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Abstract: This article addresses the decentralized multi‑performance (MP) fuzzy control problem of
nonlinear large‑scale descriptor (LSD) systems. The considered LSD system contains several subsys‑
tems with nonlinear interconnection and external disturbances, and the Takagi–Sugeno fuzzymodel
(TSFM) is adopted to represent each nonlinear subsystem. Based on the proportional‑plus‑derivative
state feedback (PDSF) scheme, we aim to design a decentralized MP fuzzy controller that guaran‑
tees the stabilization, mixed H∞, and passivity performance control (MHPPC), and the guaranteed
cost control (GCC) performance of the closed‑loop Takagi–Sugeno LSD (TSLSD) systems. Further‑
more, we introduce the Lyapunov stability theory and the free‑weighting matrix scheme to analyze
the stability of the TSLSD system. The proposed sufficient conditions can be transformed as linear
matrix inequality (LMI) forms through Schur’s complement, which can be easily solved with the
LMI Toolbox. Finally, to illustrate the proposed approach, two examples and simulation results
are presented.

Keywords: decentralized proportional‑plus‑derivative state feedback control; multi‑performance
fuzzy control; Takagi–Sugeno large‑scale descriptor systems

1. Introduction
Currently, LS systems have been widely researched due to their applications in var‑

ious fields such as nuclear reactors, mobile robotics, transportation systems, and power
systems [1,2]. It can be known that the current complex dynamical systems are usually
composed of strong interconnections and high dimensionality. The LS system provides an
efficient method to describe the above complex systems [3]. To solve the control problem
of LS systems, the decentralized control scheme has been investigated, which can reduce
the dimensionality of the system based on the local information of subsystems [4]. Over
the past few decades, decentralized control has been investigated as a branch of control
theory, and a number of theoretical results have been proposed for LS systems [5,6].

On the other hand, many works have been given to deal with nonlinear control in
the past few decades. In these works, TSFM shows its importance because it can repre‑
sent nonlinear systems by fuzzy sets and fuzzy reasoning, and many useful linear control
methods can be developed for its control problems [7,8]. Recently, the stability analysis
of nonlinear LS systems has been extensively studied using TSFM, and many important
results have been presented on such systems. For instance, in [9], adaptive decentralized
fuzzy dynamic surface control for switched nonlinear LS systems was carried out. Decen‑
tralized tracking control for networked LS systems was investigated in [10]. The decen‑
tralized event‑triggered online adaptive control of unknown LS systems was considered
in [11].

On another research front, descriptor systems can describe the dynamic model more
accurately and completely than a state–space system [12]. However, the descriptor matrix
may affect the structure and behavior of the system. If there exists perturbation in the de‑
scriptor matrix, it may cause the system to become unstable. If the descriptor matrix is
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defined as a singular matrix, the impulse‑free and regular problems of the systemmust be
considered [13]; otherwise, the systemwill not be stable. Recently, descriptor systems have
been extended to the area of the LS system and TSFM. To mention a few, disturbance esti‑
mation for the discrete‑time IT‑2 TSLSD system has been investigated in [14]. The authors
in [15] presented the passive decentralized fuzzy control for TSLSD systems.

It is well‑known that the PDSF is a useful and important method for descriptor sys‑
tems [16]. In [17], the impulse behavior issue was eliminated through the PDSF controller.
Then, the problem of impulse‑free and regular can be easily solved by using the PDSF
method. Additionally, the PDSF method is simpler than the current existing feedback
methods when designing the controller for descriptor systems [18]. Recently, several im‑
portant works based on the PDSF method have been reported [19,20]. However, the sta‑
bility conditions proposed by the PDSF method are often formulated as bilinear matrix
inequalities. This paper will convert the stability conditions into the LMI form through
Schur’s complement, and the stability conditions can be solved by using the LMI Toolbox.

In this paper, the GCC is considered in the controller design process. The essential
idea of GCC is providing an upper bound on a given performance index, and thus the
system is asymptotically stable while the system performance degradation is guaranteed
to be less than this bound. Some important results on the GCC were studied in [21,22].
Furthermore, some importantworks based ondisturbance attenuation problems have been
reported, such as H∞ and passivity control [23,24]. In [25,26], MHPPC was proposed. By
defining the weighting parameters, a trade‑off between H∞ and passive performance can
be made.

This paper deals with the decentralized MP control for LSD systems. Different from
the conventional approaches, the PDSF scheme is considered to design the fuzzy controller.
The main contributions of this paper are summarized below.

(1) The problem of decentralized PDSF control for TSLSD systems is studied with MH‑
PPC for the first time;

(2) The GCC is introduced in Section 2. Based on the GCC, the system performance
degradation is guaranteed to be less than this bound;

(3) The MP control for TSLSD systems is studied subject to the MHPPC and GCC;
(4) The example section shows the effectiveness of the proposed methods, techniques,

and procedures.

