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Abstract: Due to the molecular mechanisms of action of antidiabetic drugs, they are considered to
be effective in the treatment of both COVID-19 and the post-COVID-19 syndromes. The aim of this
study was to determine the effect of administering insulin and metformin on the mortality of patients
with type 2 diabetes (T2DM) with symptomatic COVID-19 with the use of logistic regression models.
The association between death and insulin and metformin was weak and could not be included in the
multivariate model. However, the interaction of both drugs with other factors, including remdesivir
and low-molecular-weight heparin (metformin), age and hsCRP (insulin), modulated the odds of
death. These interactions hint at multifaceted (anti-/pro-) associations of both insulin and metformin
with the odds of death, depending on the patient’s characteristics. In the multivariate model, RDW-
SD, adjusted with low-molecular-weight heparin treatment, age, sex and K+, was associated with
mortality among patients with COVID-19 and T2DM. With a 15% increase in RDW-SD, the risk of
death increased by 87.7%. This preliminary study provides the foundations for developing further,
more personalized models to assess the risk of death in T2DM patients, as well as for identifying
patients at an increased risk of death due to COVID-19.
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1. Introduction

According to the WHO, the prevalence of SARS-CoV-2 reached approximately 662 mil-
lion cases on the day of 16 January 2023, leading to 6 million deaths due to the development
of the COVID-19 syndrome [1]. Although the pandemic has already passed, some people,
especially those who suffered from full-blown COVID-19, may experience acute conse-
quences of COVID-19, the so-called long COVID or post-COVID-19 syndrome (PCS),
recognized by the WHO as the next epidemic of the 21st century [2]. This term refers to
symptoms persisting for more than 3 months after COVID-19, causing long-term changes
in single organs or multi-organ changes [1]. It is predicted that PCS may affect millions of
people worldwide [1], mainly people with comorbidities [3], e.g., type 2 diabetes mellitus
(2TDM). The symptoms of PCS are difficulty with concentration, cognitive dysfunction,
amnesia, depression, fatigue and anxiety [3], and the risk factors for the persistence of neu-
ropsychiatric symptoms in PCS are older age, female sex and the severity of comorbidities,
e.g., diabetes [4], which is often associated with tachycardia, sarcopenia, microcircula-
tory dysfunction or organ damage [5]. PCS is therefore a phenomenon that affects life
expectancy.

The study reported in this manuscript focuses on diabetes, which was shown to
develop de novo in patients suffering from COVID-19 [4]. Diabetes is estimated to be
associated with approximately 15% of patients suffering from severe COVID-19. The
mortality rate in COVID-19-positive diabetic patients was reported to be 2- to 3-fold higher
compared to COVID-19-negative diabetic patients [5]. The literature (studies and meta-
analyses) shows higher mortality in the COVID-19-positive diabetic population compared
to the COVID-19-positive non-diabetic population [6–9]. Moreover, optimal diabetic control
(in the case of T1DM/T2DM) was associated with better outcomes and fewer comorbidities
among COVID-19-positive patients [10]. Such statistics account for the urge to partake
in therapeutic intervention [5]. However, the information on the COVID-19-associated
diabetic cases and their responses to drug treatment are scarce. Research into new strategies
in its treatment and prevention may improve the quality of medical decisions in terms of
mortality, exacerbation and optimal response to drugs [11], and shed some light on the
metabolic alterations in these patients.

A handful of clinical studies aimed to combine the classic anti-viral and anti-inflam-
matory drugs in one treatment scheme in order to combat COVID-19 [11]. However,
since the molecular action of agents used in antidiabetic treatment is multidimensional
and may possibly modulate the course of COVID-19 and its related oxidative stress and
cytokine storm [12–15], interactions with antidiabetic treatments ought to be taken into
account when analyzing multidimensional models used in more complex studies. To our
knowledge, no studies analyzed the difference in the odds of mortality associated with
antidiabetic treatment in the context of the simultaneous effects of the coexisting covariates
(comorbidities, patient characteristics and demography, and biochemical parameters). The
lack of such an investigation renders the one-dimensional studies prone to generate false
assumptions, owing to the aforementioned multifaceted action of antidiabetic drugs and the
SARS-CoV-2 affinity towards cell membrane proteins [5,13,15–18], often acting as intrinsic
cell-to-cell messengers.

The aim of this preliminary study was to explore the mortality-wise effect of insulin
and metformin administration in the European (Polish) model of the COVID-19-positive
diabetic population sample composed of all patients admitted to the Temporary COVID-19
Hospital in Wroclaw, Poland. Typically, patients transferred to this specific hospital were
characterized by an increased risk of in-hospital mortality due to increased COVID-19
severity. Along with the estimated effect of insulin and metformin on survival, their inter-
actions with other factors (including other agents) were studied (in the form of second- or
third-degree interactions) to check for synergies in modulating the mortality rate. Only
significant interactions were reported and further analyzed, as opposed to the less optimal
process of adjusting the findings with a pre-assumed set of patient features. This study de-
sign was chosen so as to give a foundation for future, more patient- and treatment-oriented
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risk assessment models that would be validated on bigger, stratified, diabetic population
samples. These tools would enable the identification of patients with a higher risk of
death from COVID-19. This targets those for whom analysis of the values of the selected
laboratory and demographic parameters, and taking into account the treatment methods
for both T2DM and COVID-19, would prove to be at-risk in the context of assessment of
the outcome of the disease.

2. Materials and Methods
2.1. Inclusion/Exclusion Criteria and the Population from Which the Sample Was Taken

A retrospective analysis was performed on 430 medical records of patients with type 2
diabetes and SARS-CoV-2 infection (the total number included data from 2151 patients) hos-
pitalized between February 2020 and June 2021 at the University and Temporary COVID-19
Hospital organized by the University Medical Hospital in Wroclaw (Poland), which were
collected as part of the COLOS registry (COronavirus in LOwer Silesia). All patients
admitted at the hospital due to COVID-19 symptoms tested positive for the presence of
SARS-CoV-2 in nasopharyngeal swab specimens using the RT-PCR method (via reverse tran-
scription and polymerase chain reaction), which was recommended by the World Health
Organization (WHO) [19]. The tests were performed using the two-gene test (ORF1ab, N)
SARS-CoV-2 Real Time PCR LAB-KIT (BIOMAXIMA, Lublin, Poland), using the QuantStu-
dio 6 Flex device (Applied Biosystems, Warsaw, Poland). Isolation of nukelic acids was
performed on a Magna Pure 96 apparatus (Roche, Basel, Switzerland). The observation
period lasted from the day of hospital admission to the day of discharge or death. The study
protocol was approved by the Bioethical Committee and Ethics Committee of the Medical
University in Wroclaw, Poland (No: KB-444/2021), and permission was granted for the
publication of anonymized data. All patients provided written consent for admission into
the study, which stipulated that the results may be used for research purposes. This study
was in accordance with Helsinki declaration.

The dataset included demographic information (sex, age), concurrent conditions, per-
formed procedures, vital signs and laboratory test results during hospitalization. This study
accounted for the following variables determined before hospital admission: gender; type 2
diabetes therapies used before hospital admission, including metformin, insulin, metformin
and insulin, insulin and another oral antidiabetic drug, GLP agonists (semiglutide or du-
laglutide injected subcutaneously) or metformin and another oral antidiabetic drug (SGLT-2
inhibitors); the Glasgow Coma Scale (GCS) ≤ 14; oxygen saturation without respiratory
support SpO2 ≤ 94%; lung lesions (typical of SARS-CoV-2 infection, observed under the
CT scan); dyspnea; chest pain; cough; smell disorders; taste disorders; diarrhea, vomiting
or abdominal pain; hypertension; hemorrhage (gastrointestinal, respiratory, intracranial,
genital, urinary); myocardial infraction; heart failure; prehospitalization oxygen therapy;
chronic kidney; atrial fibrillation or flutter; asthma; chronic obstructive pulmonary disease
(COPD); sleep apnea syndrome; stroke; dialysis; red cell distribution width—standard devi-
ation (RDW-SD); concentration of lymphocyte (LYMPH), interleukin 6 (IL-6), procalcitonin
(PCT), albumin, ferritin, C-reactive protein, sodium, potassium, glucose, D-dimers, fibrino-
gen, uric acid, bilirubin, diacylglycerides (TG), glycated hemoglobin (HbA1c), low-density
lipoprotein (LDL), high-density lipoprotein (HDL), urea, creatinine, troponin and lactate
dehydrogenase (LDH); and estimated glomerular filtration rate (eGFR) calculated based on
the Modification of Diet in Renal Disease (MDRD) Study Equation [20]. The analysis also
took into account features that were observed upon clinical assessment or introduced (in
the case of iatrogenic factors) during the hospitalization. Apart from antidiabetic agents
for which the administration was continued during the hospitalization, therapeutic agents
were introduced in the treatment upon admission of the study participants to the Temporary
COVID-19 Hospital. The initial dataset included variables such as stroke, revascularization
(PCI or CABG), features of pulmonary obstruction or pneumonia, shock (hypovolemic,
cardiogenic, septic), hemorrhage (gastrointestinal, respiratory, intracranial, genital, uri-
nary), myocardial infarction, venous thromboembolism (embolism, deep vein thrombosis,
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embolism and thrombosis), new neurological disorders, smell disorders and taste disorders,
convalescent plasma, remdesivir and acetylsalicylic acid. The study group was divided
based on survival during the hospitalization. The study participants were not further
monitored in terms of mortality after their hospitalization had ended. In each of these
two groups, the method of treating type 2 diabetes (T2DM) was identified, according to
Figure 1.
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Figure 1. Diagram illustrating the frequency of drug use in regard to antidiabetic treatment in the
diabetic patients with COVID-19. A set of features that were analyzed among the two survival
statuses is given as a reference.

2.2. Statistical Methods

Data preprocessing and visualization were performed with Python 3.10.7 (packages:
pandas 1.4.4, numpy 1.21.4, matplotlib 3.5.3, seaborn 0.11.2). Statistics were employed
with use of Statistica 13.3 on license by Wroclaw Medical University. Characteristics of the
population sample were performed with use of the Mann–Whitney U and χ2 tests. In case
of low (<5) estimated count in any contingency table cell, Yates correction for continuity
was applied. The normality assumption was checked with use of the Q–Q plots and the
Shapiro–Wilk test.

Odds of death were analyzed with use of logistic regression models. Expert analysis
of the dataset by a multidisciplinary team (consisting of medical doctors, biochemists,
laboratory medicine professionals, statisticians and a data scientist) led to drawing can-
didates to be featured in the initial set used for deriving the optimal multivariate model.
A subsequent analysis of the % of missing data led to obtaining the initial set of effects
(variables) used for modeling. Some continuous effects were log-transformed so as to meet
the assumption of linearity vs. log(Odds) tested with the Box-Tidwell test. To make the
intercepts from the model resemble real-life conditions, continuous variables were centered
at selected, typical values of the entire population sample from which the data used in this
study was extracted. At the beginning of the analysis, univariate odds ratios (ORs) were
analyzed (Table A1). Subsequently, the optimal model was derived from the initial set of
the variables with use of the stepwise elimination (p cut-off for inclusion/exclusion: 0.05)
iterative process (Table A2). Interaction analysis was the final part of the study, in which
significant interactions (Table A3) and the effects that took part in them were incorporated
into the models, based on the type 1 likelihood ratio (LR) test aimed to assess whether any
interaction would be more explanatory in the context of the odds of death, compared to



Biomedicines 2024, 12, 605 5 of 28

the naïve model which was not based on any variables. The interactions that were signif-
icant were incorporated in models reported in this manuscript. The mentioned models
contained the intercepts, interaction terms and the features (effects) taking place in these
interactions—as per the good practice in data modeling.

