustion characteristic parameters
when the high-speed engine was operated under different loads using closed-loop speed
exhaust temperature control and closed-loop cylinder pressure control, respectively. At
each load, the CV of IMEP and Pmax for each cylinder was reduced by approximately 99%
for both methods, although the use of closed-loop cylinder pressure control reduced the
coefficient of variation of IMEP and Pmax for each cylinder slightly more significantly than
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closed-loop speed and exhaust temperature control, which makes closed-loop speed and
exhaust temperature control more feasible when considering the cost of sensors. With the
closed-loop control of exhaust temperature and instantaneous speed, the CV of Tex was
close to the closed-loop control of cylinder pressure; the maximum error occurred at 25%
load, when was 0.114%. The CV of IMEP was close to the closed-loop control of cylinder
pressure; the maximum occurred at 25% load, when it is 0.199%. The CV of Pmax was close
to the closed-loop control of cylinder pressure up to 0.025% at 100% load.
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5. Conclusions

The CHD622V20 marine high-speed engine was studied and a real-time simulation
model was established in AVL Cruise M. A CUC strategy based on the instantaneous speed
and exhaust temperature of each cylinder was developed in SIMULINK, and the marine
high-speed engine model was integrated in the loop. The CUC of the marine high-speed
diesel engine was investigated and compared with the cylinder-pressure-based control
strategy to provide a theoretical basis for subsequent hardware-in-the-loop and tests.

(1) For multi-cylinder marine diesel engines, after the closed-loop control, the inho-
mogeneity of each cylinder caused by the fuel injection system was significantly
improved. Although the control effect of using the exhaust temperature of each cylin-
der as the feedback variable for the marine high-speed engine was not as outstanding
as that of using cylinder pressure, it did not require additional expensive cylinder
pressure sensors, which significantly reduced the cost and provided better reliability
and feasibility;

(2) With the closed-loop control of exhaust temperature and instantaneous speed, the CV
of IMEP was close to the closed-loop control of cylinder pressure, and the maximum
occurred at 25% load, when it was 0.199%. The CV of Pmax was close to the closed-loop
control of cylinder pressure up to 0.025% at 100% load. The CV of Tex was close to
the closed-loop control of cylinder pressure, and the maximum occurred at 25% load,
when it was 0.114%.

(3) This platform was used to study the effect of the control strategy on the uniformity
of each cylinder and the overall performance of the marine high-speed diesel engine
and provide a theoretical basis for the subsequent hardware-in-the-loop simulation
and actual engine tests.
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Nomenclature

Symbols
AFST the stoichiometric air-fuel ratio
ANS the flow cross-sectional area of the needle valve seat
ANH the flow cross-sectional area of the nozzle
Ai the surface area of the thermal system boundary
αw the heat transfer coefficient
Cpre the premixed combustion exothermic calibration parameter
Ccomb the calibrated experimentally and related to speed
dmi the quality of the air flowing into the cylinder
dme the quality of the exhaust gas flowing
dmpump the fuel mass supplied to the high-pressure oil pump
dminj the fuel mass supplied to the common rail injector
dQs/dt the heat lost by the compressed air
dQw/dt the heat gained by the coolant
dQsw/dt the heat transferred from the compressed air to the coolant
E the volume elastic modulus of the fuel
Fwall the function of wall effects during fuel injection
Fegr the function of residual gas effects
hi the inflow enthalpy
he the outflow enthalpy
Hu the low heating value of the fuel
k the turbulent kinetic energy intensity
mc the quality of the working substance in the cylinder
mf,pre the fuel mass in the premixed
mf,diff,net the fuel mass during the diffusion combustion
Pc the pressure in the cylinder
Pmax the maximum burst pressure
Prail the pressure in the common rail
Ppipe the pressure in the high-pressure oil pipe
Qw the heat transfer rate
Qwi the heat between the working substance and the thermal system boundary
Qpre the heat in the premixed combustion
Qdiff the heat in the diffusion combustion
t-tign the length of time since fuel ignition
Tex the exhaust temperature
Tc the working substance temperature in the cylinder
Twi the temperature of the thermal system boundary
Two the temperature of the coolant after the intercooler
Tin the in-cylinder temperature
TK the temperature of the air before the intercooler
TS the temperature of the air after the intercooler
u the ratio of the internal energy
Vmix the fuel injection volume
Vc the cylinder volume
Vrail the volume of the common rail
κ and TA the Arrhenius exothermic model constants
ρrail the volume of the fuel in the common rail
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ρfuel the density of fuel
ξNS the flow coefficient of the needle valve seat
ξNH the flow coefficient of the nozzle hole
λ the excess air coefficient
Acronyms
CV Coefficient of variation
IMEP Indicated effective pressure
HPCR High pressure common rail
TDC Top dead center
CUC Cylinder uniformity control
MFB50 50% of the mass fraction burned
MCC Mixing controlled combustion
CPU Central processing unit
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