The structure of this paper is organized as follows: The TSLSD system and the decen‑
tralized controller with the PDSF scheme are described in Section 2. In addition, some im‑
portant definitions and lemmas are also introduced. The stability condition for the closed‑
loop TSLSD systemwith the decentralizedMP control is presented in Section 3. Numerical
examples are given for illustration in Section 4. Finally, Section 5 concludes this paper.

Notations: He{η} denotes the shorthand notation for η+ηT. In is the identity matrix
with n × n dimension. ℜn represents the n‑dimensional Euclidean space. The symbol ∗
represents the symmetric item in block matrices. ET and E−1 stand for matrix transposi‑
tion and matrix inversion. det(E) is the determinant of a matrix E. diag{E} denotes the
diagonal matrix E.

2. System Description and PDSF Control Method
Consider an LSD system with external disturbance, which is composed of N nonlin‑

ear subsystems (Figure 1). The i−th interconnected subsystem can be described by the
following TSFM:

Plant Rule. ℜl
i : IF zi1(t) is Xl

i1 and,· · · , zig(t) is Xl
ig, THEN

Eil
.
xi(t) = Ail xi(t) + Bilui(t) +Gilvi(t) +

N

∑
k=1,k ̸=i

Aikl xk(t) (1a)

yi(t) = Cil xi(t) +Dilvi(t) (1b)
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where xi(t) ∈ ℜnxi denotes the system state of the subsystem. ui(t) ∈ ℜnui denotes the con‑
trol input of the subsystem. vi(t) ∈ ℜnvi is the i‑th external disturbance. Xl

iϕ(ϕ = 1, 2, . . . , g)
are the fuzzy sets of the i‑th subsystem. zi1(t), zi2(t), . . . , zig(t) are the premise variables of
the i‑th subsystem. ri is the number of inference rules of the i‑th subsystem. ℜl

i denotes the
l‑th fuzzy membership rules. The matrices Ail , Bil , Cil , Dil and Gil are known real matri‑
ces with appropriate dimensions of the l‑th fuzzy subsystem. Eil values are the descriptor
matrices, if necessary, singular. Aikl is the interconnection matrix between the i‑th and the
k‑th nonlinear subsystems.

ri

∑
l=1

µilEil
.
xi(t) =

ri

∑
l=1

µil

{
Ail xi(t) + Bilui(t) +

N

∑
k=1,k ̸=i

Aikl(µi)xk(t) +Gilvi(t)

}
(2a)

yi(t) =
ri

∑
l=1

µil{Cil xi(t) +Dilvi(t)} (2b)

where

µil(zi(t)) =
∏

g
ϕ=1 µilϕ

(
ziϕ(t)

)
∑ri

ς=1 ∏
g
ϕ=1 µiςϕ

(
ziϕ(t)

) ≥ 0 (3)

with µilϕ
(
ziϕ(t)

)
is the grade of membership of ziϕ(t) in Xl

iϕ and
ri
∑

l=1
µil(zi(t)) = 1. For no‑

tational simplicity, µil represents the abbreviation of µil(zi(t)) in the description presented
in Figure 1.
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Given the TSLSD system (2) in each region, we propose a decentralizedMP controller
of the following form:

ui(t) = −
ri

∑
l=1

µilFdil
.
xi(t) +

ri

∑
l=1

µilFsil xi(t) (4)

where Fdil and Fsil are the control gain matrices.
Applying the decentralizedMP controller (4) to System (2a), the resulting closed‑loop

fuzzy subsystem can be cast into the following form:

Ei(µi)
.
xi = Ai(µi)xi(t) +

N

∑
k=1,k ̸=i

Aik(µi)xk(t) +Gi(µi)vi(t) (5a)

yi(t) = Ci(µi)xi(t) +Di(µi)vi(t) (5b)
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where 

Ei(µi) =
ri
∑

l=1

ri
∑

j=1
µilµij

{
Eil + BilFdij

}
, Ci(µi) =

ri
∑

l=1
µilCil

Ai(µi) =
ri
∑

l=1

ri
∑

j=1
µilµij

{
Ail + BilFsij

}
, Di(µi) =

ri
∑

l=1
µilDil

ˉ
Aik(µi) =

ri
∑

l=1
µil

ˉ
Aikl , Gi(µi) =

ri
∑

l=1
µilGil

(6)

Now, we present some definitions and lemmas to obtain the main results.

Definition 1 [27]. For all terminal time tp > 0 and non‑zero vi(t) ∈ L2
[
0, ∞

)
, if under zero

conditions and exists a scalar γi > 0 such the following inequality holds, the TSLSD system (5) is
considered to have MHPPC with γi > 0.

∫ tp

0
−γ−1

i θiyTi (t)yi(t)ds +
∫ tp

0
2(1 − θi)yTi (t)vi(t)ds ≥ −γi

∫ tp

0
vTi (s)vi(s)ds (7)

where θi ∈
[
0, 1

]
represents a weighting parameter that defines the trade‑off between the H∞ and

passivity performance.