3. Results
3.1. Characteristics of the Population Sample Used in this Study

Among patients with T2DM hospitalized due to symptomatic COVID-19, significant
differences affecting survival were observed among the following criteria described upon
hospital admission: sex (women survival: 48.35%, women death: 34.58%), SpO2 ≤ 94%
(survival: 51.04%, death: 67.39%), hemorrhage (survival: 5.41%, death: 14.95%), myocardial
infarction (survival: 14.11%, death: 28.97%), heart failure (survival: 21.62%, death: 28.97%),
prehospitalization oxygen therapy (survival: 47.75%, death: 64.49%), chronic kidney dis-
eases, CKDs (survival: 18.02%, death: 29.91%). Furthermore, the type of therapy used in
type 2 diabetes also influenced the differences in patient survival: using only metformin
(survival: 26.13%, death: 13.08%) versus insulin and other antidiabetic drugs (survival:
9.61%, death: 16.82%) had different results, which, of course, stemmed from the stage of ad-
vancement of T2DM. Table 1 shows the baseline demographic and clinical characteristics of
the study participants. Non-survivors differed from the survivors in terms of the following
laboratory-measured parameters: RDW-SD, LYMPH, IL-6, PCT, albumin, ferritin, hsCRP,
potassium, glucose, eGFR, urea, creatinine, LDH and troponin, as shown in Table 1.

Table 1. Baseline characteristics of COVID-19 patients at admission to the hospital and during the
hospitalization.

Demographic Variables (upon Hospital Admission)
Variable Category Survivors (N = 333) Non-Survivors (N = 107) p

Sex Female 161 (48.35%) 37 (34.58%) 0.0127
Age [years] Me (1Q–3Q) - 70 (64–76) 75 (67–83) 0.0001

Clinical Variables (upon Hospital Admission)
Variable Category Survivors (N = 333) Non-Survivors (N = 107) p

Metformin only YES 87 (26.13%) 14 (13.08%) 0.0053
Insulin and other antidiabetic drugs YES 32 (9.61%) 18 (16.82%) 0.0410

SpO2 ≤ 94% YES 98 (51.04%) 31 (67.39%) 0.0456
Hemorrhage YES 18 (5.41%) 16 (14.95%) 0.0013

Myocardial infarction YES 47 (14.11%) 31 (28.97%) <0.001
Heart failure YES 72 (21.62%) 34 (31.78%) 0.0326

Prehospitalization oxygen therapy YES 159 (47.75%) 69 (64.49%) 0.002
CKD YES 60 (18.02%) 32 (29.91%) 0.0085

Clinical Variables (after the Hospital Admission)
Variable Category Survivors (N = 333) Non-Survivors (N = 107) p

Revascularization: PCI or CABG YES 6 (1.80%) 7 (6.54%) 0.0118
Features of pulmonary obstruction

or pneumonia YES 186 (55.86%) 85 (79.44%) <0.001

Shock: hypovolemic, cardiogenic, septic YES 13 (3.90%) 45 (42.06%) <0.001
Hemorrhage: gastrointestinal,

respiratory, intracranial,
genital, urinary

YES 18 (5.41%) 16 (14.95%) 0.0013

Myocardial infarction YES 6 (1.80%) 6 (5.61%) 0.0355
Acetylsalicylic acid YES 89 (26.73%) 41 (38.32%) 0.022
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Table 1. Cont.

Laboratory Variables (upon Hospital Admission)
Variable Survivors Non-Survivors p

n 324 106
RDW-SD [fL] Me (1Q–3Q) 45.0 (41.60–49.10) 47.85 (43.40–52.40) <0.001

n 224 97
LYMPH [count/µL] Me (1Q–3Q) 1.11 (0.755–1.565) 0.76 (0.54–1.24) <0.001

n 105 29
IL-6 [pl/mL] Me (1Q–3Q) 15.3 (7.16–32.20) 56.3 (22.40–144.00) <0.001

n 242 103
PCT [pg/mL] Me (1Q–3Q) 0.10 (0.04–0.25) 0.31 (0.15–1.10) <0.001

n 101 76
Albumin [mg/dL] Me (1Q–3Q) 3.20 (2.90–3.60) 2.90 (2.50–3.20) <0.001

n 160 59
Ferritin [µg/L] Me (1Q–3Q) 507.40 (238.45–834.30) 850.00 (423.10–1368.10) <0.001

n 324 105
CRP [mg/dL] Me (1Q–3Q) 52.76 (12.85–112.45) 93.07 (0.62–487.40) <0.001

n 322 106
K [mmol/L] Me (1Q–3Q) 4.17 (3.70–4.62) 4.50 (4.10–4.80) <0.001

n 297 100
Glucose [mg/dL] Me (1Q–3Q) 152 (112.00–225.00) 196.50 (131.00–189.00) 0.0035

n 323 106
eGFR [mL/min/1.73 m2] Me (1Q–3Q) 62.00 (41.00–81.00) 47.00 (26.00–69.00) <0.001

n 303 105
Urea [mg/dL] Me (1Q–3Q) 48.00 (34.00–78.00) 76.00 (52.00–113.00) <0.001

n 323 106
Creatinine [mg/dL] Me (1Q–3Q) 1.10 (0.84–1.52) 1.47 (0.98–2.32) <0.001

n 201 80
LDH [U/L] Me (1Q–3Q) 322.00 (244.00–438.00) 494.00 (328.50–665.50) <0.001

n 206 79
Troponin [ng/L] Me (1Q–3Q) 18.65 (7.30–67.90) 61.90 (21.30–275.50) <0.001

Abbreviations: CABG, coronary artery bypass grafting; CKD, chronic kidney disease; CRP, C-reactive protein
concentration; eGFR, estimated glomerular filtration rate; IL-6, interleukin 6; LDH, lactate dehydrogenase activity;
LYMPH, lymphocyte count; Me, median value; PCI, percutaneous coronary intervention; PCT, procalcitonin
concentration; Q, quartile.

Among patients who died during hospitalization, there were more frequent occur-
rences of hypovolemic shock, cardiogenic shock or sepsis (survival: 3.90%, death: 42.06%).
Hemorrhagic episodes were more common (survival: 5.41%, death: 14.95%). Moreover,
non-survivors showed/underwent the following features more frequently: pulmonary ob-
struction or pneumonia (survival: 55.86%, death: 79.44%), myocardial infarction (survival:
1.80%, death: 5.61%) and revascularization procedures such as percutaneous coronary in-
tervention (PCI) or coronary artery bypass grafting (CABG) (survival: 1.80%, death: 5.61%).
As per treatment-wise choices, non-survivors were characterized with higher intakes of
acetylsalicylic acid, most presumably as a result of the more severe course of COVID-19
(survival: 26.73%, death: 38.32%), as shown in Table 1. There were no statistically signifi-
cant differences in the administration of convalescent plasma or remdesivir between the
two groups.

3.2. Univariate Modulation of the Odds of Death

According to the univariate analysis (Figure 2), 10 out of 15 variables proved to have
significant influence on the odds of death. Having the SpO2 lower than 94 increased
the odds of death by 98.2% (p ≈ 0.048). Male individuals were 77.1% more likely to die
compared to female (p ≈ 0.013). Each one-year increase in age would increase these odds by
3.8% (p < 0.001). Among the used drugs analyzed in this study, two out of six proved to be
associated with higher odds of death: LMWH (by 3.506-fold, p < 0.001) and acetylsalicylic
acid (by 70.3%, p ≈ 0.023). The administration with other agents (remdesivir, convalescent
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plasma, metformin, insulin) was found to be, per se, insignificant in terms of modulation of
these odds. Each subsequent increase in hsCRP (by 1 mg/L) and potassium (by 1 mmol/L)
increased the odds by 0.4% (p ≈ 0.001) and 88.6% (p < 0.001), respectively. Each 15%
increase in RDW-SD increased the odds by 53.8% (p < 0.001), while each 2-fold increase
in creatinine and urea increased these odds by 53.7% (p ≈ 0.001) and 87.7% (p < 0.001),
respectively.
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Although the calculated odds ratios (ORs) for administration with metformin and
insulin were 0.716 and 1.364, respectively, these insights were insignificant in relation to
the entire population (p > 0.05, as the confidence interval exceeded the OR = 1 line shown
in Figure 2).

3.3. Multi-Effect Modulation of the Odds of Death According to the Model Derived with the
Stepwise Elimination Model

The derived multi-effect model (Table 2) consisted of the following effects: potassium
(p < 0.001), sex (p ≈ 0.014), RDW-SD (p ≈ 0.002), age (p ≈ 0.002) and LMWH treatment
(p ≈ 0.002).

Table 2. The derived multi-effect model for estimating the odds of death in type 2 diabetic, COVID-19-
positive patients.

Iteration: Stepwise Elimination (p Cut-Off for Inclusion/Exclusion: 0.05); Baseline Group: Female. No LMWH. K: 4.10 mmol/L.
RDW-SD: 45.78. Aged 64 Years

Effect/Interaction Analyzed
Cat.

Reference
Cat. β β SE Wald

Stat.
β −95%

CI β 95% CI Est.
Effect

Est. Effect
−95% CI

Est. Effect
95% CI p

Intercept
(baseline odds) - - −4.768 0.738 41.783 −6.213 −3.322 0.009 0.002 0.036 <0.001

K. centered at
4.10 mmol/L (OR) - - 0.683 0.254 7.257 0.186 1.180 1.980 1.205 3.255 0.007

Sex (OR) Male Female 1.029 0.417 6.090 0.212 1.846 2.798 1.236 6.337 0.014
log1.15(RDW-SD).

centered at 27.36 (OR) - - 0.629 0.207 9.216 0.223 1.036 1.877 1.250 2.817 0.002

Age. centered at
64 years old (OR) - - 0.067 0.021 10.065 0.025 0.108 1.069 1.026 1.114 0.002

LMWH (OR) 1 0 2.325 0.602 14.906 1.145 3.505 10.223 3.141 33.272 <0.001

Abbreviations: Cat., category; CI, confidence interval; Est., estimated; LMWH, low-molecular-weight heparin; OR,
odds ratio.
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The baseline odds (estimated for a 64-year-old female with RDW-SD 45.78 and K
4.10 mmol/L, under no LMWH treatment) were 0.009, suggesting very high pro-survival
tendency (9 deaths per 1000 individuals). These odds would be modulated (Figure 3) by
the following effects: K (by 98% per each 1 mmol/L increase), male sex (by 2.798-fold),
age (by 6.9% per each 1-year increase), RDW-SD (by 87.7% per every 15% increase) and
administration of LMWH (by 10.223-fold).
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(stepwise elimination). The baseline odds represent the odds of death among individuals with
the following characteristics: female, neither low-molecular-weight heparin (LMWH), insulin nor
remdesivir treatment, 45.78 RDW-SD, 4.10 mmol/L K, aged 64 years old. The ORs show the fold
change in baseline odds ratios (ORs) associated with each effect (variable). Significant findings
(p < 0.05) were marked with ‘*’.

The baseline odds of death were established for designated representatives. This
allows for the simultaneous application of all variables in the model to calculate the odds
ratio for death concerning specific characteristics (LMW, age, RDW-SD, sex, potassium
centered at 4.10 mmol/L) relative to the baseline person. For a 64-year-old woman not
taking LMWH, with an RDW-SD value of 45.78 fL, every increase in potassium by 1 mmol/L
from the baseline value of 4.10 mmol/L increased the odds of death by 98%. Additionally,
for every one-year increase in age beyond 64 years without taking LMWH, RDW-SD at
45.78 fL, and potassium concentration at 4.10 mmol/L, there was a 6.9% increase in the
odds of death.

The baseline odds (estimated for a 64-year-old female with RDW-SD 45.78 and K
4.10 mmol/L, under no LMWH treatment) was 0.009, suggesting very high pro-survival
tendency (9 deaths per 1000 individuals). These odds would be modulated (Figure 3) by
the following effects: K (by 98% per each 1 mmol/L increase), male sex (by 2.798-fold),
age (by 6.9% per each 1-year increase), RDW-SD (by 87.7% per every 15% increase) and
administration of LMWH (by 10.223-fold).

3.4. Significant Contrasts. Part 1: How Both LMWH and Remdesivir Modulated the Effect of
Metformin Intake on the Odds of Death

According to the model, the modulation of the odds of death by metformin treatment
were dependent on administration of both LMWH and remdesivir, although the baseline
odds differed between different types of treatment (Figure 4). The stratum administered
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with LMWH and remdesivir but no metformin was the only one that showed a baseline
ratio approximately equal to 1 (p ≈ 0.617), indicating nearly identical odds of death and
survival. The other strata (Figure 4) showed significantly higher baseline odds of survival
compared to the odds of death.
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Based on the estimations from the model among the stratum that did not undergo
either remdesivir or LMWH treatment, individuals who were administered with met-
formin would show 2.10-fold higher odds of death compared to individuals who were
not administered with metformin. This fold difference would be approximately 3.54-fold
lower (p ≈ 0.036) in the stratum administered with LMWH (in patients with or without
remdesivir administration), or 6.93-fold lower (p ≈ 0.011) in the stratum administered with
remdesivir (in patients with or without LMWH administration). Interestingly, LMWH and
remdesivir did not significantly affect each other in the way that they modulated the effect
of metformin intake on the odds of death (β = 0.069, 95% CI: 0.004–1.32, p ≈ 0.076). Based
on the baseline odds of death for different patient characteristics, metformin intake was
associated with higher odds of death under no treatment with LMWH and remdesivir,
although it would promote survival if LMWH and/or remdesivir had been administered
during hospitalization (Figure 4).

3.5. Significant Contrasts. Part 2: Insights into Aging. Inflammation and its Mutual Effect on
How Insulin Affected the Odds of Death

Similar to the previous subsection, the interactions selected for further exploration
were based on their significance upon applying the likelihood ratio (LR) test. To fully
understand the interaction between age, hsCRP and insulin on the odds of death, one needs
to assume that the baseline individual who would be referred to in this subsection was
aged 64 with hsCRP equal to 48.88.

Interestingly, age- and inflammation-associated changes in the odds of death in the
baseline individuals would depend on insulin administration (Table 3). Among patients not
administered with insulin, every subsequent one-year increase in age or one-unit increase
in hsCRP would cause, respectively, 0.6% or 6.1% increases in the odds of death (p < 0.001).
Conversely, these age and inflammation-wise changes in odds of death were not observed
among patients administered with insulin.
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Table 3. Description of effects and their significant interactions in building a model to determine the modification of the impact of metformin intake on the likelihood
of death in patients taking LMWH and/or remdesivir. (A) Reference group: no insulin administration, aged 64, with hsCRP 48.88. (B) Reference group: insulin
administration, aged 64, with hsCRP 48.88.

A. Reference Group: No Insulin Administration, Aged 64, with hsCRP 48.88

Effect/Interaction Description of the Analyzed Effect/Interaction β β SE Wald Stat. β −95% CI β 95% CI Est. Effect/
Interaction

Est. Effect/
Interaction −95% CI

Est. Effect/
Interaction 95% CI p

Intercept Odds of death for a patient not administered with
insulin, aged 64, with hsCRP 48.88 mg/L −2.026 0.224 81.551 −2.465 −1.586 0.1319 0.0850 0.2047 <0.001

Insulin Modulation of odds by insulin administration at age 64
and hsCRP 48.88 mg/L 1.152 0.355 10.554 0.457 1.847 3.1647 1.5793 6.3414 0.001

hsCRP (centered
at 48.88)

Change in odds upon each subsequent 1-unit increase
in hsCRP 0.006 0.001 17.667 0.003 0.009 1.0061 1.0033 1.0090 <0.001

Age (centered at 64) Change in odds upon each subsequent 1-year increase
in age 0.059 0.014 17.278 0.031 0.087 1.0608 1.0317 1.0907 <0.001

Insulin*hsCRP
Fold difference in how administration with insulin

would change the odds of death, upon each subsequent
1-unit increase in hsCRP

−0.007 0.003 5.720 −0.012 −0.001 0.9932 0.9877 0.9988 0.017

Insulin*Age
Fold difference in how administration with insulin

would change the odds of death, upon each subsequent
1-year increase in age

−0.056 0.023 5.706 −0.102 −0.010 0.9457 0.9034 0.9900 0.017

‡ hsCRP*Age Fold change in how age and hsCRP modulated each
other in changing the odds of death −0.00009 0.00015 0.389 −0.00038 0.00020 0.9999 0.9996 1.0002 0.533

‡ Insulin*hsCRP*Age
Fold change in how hsCRP and hsCRP modulated the
impact of each other on changing the impact of insulin

on the odds of death
0.00040 0.00029 1.978 −0.00016 0.00096 1.0004 0.9998 1.0010 0.160

B. Reference Group: Insulin Administration, Aged 64, with hsCRP 48.88

Effect/Interaction Description of the Analyzed Effect/Interaction β β SE Wald Stat. β −95% CI β 95% CI Est. Effect/
Interaction

Est. Effect/
Interaction −95% CI

Est. Effect/
Interaction 95% CI p

Intercept Odds of death for a patient administered with insulin,
aged 64, with hsCRP 48.88 mg/L −0.874 0.275 10.119 −1.412 −0.335 0.4174 0.2437 0.7151 0.001

Insulin Modulation of odds by the lack of insulin administration,
at age 64 and hsCRP 48.88 mg/L −1.152 0.355 10.554 −1.847 −0.457 0.3160 0.1577 0.6332 0.001

hsCRP (centered
at 48.88)

Change in odds upon each subsequent 1-unit increase
in hsCRP −0.001 0.002 0.079 −0.005 0.004 0.9993 0.9946 1.0041 0.779

Age (centered at 64) Change in odds upon each subsequent 1-year increase
in age 0.003 0.019 0.031 −0.033 0.040 1.0033 0.9675 1.0404 0.861

Insulin*hsCRP
Fold difference in how the lack of administration with

insulin would change the odds of death, upon each
subsequent 1-unit increase in hsCRP

0.007 0.003 5.720 0.001 0.012 1.0068 1.0012 1.0124 0.017

Insulin*Age
Fold difference in how the lack of administration with

insulin would change the odds of death, upon each
subsequent 1-year increase in age

0.056 0.023 5.706 0.010 0.102 1.0574 1.0101 1.1069 0.017

‡ hsCRP*Age Fold change in how age and hsCRP modulated each
other in changing the odds of death 0.00031 0.00024 1.605 −0.00017 0.00079 1.0003 0.9998 1.0008 0.205

‡ Insulin*hsCRP*Age
Fold change in how hsCRP and hsCRP modulated the
impact of each other on changing the impact of insulin

on the odds of death
−0.00040 0.00029 1.978 −0.00096 0.00016 0.9996 0.9990 1.0002 0.160

‘X*Y’ terms denote interactions between variables (effects). ‡ denotes interactions that were explored upon the addition of both of them to the model. p-values lower than 0.05 and their
corresponding ORs are marked in bold. Abbreviations: CI, confidence interval; hsCRP, high-sensitivity C-reactive protein; SE, standard error.
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Let us further assume that the baseline individuals were not administered with insulin.
Based on the model (Table 3), this stratum would show approximately 3.16-fold higher odds
of death if insulin were administered (p ≈ 0.001). This occurrence stemmed from different
baseline odds of death depending on insulin administration (0.4174 if administered vs.
0.1319 if not). However, as both age and hsCRP modulated these odds only in individuals
not administered with insulin (Figure 5A,B), there are age and hsCRP-related characteristics
(Figure 5D,F) that would not only render the odds in this group higher than the 0.4174 (the
baseline odds for patients administered with insulin), but also make death more probable
than survival (odds > 1) among this sole group (e.g., not administered with insulin), as
shown in Figure 5C,E.
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Figure 5. The three-way modulation of the odds of death by insulin, age and inflammation
(high-sensitivity CRP—hsCRP). Plots (A,B) show how age (A) or hsCRP (B) change the odds of
death depending on the administration of insulin. Plot (C) shows how age and hsCRP, together,
change the odds of death among individuals not administered with insulin. Plot (D) presents the
not administered/administered (with insulin) OR depending on both age and hsCRP. Plots (E,F) are
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heatmaps created from plots (C,D), showing when the probability of death is higher than the
probability of survival (odds > 1 shown in black plot (E)) or when the individuals not administered
with insulin are of the higher odds of death compared to individuals who were administered with
insulin (OR > 1 shown in black, plot (F)).

3.6. Significant Contrasts. Part 3: The Association between Death and LMWH Treatment Differed
Depending on Age

The baseline individual referred to in this subsection was assumed to be 64 years
old (Table 4). According to the model, such a patient would most probably survive
(odds < 1), posing odds of death approximately 0.131 under no LMWH treatment or
approximately 0.286 if LMWH was administered (OR ≈ 0.456, p ≈ 0.022). As age, per se,
would significantly alter the odds of death only among individuals administered with
LMWH (5.5% increase of the odds with each one-year increase in age), the administered/not
administered OR of death would be increasing by 6.1% with every one-year age increase
above 64 years old (p ≈ 0.019), as shown in Figure 6.

Table 4. Insights from a model aimed to assess the modulation of the association of LMWH treatment
with the odds of death among COVID-19-positive diabetic patients by age.

A. Reference Group: No LMWH Administration, Aged 64

Effect/Interaction Description of the
Analyzed Effect/Interaction β β SE Wald

Stat.
β −95%

CI
β 95%

CI
Est. Effect/
Interaction

Est. Effect/
Interaction
−95% CI

Est. Effect/
Interaction

95% CI
p

Intercept
Odds of death for a patient

not administered with
LMWH, aged 64

−2.036 0.293 48.338 −2.610 −1.462 0.131 0.074 0.232 <0.001

LMWH
Modulation of odds by

LMWH administration, at
age 64

0.785 0.343 5.235 0.113 1.457 2.192 1.119 4.295 0.022

Age (centered
at 64)

Change in odds upon each
subsequent 1-year increase

in age
−0.006 0.022 0.073 −0.048 0.037 0.994 0.953 1.037 0.788

LMWH*Age

Fold difference in how
administration with LMWH
would change the odds of

death, upon each
subsequent 1-year increase

in age

0.059 0.025 5.472 0.010 0.109 1.061 1.010 1.115 0.019

B. Reference Group: LMWH Administration, Aged 64

Effect/Interaction Description of the
Analyzed Effect/Interaction β β SE Wald

Stat.
β −95%

CI
β 95%

CI
Est. Effect/
Interaction

Est. Effect/
Interaction
−95% CI

Est. Effect/
Interaction

95% CI
p

Intercept
Odds of death for a patient
administered with LMWH,

aged 64
−1.251 0.179 49.031 −1.602 −0.901 0.286 0.202 0.406 <0.001

LMWH
Modulation of odds by the

lack of LMWH
administration, at age 64

−0.785 0.343 5.235 −1.457 −0.113 0.456 0.233 0.894 0.022

Age (centered
at 64)