Given a set of positive definite matrices Zi1, Zi2, and Ri1, one can define the following
cost function:

Jic =
∫ ∞

0

{
xTi (t)Zi1xi(t) +

.
xTi (t)Zi2

.
xi(t) + uTi (t)Ri1ui(t)

}
dt (8)

Based on the cost function (8), the GCC is defined as follows:

Definition 2 [28]. Consider System (5). System (5) is asymptotically stable if there exists a PDSF
controller (4) and a positive scalar Ji0, such that for all derivative matrices, Ei(µi) in System (5) is
invertible, and (4) is considered to be a GCC for System (5) if the cost function (8) satisfies Ji ≤ Ji0.

Definition 3. If the following problem has a solution, then the minimization of output energy λi
implies the minimization of the GCC (8) for System (5).

Jic < min (λi) (9)

Lemma 1 [15]. The following inequality holds for every real vector ζ, ρ, and any matrix Z > 0.

2ζTρ ≤ ζTZζ + ρTZ−1ρ (10)

where Z is the definite positive matrix.

Lemma2 [15]. The following results can be obtained for any positive semidefinite symmetricmatrix
X, two positive integers r, r0 satisfying r ≥ r0 ≥ 1.(

r

∑
k=r0

x(k)

)T

X

(
r

∑
k=r0

x(k)

)
≤ (r − r0 + 1)

r

∑
k=r0

xT(k)Xx(k) (11)

3. Decentralized MP Control of TSLSD System
In this section, a decentralized MP controller is designed for the TSLSD system (2).

Referring to the MHPPC proposed in Definition 1, the following theorem can be obtained:
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Theorem 1. For given scalars γi, θi ∈
[
0, 1

]
, if there exists the positive definite matrix Qi, free‑

weighting matrices L1, L2, L3, and controller gains Fsil , Fsij, Fdil , and Fdij, such that the following
conditions hold for all i = {1, 2, · · · , N} and l = {1, 2, · · · , ri}:

Θill < 0 , for l = 1 · · · ri (12)

Θil j + Θijl < 0 , for l < j = 1 · · · ri (13)

where

Θill =



Xl11 ∗ ∗ ∗ ∗ ∗
Xl21 Xl22 ∗ ∗ ∗ ∗
Xl31 −GT

il Xl33 ∗ ∗ ∗
√

θiCil 0
√

θiDil −γiI ∗ ∗
LTi3 0 0 0 −I/2 ∗

ÃkiQi 0 0 0 0 X66


,

Θil j =



Xl11 ∗ ∗ ∗ ∗ ∗
Xj21 Xj22 ∗ ∗ ∗ ∗
Xl31 −GT

il Xl33 ∗ ∗ ∗
√

θiCil 0
√

θiDil −γiI ∗ ∗
LTi3 0 0 0 −I/2 ∗

ÃkiQi 0 0 0 0 X66


,

LTi1 = −QiSi1S−1
i2 , LTi2 = −S−1

i2 , LTi3 = STi1Qi, Li4 = He(Li1) + 2Li3LTi3 + 2Φ̃ki, Li5 = LTi2 + LTi3,

Qi = P−1
i , Xl11 = He(Li1), Xl21 = Li5 −AilQi + EilLi1 − BilK1il ,Xj21 = Li5 −AilQi + EilLi1 − BilK1ij,

Xl22 = I+ He(EilLi2 + BilK2il),Xj22 = I+ He
(
EilLi2 + BilK2ij

)
, Xl31 = −(1 − θi)Cil ,

Xl33 = −γiI− 2(1 − θi)DT
il , K1il = FsilQi − FdilLi1,K2il = FdilLi2, K1ij = FsijQi − FdijLi1,

K2ij = FdijLi2, X66 = −2(N − 1)−1ε, ε = diag[Inxi · · · Inxi]︸ ︷︷ ︸
N−1

, Ãki =
[
AT

1i · · ·A
T
ki,k ̸=i · · ·A

T
Ni

]
︸ ︷︷ ︸

N−1

T
.

Then, System (5) is stable and also satisfies MHPPC.

Proof 1. Choose the following Lyapunov function for the TSLSD system (5):

N

∑
i=1

Vi(xi(t)) =
N

∑
i=1

xTi (t)Pixi(t) (14)

where Pi is the positive definite matrix.
The following equation can be obtained according to (5a) with Si1 and Si2:

N
∑

i=1
Λi ≜ 2

[
xTi (t)Si1 +

.
xTi (t)Si2

]
×
[
−Ei(µi)

.
xi +Ai(µi)xi(t)

]
+

N
∑

k=1,k ̸=i
Aik(µi)xk(t)+Gi(µi)vi(t)] ≡ 0

(15)

where Si1 and Si2 are the free‑weighting matrices with appropriate dimensions.
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Bring (15) into the derivative of (14).