Change in odds upon each
subsequent 1-year increase

in age
0.053 0.013 16.461 0.028 0.079 1.055 1.028 1.083 <0.001

LMWH*Age

Fold difference in how the
lack of administration with
LMWH would change the
odds of death, upon each

subsequent 1-year increase
in age

−0.059 0.025 5.472 −0.109 −0.010 0.942 0.897 0.990 0.019

‘X*Y’ terms denote interactions between variables (effects). Values of the ‘Age’ variable were centered at 60 years
of age. p-values lower than 0.05 are marked in bold. Abbreviations: CI, confidence interval; SE, standard error;
LMWH, low-molecular-weight heparin.
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4. Discussion

COVID-19, as many other inflammation-driving diseases/syndromes, induces the
excessive production of inflammatory cytokines (‘cytokine storm’) leading to activation of
CD4- and CD8-positive lymphocytes. This dysregulation leads to development of various
aforementioned comorbidities, often leading to increased mortality [4,21]. In this study,
non-survivors were characterized by male sex; higher age; the following traits upon their
admission: SpO2 ≤ 94%, undergoing oxygen therapy (in many cases due to the severity
of the disease) and hemorrhage; and the following traits associated with their medical
history: heart failure, heart infarction and chronic kidney disease. These findings were in
line with the literature, which links higher mortality in patients suffering from COVID-19
and T2DM with male sex [22] heart failure, chronic kidney disease [23], hyperglycemia
(poor diabetic control) [24], lower oxygen saturation [25] or heart infarction in the past [26].
Another study lists cardiovascular diseases (such as coronary artery disease) and stroke
as other death-promoting factors [27]. Moreover, one of the aforementioned studies [21]
also showed that death during hospitalization was more frequent among the patients who
had developed the following during the hospitalization: hypovolemic shock, cardiogenic
shock, heart infarction, sepsis, chronic obstructive pulmonary disease (COPD) or other
inflammatory pulmonary syndromes [22]. However, to our knowledge, the literature
does not sufficiently cover the topic of risk modeling in these patients (COVID-19 and
T2DM), as it focuses on analyzing the effects of different factors on mortality with use of the
models. Albeit the models correct the estimated values (odds, risk etc.) for characteristics
such as sex, age and comorbidity, they do not utilize nor enable exploring the interactions
between these factors, let alone exploring the interactions between the drugs administered
during the hospitalization. An example of such a study carried out on the COVID-19- and
T2DM-positive stratum [28] showed that COPD increased the odds of death. However,
this effect was not further explored. In this situation, one would be left to their own
interpretation, not knowing whether the COPD-associated increase in mortality would
be further modulated by any comorbidity, requiring the use of a different set of patient
characteristics depending on these comorbidities. Explorative interaction analysis could
prove an answer to this question, possibly revealing the population strata that does not
show an association between COPD and higher mortality. This and similar musings led to
the conceptualization of our preliminary study [29–32].

The aim of this study was dichotomic. Univariate analysis and multivariate AI-assisted
extraction of the key factors associated with the odds of death in the COVID-19- and T2DM-
positive patient stratum acted as a prelude to exploring whether the pro-fatal effect of
antidiabetic and anti-viral drugs administered during hospitalization was affected by any
patient-specific characteristic upon admission.
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Nearly all of the available parameters were associated with the odds of death based on
univariate (not adjusted by any other variables) logistic regression analysis. The analysis
revealed that older age and male sex (unsurprisingly) were positive factors for estimating
mortality odds. Having an oxygen saturation under the physiological values (95%–100%),
likewise, was positively associated with a fatal outcome. LMWH and acetylsalicylic acid
were iatrogenic factors promoting in-hospital death. Moreover, among the laboratory
parameters, hsCRP, K, creatinine, urea and RDW-SD were positive indicators of higher
odds of death. While it is logical that the inflammation- and diuresis- related parameters
would be associated with higher severity of the disease [29–31], the anisocytosis parameter
(RDW-SD) may not be a first-pick candidate for a poor outcome predictor. In clinical
practice, RDW is a predictor of outcome in critically ill and septic patients (an increase in
RDW is caused by an increase in the number of old red blood cells, which have a lower
volume). Several meta-analyses have demonstrated the association between RDW and the
risk of mortality in patients with COVID-19 [33] and proved the important role of RDW
in predicting prognosis [34]. RDW-SD has also been shown to be a strong independent
predictor of infection severity and death in COVID-19 patients: an RDW-SD ≤ 43 showed no
risk of death, while RDW-SD > 47 indicated severe disease and a high risk of mortality [35].
If the RDW-SD value would fall in the range of 43 < RDW-SD ≤ 47, the course of the
disease would be severe, but the risk of death was low. Therefore, it seems likely that
determining the value of RDW may prove important in undertaking early intervention to
reduce mortality in COVID-19 patients, especially in the case of limited resources. However,
so far, the role of RDW has not been previously demonstrated in patients with COVID-19
and type 2 diabetes. Therefore, univariate logistic regression analysis showed that age,
male sex and RDW-SD are positive factors in estimating the odds of death. Moreover,
RDW-SD is a strong independent predictor of infection severity and death in COVID-19
patients. An RDW-SD value > 47 indicated severe disease and a high risk of death.

It should be emphasized that during the first (univariate) step of our analysis, insulin
and metformin administration were revealed to be insignificant in terms of mortality odds
modulation. While this does not necessarily mean that insulin and metformin play no role
in such predictions (as will be shown later in the discussion), it could be rightfully pointed
out that insulin and metformin could not be used, on their own, in the process of estimating
the risk of death in these patients.

In the next step of the analysis (deriving a multivariate model, Figure 3), the factors
that were used in the previous step were all included in the initial pool of candidates for
predictors of death. Subsequently, they were discarded one by one in a stepwise manner
based on how much information they brought to the classifying (death/survival) model. As
the pool of rejected factors began to increase, all of these variables were re-checked whether
they should be again included in the model classifying mortality status. The multivariate
model derived in the process enables estimation of the odds of death based on five factors:
LMWH treatment, age, RDW-SD, sex and K. Calculating the odds of death of a patient
admitted to the ward could be performed by multiplying the baseline odds (denoted by the
intercept) based on the aforementioned characteristics. The value of the intercept and OR
associated with sex show that survival would be the most frequent outcome (odds << 1) in
a typical patient (described in the figure description) suffering from both COVID-19 and
diabetes, regardless of sex (women: odds = 0.009, men: odds = 0.009 · 2.798 ≈ 0.025). Had
two patients of the same outcome been compared, each one-year gap between them would
render the older patient 6.9% (odds = 1.069) more likely to die during the hospitalization.
Each increase in potassium (by 1 mmol/L) and RDW-SD (by 15%) would, likewise promote
death (by 98% and 87.7%, respectively). The association of these factors with death may
be explained with cellular damage due to oxidative stress caused by inflammation. While,
in this state, K would be simply liberated from the cells, the RDW-SD increase would be
associated with the increase in anisocytosis in the state of constant/transient anemia—
not only caused by their lysis per se but also correlated with kidney damage due to the
lack of erythropoietin secretion. An over 10-fold increase in the odds of death upon
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LMWH treatment does not indicate that LMWH promotes death—it should rather hint
that the decision of its administration was made in case of patients of higher disease
severity emerging from possible increase of D-dimers, which account for the increased
fibrinolysis. The mentioned D-dimers have been posed as mortality predictors in COVID-19
patients [36]. Moreover, increase plasmatic concentration of D-dimers among T2DM
patients was shown to be associated with increased risk of cardiovascular disease events,
regardless of conventional risk factors or the treatment-wise factors [36]. However, to
our knowledge, D-dimers have not been proven (due to not having been studied) to
pose as direct predictors of death in patients with T2DM nor patients with both T2DM
and COVID-19. The last observation, already used while analyzing the baseline odds, is
that men were of markedly higher odds of dying (in this model, OR = 2.798). While, as
mentioned before, the odds in both sexes would be favoring survival in typical patients
(64-year-old, 45.78% RDW-SD, 4.10 mmol/L K, no LMWH treatment), this sex-related
difference would, epidemiologically, play an important role among the patients of higher
age and disease severity. While this risk assessment model needs to undergo validation
and comparison to different models in future studies to be taken more seriously, one
is certain that the multivariate models, likewise to univariate, provide a hint that the
administration of insulin and metformin is not a factor informative enough to be used in risk
assessment of the entire COVID-19- and T2DM-positive population. Potential possibilities
stemming from this information were revealed upon the last part of the analysis. The
developed multivariate model allowed for the estimation of the chance of death based
on LMWH treatment, age, RDW-SD, gender and K. Each increase in the patient’s age by
one year increased the chance of death by 6.9%, each increase in potassium concentration
by 1 mmol/L increased the chance of death by 98% and an increase in RDW-SD by 15%
increased the chance of death by 87%, which was caused by cell damage by oxidative stress.
LMWH was used in patients with advanced COVID-19, in whom an increase in D-dimer
levels (increased fibrinolysis) was observed. The 10-fold increase in the risk of death after
LMWH treatment was not due to the treatment itself, but to the stage of advancement of
COVID-19. The association of gender with a higher risk of death concerned older patients
with advanced disease. There was no gender effect observed for younger patients, aged 64.

The last part of the analysis explored the interactions between the variables (factors)
in terms of changing the odds of death. What makes these interactions different to the
convention used in the previous part of the study is that they explore whether any pair
of factors (patient characteristics) has a multiplicative effect on the modulation of the
odds of death by the third factor—a drug used during the hospitalization. LMWH and
remdesivir were independent on each other in how they modulated the effect of metformin
on the odds of death. Conversely, age and hsCRP interacted with each other, having a
multiplicative effect on the difference in the odds of mortality between individuals who
took insulin vs. the ones who did not. In the first observed interaction, remdesivir and
LMWH treatments showed different patterns in affecting the odds of death, between
patients administered with metformin and those under no such treatment. Upon analyzing
the odds of death (N deaths/N survivals, Figure 4) it could be observed that the odds
of death were different upon administration of remdesivir and LMWH, depending on
whether the patient was under treatment with metformin. While metformin-administered
patients showed an increasing pattern in the odds of death (LMWH and remdesivir >
LMWH only > remdesivir only > neither LMWH nor remdesivir), such a pattern was
not observed among the patients under no metformin treatment. One may argue about
the novelty of this observation due to the fact that the treatment with remdesivir and
LMWH blatantly shows the severity of the disease, thus implicating higher odds of death.
However, to our knowledge, our study is the first one to show that this rationale was not
universal for all of the COVID-19 T2DM patients. To gather more precise information
on the odds of in-hospital death, before risk modeling, the entire population may need
to be stratified in regards to metformin treatment and, perhaps, treatment with other
antidiabetic agents as well. Another observation from this study was that metformin
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intake was associated with higher odds of death (0.20 vs. 0.10, Figure 4) compared to no
intake among patients under no LMWH and remdesivir treatment. There is no possible
way to discuss this matter referring to the literature since other studies did not report
the odds of death in the same context as our study (three-way interaction). First and
foremost, it is stated that metformin has both in vivo and in vitro effects on SARS-CoV-2,
letting one assume there might be possibly different outcomes (and sets of its predictors)
depending on metformin treatment [32]. Some studies on COVID-19 patients indicate lower
likelihood of death upon metformin treatment [37–39]. However, DeFronzo et al. reported
a lack of this association, but observed a markedly lower likelihood of heart failure among
patients administered with metformin [38,40–42]. Analyzing interactions with inhibitors
of dipeptydylpeptidase 4 (DPP-4i) may be a good choice for future analyses similar to
ours, since this agent appears to have both direct and indirect effects on SARS-CoV-2
infection. DPP-4i, being a gliptin [41] drug representative, owing to its anti-inflammatory
action, could be hypothesized to indirectly (through lowering the CRP concentration)
affect the severity of COVID-19 [38]. Another hypothesized indirect action of DPP-4i
is combating the ‘cytokine storm’ through inhibiting the activation of TLR4 in the lung
alveoli [5]. As SARS-CoV-2 binds with these receptors, DPP-4i could help combat the
pulmonary ‘cytokine storm’, leading to a decrease in lung injuries and collateral damage
to other organs that could induce the state of multi-organ failure over the duration of
COVID-19 [11,43]. Moreover, DPP-4i acts as a receptor for the SARS-CoV-2 [13]; likewise,
the drug binds with MERS-CoV [44]. This occurrence could have been associated with
the observation of a lower concentration of soluble (in serum/plasma) DPP-4i among the
diabetic COVID-19 patients [45]. So far, the idea behind using DPP-4i as a predictor of
death/severity of the disease in the mentioned population could not be taken for granted
due to the inconsistencies in the literature [46–49]. Likewise, remdesivir treatment had
positive effects on the clinical improvement associated with the reduced risk of severe acute
respiratory distress syndrome in need of intubation but it seemed not to affect mortality
among COVID-19 patients [50]. In the presented publication, the analysis of interactions
between variables (factors) in terms of the change in the probability of death showed that
LMWH and remdesivir independently modulated the effect of metformin on the risk of
death, while age and hsCRP interacted in their effect on the difference in the risk of death
between people taking insulin and those not taking it. Metformin increased the risk of death
the most in the group of people taking both LMWH and remdesivir. This observation was
not demonstrated in the same group of people who did not take metformin. Additionally,
age and hsCRP modulated the chance of death only in people who did not receive insulin.

However, DPP-4i could take part in interactions on which the information is scarce.
Significant interaction of insulin with hsCRP and age hinted at different modulation of the
odds of death by insulin, depending on these two other variables. This occurrence was due
to fact that age and hsCRP did not significantly change the odds of death among patients
administered with insulin (Table 3, Figure 5A,B), while the patients not administered with
it showed a positive association between these odds and either hsCRP or age (Table 3,
Figure 5A–C). This insulin-related difference between patients deepened the difference in
odds between them when given more advanced age and/or higher hsCRP (Figure 5D,F).
However, there is no universal answer to whether any of these groups would be more
prone to showing a fatal outcome—it all is a matter of age and hsCRP (Figure 5F). Moreover,
upon reaching a specific threshold of age and hsCRP, the odds would become of favor
of death (e.g., more patients would die compared to the count of survivors) among the
patients not administered with insulin. This interaction is not as complex as it could be,
since age and hsCRP, although both simultaneously affecting the odds of death, had an
isolated effect on it—hsCRP and age did not modulate the effect of each other on the odds
(‘hsCRP*Age’ in Table 3) regardless of administration with insulin (‘Insulin*hsCRP*Age’ in
Table 3). The cause of such a phenomenon, not discussed or mentioned in other studies,
remains a mystery until validated and further analyzed on a bigger population, with
possibly more factors brought into the model. A study [12] showed insulin treatment to
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be positively associated with the likelihood of death. However, the said study did not
explore the possible effect of age on the insulin–mortality association. Perhaps a future
model could employ both insulin–age and metformin–remdesivir–LMWH interactions.
Hopefully, new research would investigate this matter on bigger retrospective data and/or
a diabetic population not suffering from COVID-19 (assuming no COVID-19 outbreak in
the future).

The third interaction was featured in this manuscript since it is associated with LMWH
treatment, which is featured in both the multivariate model (Figure 3) and the aforemen-
tioned interaction (Figure 4). If one was to divide patients in the context of LMWH
administration, the individuals under no such treatment would show constant odds of
death equal to 0.202 regardless of age, meaning that the number of deceased patients would
constitute about 1/5 of the survivors. Patients under LMWH treatment showed an increase
in the odds with age, reaching the threshold which favors death at the age of approximately
85 years (odds > 1, thus N deaths > N survivors).

Before concluding the findings, study limitations need to be introduced. The first
limitation comes from the rather low sample size (Figure 1). It should be emphasized that
the data of all hospitalized T2DM patients from the Temporary COVID Hospital were
employed for carrying out this study. Thus, we assumed the data to be randomly collected
(in spite of the sample size), since all patients participated in the process. However, low
sample size restricted us to study only up to two-way interactions and forming three-way
interactions to be analyzed so as to avoid redundancy. Moreover, all of the observed
interactions were not added to the multivariate model (Figure 3), having in mind that such
a model would be highly prone to overfitting, thus would be biased with an increased
false discovery rate. The sample size for such a model would need to be more than 1000
individuals (50–100 for every variable/interaction in the model), which exceeded the
possibilities of our cooperation with this one hospital. The lack of comorbidities (seen in
Table 1) in the initial set of variables was intentional so as to remove factors that could be
so strongly associated with mortality that they would render other factors too weak to be
spotted upon being analyzed in a population sample of such size. This choice was made
upon assessing the comorbidity-associated frequencies and their statistics in regards to
mortality (Table 1). Moreover, some patient features that could have had an impact on the
observed were not registered upon creating this database in the times of COVID-19 onset.
These features include BMI, diabetes duration, glycemic control, overall frailty, the stage
of T2DM, and the severity of COVID-19. Since the decision on treatment with LMWH
and remdesivir was made upon the admission of the study participants, there was no
need for adjusting the models based on length of treatment with these agents. Our future
study plans to gather the information from the patients regarding whether the treatment
strategy for them changed after ending the hospitalization in the Temporary COVID-19
Hospital. Moreover, information on the post-hospitalization mortality in these individuals
will be based on analyzing the national registry. Lastly, some may argue that the study
shows neither goodness-of-fit metrics nor the classification quality of the model. While
showing these properties of the model would be vital in a study that strived to determine
the best death likelihood assessment model, our study focused on analyzing the models
and interactions related to treatment. We explored the factors that may not even modulate
the odds of risk per se, without their interactions with other patient characteristics (in this
study: age, hsCRP and treatment with remdesivir or LMWH). Having these drawbacks in
mind, we would like to encourage the readers to view this study as preliminary.

The insights from this study unfold to be rather peculiar, bringing some skepticism
in the case of analyzing mortality risk with models based solely on logistic regression or
(presumably) other regression methods. This study hints at possible caveats that could
be encountered by simply using multivariate models without previously investigating
whether the patterns of mortality changes associated with the predictors were affected by
treatment. In this study, although insulin and/or metformin were not informative enough
to be included in the multivariate assessment of the likelihood of death, the information
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about their administration revealed a contrast in how remdesivir and LMWH (in the case of
metformin) compared to hsCRP and age (in the case of insulin) affected the odds of death in
hospitalized T2DM patients suffering from COVID-19. Moreover, the association of LMWH
treatment (one of the predictors in the multivariate model) with death was shown to be
dependent on age. These observations not only show an importance of taking treatment
into account when assessing death likelihood in the specific COVID-19 T2DM population,
but hopefully may prove as grounds for future research into mortality modeling among
T2DM patients. Although society has liberated itself from the grasp of the COVID-19
pandemic, the deleterious impact of the SARS-CoV-2 infection may come with time in the
form of newly studied post-COVID syndrome, leading to a sheer increase in the frequency
of various comorbidities. If this time were to come, the analysis of interactions stemming
from varying intakes of drugs may pose as a key to successful risk assessment, possibly
saving thousands of lives and broadening our knowledge of other threats yet to come. In
the further part of this research, we plan to analyze the mortality of patients included in
the presented study in the second follow-up (after two years). We will also examine levels
of early markers of kidney damage, neurological disorders and intravascular damage in
patients who have had symptomatic COVID-19.

5. Conclusions

In a multivariate model, along with other multivariate-adjusted significant features
(LMWH treatment, age, sex, K concentration), RDW-SD was associated with mortality
among the patients suffering from COVID-19 and type 2 diabetes. For every 15% increase
in RDW-SD, the odds of death increased by 87.7%.

Stratification by insulin administration revealed that age and hsCRP increased the
odds of death exclusively among the patients who were not administered with insulin.
Metformin intake was positively associated with death among those of low age and low
hsCRP. Upon increase in both age and/or hsCRP above the threshold (mapped in Figure 5F),
metformin intake started to be negatively associated with death. The impact of this effect
kept rising with age and hsCRP.

Administration of remdesivir and/or LMWH changed the association between met-
formin and the odds of death from positive (if neither remdesivir nor LMWH were admin-
istered) to negative (if any of these drugs was administered). Moreover, remdesivir and
LMWH had an additive effect on the magnitude of the pro-survival impact of metformin
intake among the patients.

The association between LMWH administration and the odds of death changed from
negative to positive with the increase in age.

The above findings ought to be taken with a pinch of salt until they have been val-
idated with more sophisticated models (with these and other interactions), in a bigger
population sample. Future research will, likewise, need to test these associations in a
diabetic population not suffering from COVID-19.

Although metformin and insulin may not, per se, act as universal indicators of death
in diabetic patients with COVID-19, their role could vary within the higher personalization
of the risk assessment model (through adding and exploring their interactions with various
patient characteristics). Such a practice, when utilized in large models, could provide
a definite answer, cutting down the discussion of whether these agents are associated
with death, when facing corroborating results from the literature. This conclusion applies
regardless of whether the diabetic patients would be suffering from COVID-19 or not, since
the studies into metformin and insulin in context of mortality lack the exploration of their
interactions.
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Appendix A

Table A1. Results from the univariate analysis of the associations of the selected effects (variables) on
the odds of death among COVID-19 patients suffering from type 2 diabetes.

Effect Analyzed
Cat.

Reference
Cat. OR OR

−95% CI
OR

95% CI p

SpO2 ≤ 94 on
room air Yes No 1.982 1.006 3.906 0.048

Sex Male Female 1.771 1.126 2.785 0.013

Insulin Yes No 1.364 0.832 2.236 0.219

Metformin Yes No 0.716 0.459 1.115 0.139

LMWH Yes No 3.506 1.972 6.234 <0.001

Acetylsalicylic
acid Yes No 1.703 1.076 2.696 0.023

Convalescent
plasma Yes No 1.618 0.878 2.981 0.123

Remdesivir Yes No 1.209 0.659 2.216 0.540

Age - - 1.038 1.017 1.060 <0.001

hsCRP - - 1.004 1.002 1.006 0.001

Na - - 1.026 0.988 1.066 0.184

K - - 1.886 1.399 2.543 <0.001

log1.15(RDW-SD) - - 1.538 1.235 1.915 <0.001

log2(Creatinine) - - 1.537 1.197 1.974 0.001

log2(Urea) - - 1.877 1.444 2.439 <0.001
Abbreviations: CI, confidence interval; OR, odds ratio. The visualization of this table (without the p-values) is
given in Figure 2.
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Table A2. The process of derivation of the multivariate model through stepwise elimination (cut-off
p = 0.05).