N
∑

i=1

.
Vi(xi(t)) =

N
∑

i=1

{
2

.
xTi (t)Pixi(t) + 2

[
xTi (t)Si1 +

.
xTi (t)Si2

]
×
[
−Ei(µi)

.
xi +Ai(µi)xi(t) +

N
∑

k=1,k ̸=i

ˉ
Aik(µi)xk(t) +Gi(µi)vi(t)

]} (16)

According to [15], the Lyapunov function (16) can be rewritten as follows by using
Lemma 1 and Lemma 2:

N

∑
i=1

.
Vi(xi(t)) ≤

N

∑
i=1

x̃Ti Ξi x̃i (17)

where x̃Ti =
[
xi(t)

.
xi(t) vi(t)

]T, Φki = (N − 1)
N
∑

k=1,k ̸=i
xTi (t)A

T
kiAkixi(t),

Ξi =


He(Si1Ai(µi)) + Si1STi1+2Φki ∗ ∗
Pi + Si2Ai(µi)− ETi (µi)STi1 −He(Si2Ei(µi)) + Si2STi2 ∗

GT
i (µi)STi1 GT

i (µi)STi2 0

.

Left‑multiply and right‑multiply the Ξi by

Qi LTi1 0

0 LTi2 0

0 0 I

 and its transpose, and it

yields: 
Li4 ∗ ∗

Li5 + Ei(µi)Li1 −Ai(µi)Qi He(Ei(µi)Li2) + I ∗
0 −GT

i (µi) 0

 (18)

where Φ̃ki = (N − 1)
N
∑

k=1,k ̸=i
xTi (t)Q

T
i A

T
kiAkiQixi(t) and


LTi1 = −QiSi1S−1

i2 , Li4 = He(Li1) + 2Li3LTi3 + 2Φ̃ki,

LTi2 = −S−1
i2 , Li5 = LTi2 + LTi3,

LTi3 = STi1Qi, Qi = P−1
i

.

Substituting (6) into (18) and considering the fuzzy membership functions, then

N

∑
i=1

.
Vi(xi(t)) ≤

ri

∑
l=1

µ2
il x̃

TΞ̃ill x̃ +
r

∑
l<j

µilµij x̃T
{

Ξ̃il j + Ξ̃ijl

}
x̃ (19)

where

Ξ̃ill =


Li4 ∗ ∗
Zl1 Zl2 ∗
0 −GT

il 0

 (20)

Ξ̃il j =


Li4 ∗ ∗
Zj1 Zj2 ∗
0 −GT

il 0

 (21)

Zl1 = Li5 − (Ail + BilFsil)Qi + (Eil + BilFdil)Li1, Zj1 = Li5 −
(
Ail + BilFsij

)
Qi +

(
Eil + BilFdij

)
Li1,
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Zl2 = I+ He((Eil + BilFdil)L2) and Zj2 = I+ He
((

Eil + BilFdij

)
L2

)
.

Based on Definition 1, the following cost function can be defined with zero
initial condition:

Jim =
∫ tp

0

(
γ−1

i θiyTi (t)yi(t) −2(1 − θi)yTi (t)vi(t)− γivTi (t)vi(t)
)
dt

=
∫ tp

0

(
γ−1

i θiyTi (t)yi(t)− 2(1 − θi)yTi (t)vi(t) − γivTi (t)vi(t)

+
N
∑

i=1

.
Vi(xi(t))dt − Vi

(
xi
(
tp
)) (22)

≤
∫ tp

0
Ψidt (23)

where

Ψi = γ−1
i θiyTi (t)yi(t)− 2(1 − θi)yTi (t)vi(t)− γivTi (t)vi(t) +

N

∑
i=1

.
Vi(xi(t)) (24)

Substituting (2b) and (19) into (24), then

Ψi =
ri

∑
l=1

µ2
il x̃

TΞ̃ill x̃ +
r

∑
l<j

µilµij x̃T
{

Ξ̃il j + Ξijl

}
x̃ (25)

where

Ξ̃ill =


Li4 ∗ ∗ ∗
Zl1 He((Eil + BilFdil)L2) + I ∗ ∗
Xl31 −GT

il Xl33 ∗
√

θiCil 0
√

θiDil −γiI

 (26)

Ξ̃il j =


Li4 ∗ ∗ ∗

Zj1 He
((

Eil + BilFdij

)
L2

)
+ I ∗ ∗

Xl31 −GT
il Xl33 ∗

√
θiCil 0

√
θiDil −γiI

 (27)

Xl31 = −(1 − θi)Cil and Xl33 = −γiI− 2(1 − θi)DT
il .

The matrices (26) and (27) can be written as follows with K1il = FsilQi − FdilL1,
K2il = FdilL2, K1ij = FsijQi − FdijL1 and K2ij = FdijL2:

Ξ̃ill =


Li4 ∗ ∗ ∗
Xl21 Xl22 ∗ ∗
Xl31 −GT

il Xl33 ∗
√

θiCil 0
√

θiDil −γiI

 (28)

Ξ̃ill =


Li4 ∗ ∗ ∗
Xj21 Xj22 ∗ ∗
Xl31 −GT

il Xl33 ∗
√

θiCil 0
√

θiDil −γiI

 (29)

where
Xl21 = Li5 −AilQi + EilLi1 − BilK1il ,
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Xj21 = Li5 −AilQi + EilLi1 − BilK1ij,

Xl22 = I+ He(EilLi2 + BilK2il),

Xj22 = I+ He
(
EilLi2 + BilK2ij

)
.

By using the Schur complement, the conditions (28) and (29) can be rewritten as follows:

Ξ̃ill =



Xl11 ∗ ∗ ∗ ∗ ∗
Xl21 Xl22 ∗ ∗ ∗ ∗
Xl31 −GT

il Xl33 ∗ ∗ ∗
√

θiCil 0
√

θiDil −γiI ∗ ∗
LTi3 0 0 0 −I/2 ∗

ÃkiQi 0 0 0 0 X66


(30)

and

Ξ̃il j =



Xl11 ∗ ∗ ∗ ∗ ∗
Xj21 Xj22 ∗ ∗ ∗ ∗
Xl31 −GT

il Xl33 ∗ ∗ ∗
√

θiCil 0
√

θiDil −γiI ∗ ∗
LTi3 0 0 0 −I/2 ∗

ÃkiQi 0 0 0 0 X66


(31)

where Xl11 = He(Li1), X66 = −2(N − 1)−1ε.
Notice that (12) and (13) are equivalent to Ξ̃ill < 0 and Ξ̃il j + Ξ̃ijl < 0, which implies

that Ψi < 0 from (25). From (23), the Ψi < 0 means

γ−1
i θiyTi (t)yi(t)− 2(1 − θi)yTi (t)vi(t)− γivTi (t)vi(t) +

N

∑
i=1

.
Vi(xi(t)) < 0 (32)

Integrating (32) from 0 to tp leads to

Jim < −Vi
(
xi
(
tp
))

+ Vi(xi(0)) (33)

which implies that Jim < 0 because under zero initial condition Vi(xi(0)) = 0 and
Vi
(

xi
(
tp
))

≥ 0. Thus, if Condition (33) is satisfied for all terminal times tp > 0, System (5)
has MHPPC with γi, and this completes the proof. □

In this section, we design a fuzzy controller that satisfies the performance of MHPPC,
and in the next section, we will consider the GCC performance for the fuzzy controller
to reduce the output cost of the controller. Based on Definition 2 and Definition 3, the
following result can be obtained:

Theorem 2. For the given scalars λi > 0, matrices Ri1, Zi1, and Zi2, the positive definite matrix
Qi, free‑weighting matrices L1, L2, and L3, and the controller gains Fsil , Fsij, Fdil , and Fdij, such
that the following conditions hold for all i = {1, 2, · · · , N} and l = {1, 2, · · · , ri}:

Θ̃ill < 0 , for l = 1 · · · ri (34)

Θ̃il j + Θ̃ijl < 0 , for l < j = 1 · · · ri (35)[
−min(λi) ∗

xi(0) −Qi

]
< 0 (36)
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where

Θ̃ill =



Xl11 ∗ ∗ ∗ ∗ ∗ ∗
Xl21 Xl22 ∗ ∗ ∗ ∗ ∗
K1il K2il −R−1

i1 ∗ ∗ ∗ ∗
Qi 0 0 −Z−1

i1 /2 ∗ ∗ ∗
Li1 Li2 0 0 −Z−1

i2 /2 ∗ ∗
LTi3 0 0 0 0 −I/2 ∗

ÃkiQi 0 0 0 0 0 X66



Θ̃il j =



Xl11 ∗ ∗ ∗ ∗ ∗ ∗
Xj21 Xj22 ∗ ∗ ∗ ∗ ∗
K1ij K2ij −R−1

i1 ∗ ∗ ∗ ∗
Qi 0 0 −Z−1

i1 /2 ∗ ∗ ∗
Li1 Li2 0 0 −Z−1

i2 /2 ∗ ∗
LTi3 0 0 0 0 −I/2 ∗

ÃkiQi 0 0 0 0 0 X66


then the decentralized MP controller (4) is considered to be the GCC for System (5).

Proof 2. Let us assume vi(t) = 0; the following Lyapunov function can be obtained by
arranging (17):

N

∑
i=1

.
Vc(xi(t)) ≤

N

∑
i=1

x̂Ti Ξ̂i x̂i (37)

where x̂Ti =
[
xi(t)

.
xi(t)

]T, Ξ̂i =

[
He(Si1Ai(µi)) + Si1STi1+2Φki ∗
Pi − ETi (µi)STi1 + Si2Ai(µi) −He(Si2Ei(µi)) + Si2STi2

]
.

Based on the Lyapunov function (37) and adding the cost function defined by (8) to it
gives

Jic =
∫ tp

0

(
xTi (t)Zi1xi(t) +

.
xTi (t)Zi2

.
xi(t) + uT(t)Ri1u(t)

)
dt

=
∫ tp

0 xTi (t)Zi1xi(t) + xTi (t)Zi2
.
xi(t)

+uTi (t)Ri1ui(t) +
N
∑

i=1

.
Vc(xi(t))dt −

.
Vc
(
xi
(
tp
)) (38)

≤
∫ tp

0
Ψicdt (39)

where

Ψic = xTi (t)Zi1xi(t) +
.
xTi (t)Zi2

.
xi(t) + uTi (t)Ri1ui(t) +

N

∑
i=1

.
Vc(xi(t)) (40)