Step Effect Wald Statistic Wald Test p Score Statistic Score Test p Effect Status

1

SpO2 ≤ 94 on room air 0.280 0.597 In the model

Sex 5.731 0.017 In the model

Insulin 0.550 0.458 In the model

Metformin <0.001 0.986 Excluded in this step

LMWH 15.447 <0.001 In the model

Acetylsalicylic acid 0.609 0.435 In the model

Convalescent plasma 0.153 0.695 In the model

Remdesivir 0.188 0.665 In the model

Age 9.492 0.002 In the model

hsCRP 1.822 0.177 In the model

K 4.818 0.028 In the model

log2(RDW-SD) 8.273 0.004 In the model

log2(Creatinine) 0.426 0.514 In the model

2

SpO2 ≤ 94 on room air 0.282 0.596 In the model

Sex 5.816 0.016 In the model

Insulin 0.556 0.456 In the model

log2(Creatinine) 0.433 0.511 In the model

LMWH 15.510 <0.001 In the model

Acetylsalicylic acid 0.610 0.435 In the model

Convalescent plasma 0.154 0.695 Excluded in this step

Remdesivir 0.188 0.664 In the model

Age 9.684 0.002 In the model

hsCRP 1.859 0.173 In the model

K 4.817 0.028 In the model

log2(RDW-SD) 8.299 0.004 In the model

Metformin 0.000 0.986 Excluded in the
previous step(s)

3

SpO2 ≤ 94 on room air 0.242 0.623 Excluded in this step

Sex 5.731 0.017 In the model

Insulin 0.483 0.487 In the model

log2(Creatinine) 0.375 0.540 In the model

LMWH 15.773 <0.001 In the model

Acetylsalicylic acid 0.545 0.460 In the model

log2(RDW-SD) 8.199 0.004 In the model

Remdesivir 0.248 0.618 In the model

Age 9.718 0.002 In the model

hsCRP 1.924 0.165 In the model

K 5.701 0.017 In the model
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Table A2. Cont.

Step Effect Wald Statistic Wald Test p Score Statistic Score Test p Effect Status

3
Convalescent plasma 0.154 0.695 Excluded in the

previous step(s)

Metformin 0.001 0.981 Excluded in the
previous step(s)

4

K 5.537 0.019 In the model

Sex 5.628 0.018 In the model

Insulin 0.602 0.438 In the model

log2(Creatinine) 0.314 0.575 In the model

LMWH 15.516 <0.001 In the model

Acetylsalicylic acid 0.464 0.496 In the model

log2(RDW-SD) 8.024 0.005 In the model

Remdesivir 0.230 0.631 Excluded in this step

Age 9.803 0.002 In the model

hsCRP 1.686 0.194 In the model

SpO2 ≤ 94 on room air 0.242 0.622 Excluded in the
previous step(s)

Convalescent plasma 0.113 0.736 Excluded in the
previous step(s)

Metformin 0.002 0.961 Excluded in the
previous step(s)

5

K 5.740 0.017 In the model

Sex 5.535 0.019 In the model

Insulin 0.668 0.414 In the model

log2(Creatinine) 0.299 0.584 Excluded in this step

LMWH 15.916 <0.001 In the model

Acetylsalicylic acid 0.566 0.452 In the model

log2(RDW-SD) 7.903 0.005 In the model

hsCRP 1.750 0.186 In the model

Age 9.697 0.002 In the model

Remdesivir 0.231 0.631 Excluded in the
previous step(s)

SpO2 ≤ 94 on room air 0.225 0.635 Excluded in the
previous step(s)

Convalescent plasma 0.167 0.683 Excluded in the
previous step(s)

Metformin 0.003 0.957 Excluded in the
previous step(s)
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Table A2. Cont.

Step Effect Wald Statistic Wald Test p Score Statistic Score Test p Effect Status

6

K 7.608 0.006 In the model

Sex 6.115 0.013 In the model

Insulin 0.745 0.388 In the model

Age 10.004 0.002 In the model

LMWH 15.954 <0.001 In the model

Acetylsalicylic acid 0.513 0.474 Excluded in this step

log2(RDW-SD) 8.569 0.003 In the model

hsCRP 1.815 0.178 In the model

log2(Creatinine) 0.300 0.584 Excluded in the
previous step(s)

Remdesivir 0.215 0.643 Excluded in the
previous step(s)

SpO2 ≤ 94 on room air 0.170 0.680 Excluded in the
previous step(s)

Convalescent plasma 0.114 0.736 Excluded in the
previous step(s)

Metformin 0.001 0.972 Excluded in the
previous step(s)

7

K 7.387 0.007 In the model

Sex 5.872 0.015 In the model

Insulin 0.459 0.498 Excluded in this step

Age 9.772 0.002 In the model

LMWH 15.713 <0.001 In the model

hsCRP 1.937 0.164 In the model

log2(RDW-SD) 8.993 0.003 In the model

Acetylsalicylic acid 0.515 0.473 Excluded in the
previous step(s)

log2(Creatinine) 0.244 0.621 Excluded in the
previous step(s)

Remdesivir 0.315 0.575 Excluded in the
previous step(s)

SpO2 ≤ 94 on room air 0.104 0.747 Excluded in the
previous step(s)

Convalescent plasma 0.080 0.777 Excluded in the
previous step(s)

Metformin 0.007 0.934 Excluded in the
previous step(s)

8

K 8.559 0.003 In the model

Sex 5.788 0.016 In the model

log2(RDW-SD) 8.793 0.003 In the model

Age 9.999 0.002 In the model

LMWH 15.825 <0.001 In the model

hsCRP 2.036 0.154 Excluded in this step



Biomedicines 2024, 12, 605 23 of 28

Table A2. Cont.

Step Effect Wald Statistic Wald Test p Score Statistic Score Test p Effect Status

8

Insulin 0.461 0.497 Excluded in the
previous step(s)

Acetylsalicylic acid 0.235 0.628 Excluded in the
previous step(s)

log2(Creatinine) 0.317 0.573 Excluded in the
previous step(s)

Remdesivir 0.347 0.556 Excluded in the
previous step(s)

SpO2 ≤ 94 on room air 0.184 0.668 Excluded in the
previous step(s)

Convalescent plasma 0.031 0.859 Excluded in the
previous step(s)

Metformin 0.024 0.878 Excluded in the
previous step(s)

9

K 7.739 0.005 In the model

Sex 6.134 0.013 In the model

log2(RDW-SD) 9.450 0.002 In the model

Age 9.779 0.002 In the model

LMWH 16.552 <0.001 In the model

hsCRP 2.070 0.150 Excluded in the
previous step(s)

Insulin 0.556 0.456 Excluded in the
previous step(s)

Acetylsalicylic acid 0.288 0.592 Excluded in the
previous step(s)

log2(Creatinine) 0.385 0.535 Excluded in the
previous step(s)

Remdesivir 0.442 0.506 Excluded in the
previous step(s)

SpO2 ≤ 94 on room air 0.001 0.970 Excluded in the
previous step(s)

Convalescent plasma 0.095 0.758 Excluded in the
previous step(s)

Metformin 0.171 0.679 Excluded in the
previous step(s)

The Wald test was utilized in assessing the value of the factors to be included in the
model. The score test (Lagrange multiplier test) was used to check if, at any step, the
previously excluded factors should be re-included into the current model. The final model
is described in Table 2 and visualized in Figure 3.
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Table A3. A list of all possible second-degree (two-way) interactions composed of the selected
variables (effects, featured in Tables A1 and A2, inter alia) in context of their significance (compared
to the naïve model—LR type 1 test) in modulating the odds of death among COVID-19-positive
individuals suffering from type 2 diabetes.

Effect 1 Effect 2 χ2 p (LR Test)

Metformin Remdesivir 10.257 0.0014

LMWH Metformin 5.6121 0.0178

hsCRP Insulin 5.3447 0.0208

LMWH Age 5.2361 0.0221

Age Insulin 4.368 0.0366

K Remdesivir 3.9539 0.0468

log2(Creatinine) Insulin 3.8179 0.0507

LMWH Insulin 3.743 0.053

Convalescent plasma Metformin 3.7268 0.0535

K SpO2 ≤ 94 on room air 3.7061 0.0542

hsCRP SpO2 ≤ 94 on room air 3.037 0.0814

log2(RDW-SD) Age 2.9078 0.0882

Metformin Insulin 2.796 0.0945

Sex Remdesivir 2.7621 0.0965

log2(Creatinine) Metformin 2.7294 0.0985

LMWH log2(Creatinine) 2.7034 0.1001

log2(Urea) Remdesivir 2.6518 0.1034

K hsCRP 2.3899 0.1221

LMWH K 2.1219 0.1452

Acetylsalicylic acid Metformin 2.0447 0.1527

hsCRP Metformin 2.0331 0.1539

K log2(Urea) 1.9158 0.1663

log2(RDW-SD) hsCRP 1.9001 0.1681

K Metformin 1.5692 0.2103

log2(RDW-SD) SpO2 ≤ 94 on room air 1.5311 0.2159

LMWH Remdesivir 1.5194 0.2177

Age Metformin 1.4653 0.2261

Acetylsalicylic acid Insulin 1.4478 0.2289

K Acetylsalicylic acid 1.4253 0.2325

log2(Urea) log2(RDW-SD) 1.3581 0.2439

log2(RDW-SD) Metformin 1.1828 0.2768

LMWH Acetylsalicylic acid 1.1417 0.2853

log2(Creatinine) Remdesivir 1.1405 0.2856

log2(Urea) Metformin 0.9777 0.3228

log2(RDW-SD) Sex 0.9316 0.3344

Age Convalescent plasma 0.9268 0.3357

LMWH SpO2 ≤ 94 on room air 0.8762 0.3493
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Table A3. Cont.

Effect 1 Effect 2 χ2 p (LR Test)

hsCRP Convalescent plasma 0.8687 0.3513

hsCRP Remdesivir 0.8583 0.3542

Acetylsalicylic acid Remdesivir 0.8463 0.3576

Sex Acetylsalicylic acid 0.8111 0.3678

LMWH hsCRP 0.7506 0.3863

SpO2 ≤ 94 on room air Remdesivir 0.7191 0.3964

log2(Urea) Insulin 0.6931 0.4051

K log2(Creatinine) 0.6634 0.4153

Convalescent plasma Remdesivir 0.5695 0.4504

log2(Creatinine) Convalescent plasma 0.5348 0.4646

Sex Metformin 0.5297 0.4668

Age hsCRP 0.5284 0.4673

log2(Creatinine) Sex 0.5032 0.4781

log2(Creatinine) Acetylsalicylic acid 0.4948 0.4818

Convalescent plasma Insulin 0.4787 0.489

LMWH Sex 0.3969 0.5287

K log2(RDW-SD) 0.367 0.5446

K Insulin 0.3392 0.5603

log2(Creatinine) hsCRP 0.2903 0.59

Age SpO2 ≤ 94 on room air 0.2817 0.5956

log2(RDW-SD) Acetylsalicylic acid 0.258 0.6115

Insulin Remdesivir 0.2404 0.6239

log2(Urea) SpO2 ≤ 94 on room air 0.2237 0.6362

Age Acetylsalicylic acid 0.2162 0.6419

LMWH log2(Urea) 0.2161 0.642

SpO2 ≤ 94 on room air Insulin 0.2128 0.6446

Age Sex 0.2001 0.6547

Sex SpO2 ≤ 94 on room air 0.1967 0.6574

Age log2(Creatinine) 0.1935 0.66

LMWH Convalescent plasma 0.1814 0.6702

log2(Creatinine) SpO2 ≤ 94 on room air 0.1459 0.7025

hsCRP Sex 0.1422 0.7061

log2(Urea) log2(Creatinine) 0.1385 0.7098

log2(RDW-SD) Insulin 0.1155 0.734

SpO2 ≤ 94 on room air Convalescent plasma 0.1132 0.7365

SpO2 ≤ 94 on room air Metformin 0.09 0.7642

log2(Urea) hsCRP 0.0846 0.7711

K Convalescent plasma 0.0605 0.8058

Acetylsalicylic acid Convalescent plasma 0.0507 0.8218

Acetylsalicylic acid SpO2 ≤ 94 on room air 0.0459 0.8303
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Table A3. Cont.