Substituting controllers (4) and (37) into (40), one has

Ψic =

[
Ni1 ∗
Ni2 Ni3

]
(41)

where
Ni1 = He(Si1Ai(µi)) + Si1STi1 + 2Φki + Zi1 + FTsijRi1Fsij,

Ni2 = Pi − ETi (µi)STi1 + Si2Ai(µi)− FTdijRi1Fsij,

Ni3 = −He(Si2Ei(µi)) + Si2STi2 + Zi2 + FTdijRi1Fdij.
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Left‑multiply and right‑multiply the (41) with

[
Qi LTi1
0 LTi2

]
and its transpose, and

it yields: [
N̂i1 ∗
N̂i2 N̂i3

]
(42)

where
N̂j11 = Li4 +QiZi1Qi + LTi1Zi2Li1 +KT

1ijRi1K1ij

N̂j21 = Li5 −Ai(µi)Qi + Ei(µi)Li1 + LTi2Zi2Li1 −KT
2ijRi1K1ij

N̂j22 = I+ He(Ei(µi)Li2) + LTi2Zi2Li2 +KT
2ijRi1K2ij

Substituting (6) into matrix (42) and extracting the membership functions, we have

Ψic ≤
ri

∑
l=1

µ2
il x̃

TΞ̂ill x̃ +
r

∑
l<j

µilµij x̃T
{

Ξ̂il j + Ξ̂ijl

}
x̃ (43)

where
Ξ̂ill =

[
N̂l11 ∗

Zl1 + LT2Z2L1 −KT
2ilR1K1il Zl2 + LT2Z2L2 +KT

2ilR1K2il

]
(44)

Ξ̂il j =

[
N̂j11 ∗

Zj1 + LT2Z2L1 −KT
2ijR1K1ij Zj2 + LT2Z2L2 +KT

2ijR1K2ij

]
(45)

N̂l11 = Li4 +QiZi1Qi + LTi1Zi2Li1 +KT
1ilRi1K1il

The (44) can be written as follows:

Ξ̂ill = Λ1ii + Λ2ii + Λ3ii (46)

where
Λ1ii =

[
Li4 ∗
Xl21 Xl22

]
,

Λ2ii =

[
KT

1il
−KT

2il

]
R1
[
K1il −K2il

]
,

Λ3ii =

[
Qi LTi1
0 LTi2

][
Zi1 0
0 Zi2

][
Qi 0
Li1 Li2

]
.

Then, by using the Schur complement, the following equation can be obtained:

Ξ̂ill =



Xl11 ∗ ∗ ∗ ∗ ∗ ∗
Xl21 Xl22 ∗ ∗ ∗ ∗ ∗
K1il −K2il −R−1

i1 ∗ ∗ ∗ ∗
Qi 0 0 −Z−1

i1 ∗ ∗ ∗
Li1 Li2 0 0 −Z−1

i2 ∗ ∗
LTi3 0 0 0 0 −I/2 ∗

ÃkiQi 0 0 0 0 0 X66


(47)
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Following the same procedure, the following equation can be obtained from (45):

Ξ̂il j =



Xl11 ∗ ∗ ∗ ∗ ∗ ∗
Xj21 Xj22 ∗ ∗ ∗ ∗ ∗
K1ij −K2ij −R−1

i1 ∗ ∗ ∗ ∗
Qi 0 0 −Z−1

i1 ∗ ∗ ∗
Li1 Li2 0 0 −Z−1

i2 ∗ ∗
LTi3 0 0 0 0 −I/2 ∗

ÃkiQi 0 0 0 0 0 X66


(48)

Notice that (34) and (35) are equivalent to Ξ̂ill < 0 and Ξ̂il j + Ξ̂ijl < 0, which implies
that Ψic < 0 from (43). The Ψic < 0 also means

xTi (t)Zi1xi(t) +
.
xTi (t)Zi2

.
xi(t) + uTi (t)Ri1ui(t) +

N

∑
i=1

.
Vc(xi(t)) < 0 (49)

Integrating the (49) from 0 to tp leads to

Jic < −Vc
(
xi
(
tp
))

+ Vc(xi(0)) = Ji0 (50)

where Ji0 = xTi (0)Pixi(0).
The above inequality proves that conditions (34) and (35) achieve stability with the

bounded cost (8) for System (5) without external disturbance. Next, the Schur complement
is utilized (36) to obtain the following inequality:

xTi (0)Pixi(0)− min(λi) < 0 (51)

Or
xTi (0)Pixi(0) < min(λi) (52)

Based on (52), the following inequality can be found from (50):

Jic < min(λi) (53)

In Theorems 1 and 2, we consider HMPPC and GCC properties, respectively. In the
following proposed theorems, both Theorem 1 and Theorem 2 are considered to design a
controller that satisfies MP. □

Theorem 3. For the given scalars γi, θi ∈
[
0, 1

]
, λi > 0, Ri1 and matrices Zi1 and Zi2, if

there exists the positive definite matrix Qi, free‑weighting matrices L1, L2, and L3, and controller
gains Fsil , Fsij, Fdil , and Fdij, such that the conditions (12), (13), (34), (35) and (36) hold for all
i = {1, 2, · · · , N} and l = {1, 2, · · · , ri}. Then, the decentralized MP controller (4) is consid‑
ered to be the GCC for System (5) and also satisfies MHPPC.