Effect 1 Effect 2 χ2 p (LR Test)

Age Remdesivir 0.0427 0.8363

log2(RDW-SD) Convalescent plasma 0.0339 0.8538

hsCRP Acetylsalicylic acid 0.0254 0.8733

K Sex 0.0216 0.8831

log2(RDW-SD) log2(Creatinine) 0.0209 0.8851

log2(Urea) Acetylsalicylic acid 0.0186 0.8914

log2(RDW-SD) Remdesivir 0.015 0.9026

K Age 0.0086 0.9262

log2(Urea) Sex 0.0066 0.935

Sex Convalescent plasma 0.0041 0.9488

log2(Urea) Age 0.0023 0.9621

Sex Insulin 0.0019 0.9654

LMWH log2(RDW-SD) 0.0016 0.9678

log2(Urea) Convalescent plasma 0.0009 0.9767
Significant findings (p < 0.05) are marked in bold.

References
1. COVID-19 Cases|WHO COVID-19 Dashboard. Available online: https://data.who.int/dashboards/covid19/cases?n=c (accessed

on 10 January 2024).
2. Raman, B.; Bluemke, D.A.; Lüscher, T.F.; Neubauer, S. Long COVID: Post-Acute Sequelae of COVID-19 with a Cardiovascular

Focus. Eur. Heart J. 2022, 43, 1157–1172. [CrossRef] [PubMed]
3. Singh, A.K.; Khunti, K. COVID-19 and Diabetes. Annu. Rev. Med. 2022, 73, 129–147. [CrossRef]
4. Steenblock, C.; Hassanein, M.; Khan, E.G.; Yaman, M.; Kamel, M.; Barbir, M.; Lorke, D.E.; Rock, J.A.; Everett, D.; Bejtullah, S.; et al.

Diabetes and COVID-19: Short- and Long-Term Consequences. Horm. Metab. Res. 2022, 54, 503–509. [CrossRef] [PubMed]
5. Nag, S.; Mandal, S.; Mukherjee, O.; Mukherjee, S.; Kundu, R. DPP-4 Inhibitors as a Savior for COVID-19 Patients with Diabetes.

Future Virol. 2023, 18, 321–333. [CrossRef] [PubMed]
6. Singh, A.K.; Gillies, C.L.; Singh, R.; Singh, A.; Chudasama, Y.; Coles, B.; Seidu, S.; Zaccardi, F.; Davies, M.J.; Khunti, K. Prevalence

of Co-morbidities and Their Association with Mortality in Patients with COVID-19: A Systematic Review and Meta-analysis.
Diabetes Obes. Metab. 2020, 22, 1915–1924. [CrossRef] [PubMed]

7. Barron, E.; Bakhai, C.; Kar, P.; Weaver, A.; Bradley, D.; Ismail, H.; Knighton, P.; Holman, N.; Khunti, K.; Sattar, N.; et al.
Associations of Type 1 and Type 2 Diabetes with COVID-19-Related Mortality in England: A Whole-Population Study. Lancet
Diabetes Endocrinol. 2020, 8, 813–822. [CrossRef]

8. Bode, B.; Garrett, V.; Messler, J.; McFarland, R.; Crowe, J.; Booth, R.; Klonoff, D.C. Glycemic Characteristics and Clinical Outcomes
of COVID-19 Patients Hospitalized in the United States. J. Diabetes Sci. Technol. 2020, 14, 813–821. [CrossRef]

9. Tittel, S.R.; Rosenbauer, J.; Kamrath, C.; Ziegler, J.; Reschke, F.; Hammersen, J.; Mönkemöller, K.; Pappa, A.; Kapellen, T.; Holl, R.W.
Did the COVID-19 Lockdown Affect the Incidence of Pediatric Type 1 Diabetes in Germany? Diabetes Care 2020, 43, e172–e173.
[CrossRef]

10. Holman, N.; Knighton, P.; Kar, P.; O’Keefe, J.; Curley, M.; Weaver, A.; Barron, E.; Bakhai, C.; Khunti, K.; Wareham, N.J.; et al. Risk
Factors for COVID-19-Related Mortality in People with Type 1 and Type 2 Diabetes in England: A Population-Based Cohort
Study. Lancet Diabetes Endocrinol. 2020, 8, 823–833. [CrossRef]

11. Alshnbari, A.; Idris, I. Can Sodium-Glucose Co-Transporter-2 (SGLT-2) Inhibitor Reduce the Risk of Adverse Complications Due
to COVID-19?—Targeting Hyperinflammation. Curr. Med. Res. Opin. 2022, 38, 357–364. [CrossRef]

12. Varghese, E.; Samuel, S.M.; Liskova, A.; Kubatka, P.; Büsselberg, D. Diabetes and Coronavirus (SARS-CoV-2): Molecular
Mechanism of Metformin Intervention and the Scientific Basis of Drug Repurposing. PLoS Pathog. 2021, 17, e1009634. [CrossRef]
[PubMed]

13. Li, Y.; Zhang, Z.; Yang, L.; Lian, X.; Xie, Y.; Li, S.; Xin, S.; Cao, P.; Lu, J. The MERS-CoV Receptor DPP4 as a Candidate Binding
Target of the SARS-CoV-2 Spike. iScience 2020, 23, 101160. [CrossRef] [PubMed]

14. Zelniker, T.A.; Wiviott, S.D.; Raz, I.; Im, K.; Goodrich, E.L.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Furtado, R.H.M.;
et al. SGLT2 Inhibitors for Primary and Secondary Prevention of Cardiovascular and Renal Outcomes in Type 2 Diabetes: A
Systematic Review and Meta-Analysis of Cardiovascular Outcome Trials. Lancet 2019, 393, 31–39. [CrossRef] [PubMed]

https://data.who.int/dashboards/covid19/cases?n=c
https://doi.org/10.1093/eurheartj/ehac031
https://www.ncbi.nlm.nih.gov/pubmed/35176758
https://doi.org/10.1146/annurev-med-042220-011857
https://doi.org/10.1055/a-1878-9566
https://www.ncbi.nlm.nih.gov/pubmed/35724689
https://doi.org/10.2217/fvl-2022-0112
https://www.ncbi.nlm.nih.gov/pubmed/37064327
https://doi.org/10.1111/dom.14124
https://www.ncbi.nlm.nih.gov/pubmed/32573903
https://doi.org/10.1016/S2213-8587(20)30272-2
https://doi.org/10.1177/1932296820924469
https://doi.org/10.2337/dc20-1633
https://doi.org/10.1016/S2213-8587(20)30271-0
https://doi.org/10.1080/03007995.2022.2027141
https://doi.org/10.1371/journal.ppat.1009634
https://www.ncbi.nlm.nih.gov/pubmed/34157054
https://doi.org/10.1016/j.isci.2020.101160
https://www.ncbi.nlm.nih.gov/pubmed/32405622
https://doi.org/10.1016/S0140-6736(18)32590-X
https://www.ncbi.nlm.nih.gov/pubmed/30424892


Biomedicines 2024, 12, 605 27 of 28

15. Carino, A.; Moraca, F.; Fiorillo, B.; Marchianò, S.; Sepe, V.; Biagioli, M.; Finamore, C.; Bozza, S.; Francisci, D.; Distrutti, E.; et al.
Hijacking SARS-CoV-2/ACE2 Receptor Interaction by Natural and Semi-Synthetic Steroidal Agents Acting on Functional Pockets
on the Receptor Binding Domain. Front. Chem. 2020, 8, 572885. [CrossRef] [PubMed]

16. Baggen, J.; Jacquemyn, M.; Persoons, L.; Vanstreels, E.; Pye, V.E.; Wrobel, A.G.; Calvaresi, V.; Martin, S.R.; Roustan, C.; Cronin,
N.B.; et al. TMEM106B Is a Receptor Mediating ACE2-Independent SARS-CoV-2 Cell Entry. Cell 2023, 186, 3427–3442.e22.
[CrossRef] [PubMed]

17. Wang, K.; Chen, W.; Zhang, Z.; Deng, Y.; Lian, J.-Q.; Du, P.; Wei, D.; Zhang, Y.; Sun, X.-X.; Gong, L.; et al. CD147-Spike Protein Is a
Novel Route for SARS-CoV-2 Infection to Host Cells. Signal Transduct. Target. Ther. 2020, 5, 283. [CrossRef] [PubMed]

18. Masre, S.F.; Jufri, N.F.; Ibrahim, F.W.; Abdul Raub, S.H. Classical and Alternative Receptors for SARS-CoV-2 Therapeutic Strategy.
Rev. Med. Virol. 2021, 31, 1–9. [CrossRef] [PubMed]

19. Clinical Management of Severe Acute Respiratory Infection When Novel Coronavirus (nCoV) Infection Is Suspected: Interim
Guidance, 12 January 2020. Available online: https://iris.who.int/handle/10665/332299 (accessed on 5 January 2024).

20. Levey, A.S.; Coresh, J.; Greene, T.; Stevens, L.A.; Zhang, Y.; Hendriksen, S.; Kusek, J.W.; Van Lente, F. Using Standardized Serum
Creatinine Values in the Modification of Diet in Renal Disease Study Equation for Estimating Glomerular Filtration Rate. Ann.
Intern. Med. 2006, 145, 247–254. [CrossRef]

21. Alwani, M.; Yassin, A.; Al-Zoubi, R.M.; Aboumarzouk, O.M.; Nettleship, J.; Kelly, D.; AL-Qudimat, A.R.; Shabsigh, R. Sex-based
Differences in Severity and Mortality in COVID-19. Rev. Med. Virol. 2021, 31, e2223. [CrossRef]

22. Muniyappa, R.; Gubbi, S. COVID-19 Pandemic, Coronaviruses, and Diabetes Mellitus. Am. J. Physiol. Endocrinol. Metab. 2020, 318,
E736–E741. [CrossRef]

23. Rajpal, A.; Rahimi, L.; Ismail-Beigi, F. Factors Leading to High Morbidity and Mortality of COVID-19 in Patients with Type 2
Diabetes. J. Diabetes 2020, 12, 895–908. [CrossRef]

24. Norouzi, M.; Norouzi, S.; Ruggiero, A.; Khan, M.S.; Myers, S.; Kavanagh, K.; Vemuri, R. Type-2 Diabetes as a Risk Factor for
Severe COVID-19 Infection. Microorganisms 2021, 9, 1211. [CrossRef]

25. Solerte, S.B.; D’Addio, F.; Trevisan, R.; Lovati, E.; Rossi, A.; Pastore, I.; Dell’Acqua, M.; Ippolito, E.; Scaranna, C.; Bellante, R.; et al.
Sitagliptin Treatment at the Time of Hospitalization Was Associated With Reduced Mortality in Patients With Type 2 Diabetes
and COVID-19: A Multicenter, Case-Control, Retrospective, Observational Study. Diabetes Care 2020, 43, 2999–3006. [CrossRef]

26. Pitt, B.; Agarwal, R.; Anker, S.D.; Ruilope, L.M.; Rossing, P.; Ahlers, C.; Brinker, M.; Joseph, A.; Lambelet, M.; Lawatscheck, R.;
et al. Association of Finerenone Use With Reduction in Treatment-Emergent Pneumonia and COVID-19 Adverse Events Among
Patients With Type 2 Diabetes and Chronic Kidney Disease. JAMA Netw. Open 2022, 5, e2236123. [CrossRef]

27. Jung, H.S.; Choi, J.W. Association between COVID-19 and Incidence of Cardiovascular Disease and All-Cause Mortality among
Patients with Diabetes. Front. Endocrinol. 2023, 14, 1–8. [CrossRef] [PubMed]

28. Gazzaz, Z.J. Diabetes and COVID-19. Open Life Sci. 2021, 16, 297–302. [CrossRef] [PubMed]
29. Li, J.; Huang, D.Q.; Zou, B.; Yang, H.; Hui, W.Z.; Rui, F.; Yee, N.T.S.; Liu, C.; Nerurkar, S.N.; Kai, J.C.Y.; et al. Epidemiology of