Proof. If Theorem 3 is satisfied, then Theorem 1 and Theorem 2 are satisfied at the same
time, which also means the system satisfies the GCC and MHPPC, and this completes the
proof. □

Remark 1. It should be pointed out that when the description matrix is defined as a singular matrix,
the systemswill becomemore complicated than the regular systems. In addition, the obtained results
should guarantee the system is not only stable but also to be regular and impulse‑free. In [15], the
impulse‑free and regular problems of the system are discussed in detail with the PDSF scheme.
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4. Simulation Results and Discussions

Simulation 1. To illustrate the proposed approach, let us consider the following numerical example,
which is composed of two interconnected subsystems:

ri

∑
l=1

µilEil
.
xi(t) =

ri

∑
l=1

µil

{
Ail xi(t) + Bilui(t) +

N

∑
k=1,k ̸=i

Aikl(µi)xk(t) +Gilvi(t)

}
(54)

yi(t) =
ri

∑
l=1

µil{Cil xi(t) +Dilvi(t)} (55)

where i = l = {1, 2}.
Parameters for Subsystem 1:

E1l =

[
1 0
0 0

]
, A11 =

[
−2 3
1.5 −2.2

]
, A12 =

[
−4 3
3 −2

]
, B11 =

[
0.6
0.4

]
, B12 =

[
0.3
0.2

]
,

A121 =

[
0.5 0
0.8 0

]
, C11 = C12 =

[
1 0

]
, D11 = D12 = 1, G11 = G12 =

[
0

0.1

]
.

Parameters for Subsystem 2:

E2l =

[
1 0
0 0

]
, A21 =

[
−3 1
4 −2

]
, A22 =

[
−2 1
3 −1

]
, B21 = B22 =

[
0.6
0.8

]
,

A212 =

[
0.2 0
0 0.5

]
, C21 = C22 =

[
1 0

]
, D21 = D22 = 1, G21 = G22 =

[
0

0.1

]
.

The performance scalars and matrices are given as follows:

θi = 0.5, Zi1 =

[
0.5 0
0 0.5

]
, Zi2 =

[
0.1 0
0 0.1

]
, Ri1 = 0.01.

Consider the membership functions in Figure 2. By applying Theorem 3, the mini‑
mum allowed r1 = 0.3904, r2 = 0.3732 and corresponding controller gains are

For Subsystem 1 :


Fs11 =

[
−151.5869 −648.3600

]
Fd11 =

[
3.3389 61.4130

]
Fs12 =

[
−87.0101 −364.1830

]
Fd12 =

[
2.3792 34.3111

]
and

For Subsystem 2 :


Fs21 =

[
−52.0619 −120.7840

]
Fd21 =

[
11.0213 39.7035

]
Fs22 =

[
−52.8868 −107.1582

]
Fd22 =

[
10.6186 36.3535

]
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Subsequently, with the initial conditions x1(0) =
[
1.5 −1

]T and x2(0) =
[
0.5 −0.5

]T
for Simulation 1, the simulation results were obtained, which are shown in Figures 4 and 5
with the proposed controller gains. The control signal is shown in Figure 6.

According to (7), if the inequality J̃im ≤ 1 holds, then the TSLSD system is considered
to have MHPPC.

J̃im =

∫ tp
0 −γ−1

i θiyTi (t)yi(t)ds +
∫ tp

0 2(1 − θi)yTi (t)vi(t)ds

−γi
∫ tp

0 vTi (s)vi(s)ds
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The following specific values are used to verify the MHPPC (7) and GCC (9) for Sim‑
ulation 1 (see Table 1).

Table 1. Specific values of simulation.

Values J̃im λi Jic

Subsystem 1 −6.0415 2.8506 1.7369

Subsystem 2 −6.2048 0.2227 0.1812

Simulation 2. In this section, the following example is borrowed from [29,30]. Consider a double‑
inverted pendulum system that is connected by a spring (Figure 7).

.
x11 = x12 (56)

.
xi2 =

m1gd
J1

sin(x11)−
k
J1

x11 +
u1

J1
+

k
J1

x21 +
v1

J1
(57)

.
x21 = x22 (58)

.
xi2 =

m2gd
J2

sin(x21)−
k
J2

x21 +
u2

J2
+

k
J2

x11 +
v2

J2
(59)

where xi1 denotes the angular displacement of the i−th pendulum from the vertical reference. vi
is the torque disturbance. The torque input ui can be applied by a servomotor to position each
pendulum. The moments of inertia are J1 = 2 kg ·m2 and J2 = 2.5 kg ·m2. The constant of the
connecting torsional spring is k = 2 N ·m/rad. m1 = 2 kg and m2 = 2.5 kg are the masses of
two pendulums. The height of the pendulum is d = 1 m. The gravity acceleration is g = 9.8 m/s2.
Approximating the subsystems at three points xi1(t) =