COVID-19: A Systematic Review and Meta-analysis of Clinical Characteristics, Risk Factors, and Outcomes. J. Med. Virol. 2021,
93, 1449–1458. [CrossRef] [PubMed]

30. Liu, S.; Zhang, L.; Weng, H.; Yang, F.; Jin, H.; Fan, F.; Zheng, X.; Yang, H.; Li, H.; Zhang, Y.; et al. Association Between Average
Plasma Potassium Levels and 30-Day Mortality During Hospitalization in Patients with COVID-19 in Wuhan, China. Int. J. Med.
Sci. 2021, 18, 736–743. [CrossRef] [PubMed]

31. Mahroum, N.; Alghory, A.; Kiyak, Z.; Alwani, A.; Seida, R.; Alrais, M.; Shoenfeld, Y. Ferritin—From Iron, through Inflammation
and Autoimmunity, to COVID-19. J. Autoimmun. 2022, 126, 102778. [CrossRef] [PubMed]

32. MCCarthy, M.W. Metformin as a Potential Treatment for COVID-19. Expert. Opin. Pharmacother. 2023, 24, 1199–1203. [CrossRef]
[PubMed]

33. Gama, S. RDW Shows Prognostic Potential in Hospitalized Patients with COVID-19. J. Med. Virol. 2022, 94, 3498–3500. [CrossRef]
[PubMed]

34. Soni, M.; Gopalakrishnan, R. Significance of RDW in Predicting Mortality in COVID-19—An Analysis of 622 Cases. Int. J. Lab.
Hematol. 2021, 43, O221–O223. [CrossRef] [PubMed]

35. Pouladzadeh, M.; Safdarian, M.; Choghakabodi, P.M.; Amini, F.; Sokooti, A. Validation of Red Cell Distribution Width as a
COVID-19 Severity Screening Tool. Future Sci. OA 2021, 7, FSO712. [CrossRef]

36. Soni, M.; Gopalakrishnan, R.; Vaishya, R.; Prabu, P. D-Dimer Level Is a Useful Predictor for Mortality in Patients with COVID-19:
Analysis of 483 Cases. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 2245–2249. [CrossRef]

37. Bramante, C.T.; Ingraham, N.E.; Murray, T.A.; Marmor, S.; Hovertsen, S.; Gronski, J.; McNeil, C.; Feng, R.; Guzman, G.;
Abdelwahab, N.; et al. Metformin and Risk of Mortality in Patients Hospitalised with COVID-19: A Retrospective Cohort
Analysis. Lancet Healthy Longev. 2021, 2, e34–e41. [CrossRef] [PubMed]

38. Kim, M.K.; Jeon, J.-H.; Kim, S.-W.; Moon, J.S.; Cho, N.H.; Han, E.; You, J.H.; Lee, J.Y.; Hyun, M.; Park, J.S.; et al. The Clinical
Characteristics and Outcomes of Patients with Moderate-to-Severe Coronavirus Disease 2019 Infection and Diabetes in Daegu,
South Korea. Diabetes Metab. J. 2020, 44, 602. [CrossRef] [PubMed]

39. Chen, Y.; Yang, D.; Cheng, B.; Chen, J.; Peng, A.; Yang, C.; Liu, C.; Xiong, M.; Deng, A.; Zhang, Y.; et al. Clinical Characteristics
and Outcomes of Patients With Diabetes and COVID-19 in Association With Glucose-Lowering Medication. Diabetes Care 2020,
43, 1399–1407. [CrossRef] [PubMed]

https://doi.org/10.3389/fchem.2020.572885
https://www.ncbi.nlm.nih.gov/pubmed/33195060
https://doi.org/10.1016/j.cell.2023.06.005
https://www.ncbi.nlm.nih.gov/pubmed/37421949
https://doi.org/10.1038/s41392-020-00426-x
https://www.ncbi.nlm.nih.gov/pubmed/33277466
https://doi.org/10.1002/rmv.2207
https://www.ncbi.nlm.nih.gov/pubmed/33368788
https://iris.who.int/handle/10665/332299
https://doi.org/10.7326/0003-4819-145-4-200608150-00004
https://doi.org/10.1002/rmv.2223
https://doi.org/10.1152/ajpendo.00124.2020
https://doi.org/10.1111/1753-0407.13085
https://doi.org/10.3390/microorganisms9061211
https://doi.org/10.2337/dc20-1521
https://doi.org/10.1001/jamanetworkopen.2022.36123
https://doi.org/10.3389/fendo.2023.1230176
https://www.ncbi.nlm.nih.gov/pubmed/37576978
https://doi.org/10.1515/biol-2021-0034
https://www.ncbi.nlm.nih.gov/pubmed/33817321
https://doi.org/10.1002/jmv.26424
https://www.ncbi.nlm.nih.gov/pubmed/32790106
https://doi.org/10.7150/ijms.50965
https://www.ncbi.nlm.nih.gov/pubmed/33437208
https://doi.org/10.1016/j.jaut.2021.102778
https://www.ncbi.nlm.nih.gov/pubmed/34883281
https://doi.org/10.1080/14656566.2023.2215385
https://www.ncbi.nlm.nih.gov/pubmed/37194484
https://doi.org/10.1002/jmv.27764
https://www.ncbi.nlm.nih.gov/pubmed/35388503
https://doi.org/10.1111/ijlh.13526
https://www.ncbi.nlm.nih.gov/pubmed/33774907
https://doi.org/10.2144/fsoa-2020-0199
https://doi.org/10.1016/j.dsx.2020.11.007
https://doi.org/10.1016/S2666-7568(20)30033-7
https://www.ncbi.nlm.nih.gov/pubmed/33521772
https://doi.org/10.4093/dmj.2020.0146
https://www.ncbi.nlm.nih.gov/pubmed/32794386
https://doi.org/10.2337/dc20-0660
https://www.ncbi.nlm.nih.gov/pubmed/32409498


Biomedicines 2024, 12, 605 28 of 28

40. DeFronzo, R.; Fleming, G.A.; Chen, K.; Bicsak, T.A. Metformin-Associated Lactic Acidosis: Current Perspectives on Causes and
Risk. Metabolism 2016, 65, 20–29. [CrossRef]

41. Bugliani, M.; Syed, F.; Paula, F.M.M.; Omar, B.A.; Suleiman, M.; Mossuto, S.; Grano, F.; Cardarelli, F.; Boggi, U.; Vistoli, F.; et al.
DPP-4 Is Expressed in Human Pancreatic Beta Cells and Its Direct Inhibition Improves Beta Cell Function and Survival in Type 2
Diabetes. Mol. Cell Endocrinol. 2018, 473, 186–193. [CrossRef]

42. Ali, N. Elevated Level of C-reactive Protein May Be an Early Marker to Predict Risk for Severity of COVID-19. J. Med. Virol. 2020,
92, 2409–2411. [CrossRef]

43. Choudhury, A.; Mukherjee, S. In Silico Studies on the Comparative Characterization of the Interactions of SARS-CoV-2 Spike
Glycoprotein with ACE-2 Receptor Homologs and Human TLRs. J. Med. Virol. 2020, 92, 2105–2113. [CrossRef] [PubMed]

44. Vankadari, N.; Wilce, J.A. Emerging COVID-19 Coronavirus: Glycan Shield and Structure Prediction of Spike Glycoprotein and
Its Interaction with Human CD26. Emerg. Microbes Infect. 2020, 9, 601–604. [CrossRef] [PubMed]

45. Schlicht, K.; Rohmann, N.; Geisler, C.; Hollstein, T.; Knappe, C.; Hartmann, K.; Schwarz, J.; Tran, F.; Schunk, D.; Junker, R.;
et al. Circulating Levels of Soluble Dipeptidylpeptidase-4 Are Reduced in Human Subjects Hospitalized for Severe COVID-19
Infections. Int. J. Obes. 2020, 44, 2335–2338. [CrossRef] [PubMed]

46. Rakhmat, I.I.; Kusmala, Y.Y.; Handayani, D.R.; Juliastuti, H.; Nawangsih, E.N.; Wibowo, A.; Lim, M.A.; Pranata, R. Dipeptidyl
Peptidase-4 (DPP-4) Inhibitor and Mortality in Coronavirus Disease 2019 (COVID-19)—A Systematic Review, Meta-Analysis, and
Meta-Regression. Diabetes Metab. Syndr. Clin. Res. Rev. 2021, 15, 777–782. [CrossRef] [PubMed]

47. Bonora, B.M.; Avogaro, A.; Fadini, G.P. Disentangling Conflicting Evidence on DPP-4 Inhibitors and Outcomes of COVID-19:
Narrative Review and Meta-Analysis. J. Endocrinol. Investig. 2021, 44, 1379–1386. [CrossRef]

48. Wargny, M.; Potier, L.; Gourdy, P.; Pichelin, M.; Amadou, C.; Benhamou, P.-Y.; Bonnet, J.-B.; Bordier, L.; Bourron, O.; Chaumeil,
C.; et al. Predictors of Hospital Discharge and Mortality in Patients with Diabetes and COVID-19: Updated Results from the
Nationwide CORONADO Study. Diabetologia 2021, 64, 778–794. [CrossRef] [PubMed]

49. Strollo, R.; Maddaloni, E.; Dauriz, M.; Pedone, C.; Buzzetti, R.; Pozzilli, P. Use of DPP4 Inhibitors in Italy Does Not Correlate with
Diabetes Prevalence among COVID-19 Deaths. Diabetes Res. Clin. Pract. 2021, 171, 108444. [CrossRef]

50. Attena, E.; Caturano, A.; Annunziata, A.; Maraolo, A.E.; De Rosa, A.; Fusco, F.M.; Halasz, G.; Dall’Ospedale, V.; Conte, M.; Parisi,
V.; et al. Remdesivir treatment and clinical outcome in non-severe hospitalized COVID-19 patients: A propensity score matching
multicenter Italian hospital experience. Eur. J. Clin. Pharmacol. 2023, 79, 967–974. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.metabol.2015.10.014
https://doi.org/10.1016/j.mce.2018.01.019
https://doi.org/10.1002/jmv.26097
https://doi.org/10.1002/jmv.25987
https://www.ncbi.nlm.nih.gov/pubmed/32383269
https://doi.org/10.1080/22221751.2020.1739565
https://www.ncbi.nlm.nih.gov/pubmed/32178593
https://doi.org/10.1038/s41366-020-00689-y
https://www.ncbi.nlm.nih.gov/pubmed/32958905
https://doi.org/10.1016/j.dsx.2021.03.027
https://www.ncbi.nlm.nih.gov/pubmed/33838614
https://doi.org/10.1007/s40618-021-01515-6
https://doi.org/10.1007/s00125-020-05351-w
https://www.ncbi.nlm.nih.gov/pubmed/33599800
https://doi.org/10.1016/j.diabres.2020.108444
https://doi.org/10.1007/s00228-023-03499-z

	Introduction 
	Materials and Methods 
	Inclusion/Exclusion Criteria and the Population from Which the Sample Was Taken 
	Statistical Methods 

	Results 
	Characteristics of the Population Sample Used in this Study 
	Univariate Modulation of the Odds of Death 
	Multi-Effect Modulation of the Odds of Death According to the Model Derived with the Stepwise Elimination Model 
	Significant Contrasts. Part 1: How Both LMWH and Remdesivir Modulated the Effect of Metformin Intake on the Odds of Death 
	Significant Contrasts. Part 2: Insights into Aging. Inflammation and its Mutual Effect on How Insulin Affected the Odds of Death 
	Significant Contrasts. Part 3: The Association between Death and LMWH Treatment Differed Depending on Age 

	Discussion 
	Conclusions 
	Appendix A
	References