(
0, ±88◦

)
(Figure 8), the following fuzzy

model can be obtained for LSDS:
Rule 1. IF xi1(t) is ±88◦, THEN

Ẽi1
.
xi(t) = Ãi1xi(t) + B̃i1ui(t) +

2

∑
k=1,k ̸=i

Aik1xk(t) +Gi1vi(t) (60)
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yi(t) = Ci1x(t) +Di1vi(t) (61)

Rule 2. IF xi1(t) is 0, THEN

Ẽi2
.
xi(t) = Ãi2xi(t) + B̃i2ui(t) +

2

∑
k=1,k ̸=i

Aik2xk(t) +Gi2vi(t) (62)

yi(t) = Ci2x(t) +Di2vi(t) (63)

where

A11 =

[
0 1

−91.19 −40

]
,A12 =

[
0 1

−94.62 −40

]
, A11 =

[
0 1

−86.99 −40

]
, A12 =

[
0 1

−90.42 −40

]
,

B1l =

[
0

0.5

]
, B2l =

[
0

0.4

]
, A112 =

[
0 0
1 0

]
, A212 =

[
0 0

0.2 0

]
,Ei1 = Ei2 =

[
1 0
0 1

]
,

Ci1 = Ci2 =
[
1 0

]
, D1i = Di2 = 1, Gi1 = Gi2 =

[
0

0.5

]
.
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The performance scalars and matrices are given as follows:

θi = 0.5, Zi1 =

[
0.1 0
0 0.1

]
, Zi2 =

[
0.1 0
0 0.1

]
, Ri1 = 0.1

By using Theorem 3 and solving the corresponding LMIs, we obtain the minimum
allowed r1 = 0.4995, r2 = 0.4690 and the controller gains as follows:

For Subsystem 1 :


Fs11 =

[
−203.7575 −87.2880

]
Fd11 =

[
0.7300 2.4321

]
Fs12 =

[
63.0675 25.4171

]
Fd12 =

[
−0.3013 −0.6113

]
and

For Subsystem 2 :


Fs21 =

[
−163.7991 −73.4538

]
Fd21 =

[
0.5393 1.9798

]
Fs22 =

[
73.5624 31.2760

]
Fd22 =

[
−0.3153 −0.7734

]
Considering the same external disturbance given in Simulation 1 and assuming the

initial conditions are x1(0) =
[
0.3 0

]T and x2(0) =
[
0.5 0

]T, the state responses of the
system were derived, which are shown in Figures 9 and 10, and the controller signal is
shown in Figure 11. The obtained values are listed in Table 2.
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From the figures shown above, we can note that all states converge to zero, which
means the overall closed‑loop fuzzy large‑scale system can be controlled by the proposed
method. In addition, it is easy to see that the external disturbance is successfully inhibited
with MHPPC performance. According to Definition 1 and Definition 2, the values given
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in Tables 1 and 2 show that all examples satisfy MHPPC and GCC performance. Thus,
we demonstrated that the proposed decentralized MP controller makes the nonlinear LSD
system asymptotic stable and satisfies MP control.

Table 2. Specific values of simulation.

Values J̃im λi Jic

Subsystem 1 −4.1990 1.1766 0.9294

Subsystem 2 −4.8284 2.9850 2.4077

Simulation environment:

The simulation was conducted in MATLAB, and MATLAB—LMI Toolbox; The com‑
puter is equipped with: a 3.60 GHz 64 bit AMD 6‑Core Ryzen 5 3500X Processor, WIN‑
DOWS 11 Operating System; AMD Radeon RX580 8G.

5. Conclusions
The problem of a decentralized MP control for nonlinear LSD systems was investi‑

gated in this paper. It was found that if the descriptor matrix is defined as a singular ma‑
trix, the impulse‑free and regular problems of the system must be considered; otherwise,
the system will be unstable. Different from the existing approaches, the decentralized MP
controller was designedwith the PDSF scheme. This scheme ismore suitable than the state
feedback or output feedback schemes because it can easily solve the impulse‑free and regu‑
lar problems. In addition, the stability conditions for TSLSD systemswith theMHPPC and
GCCwere obtained in terms of LMIs. Two numerical examples were given to demonstrate
the effectiveness of the proposed method. However, sometimes, we cannot easily obtain
the state derivative information from the system. To solve this problem, it is necessary to
consider the observer control scheme during the controller design process. In addition,
how to construct an accurate mathematical model of real production is another important
issue in the control field. As is commonly known, for modeling the system, the nonlin‑
ear characteristics, initial values, and some important parameters need to be determined.
However, if there is a lack of important parameters or initial values, the constructed system
may be quite different from the actual system, which further leads to the inability of the
designed controller to effectively control the system. In the literature [31,32], researchers
have proposed a mathematical model development method and control method for real
production; however, some parts of the initial information are not clear enough. Therefore,
considering observer control and how to effectively construct the mathematical model of
nonlinear LSD systems is an important topic for future work.
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