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Abstract: In this paper, we employed the ∂̄-dressing method to investigate the Kundu-nonlinear
Schrödinger equation based on the local 2 × 2 matrix ∂̄ problem. The Lax spectrum problem is used
to derive a singular spectral problem of time and space associated with a Kundu-NLS equation.
The N-solitions of the Kundu-NLS equation were obtained based on the ∂̄ equation by choosing a
special spectral transformation matrix, and a gradual analysis of the long-duration behavior of the
equation was acquired. Subsequently, the one- and two-soliton solutions of Kundu-NLS equations
were obtained explicitly. In optical fiber, due to the wide application of telecommunication and flow
control routing systems, people are very interested in the propagation of femtosecond optical pulses,
and a high-order, nonlinear Schrödinger equation is needed to build a model. In plasma physics, the
soliton equation can predict the modulation instability of light waves in different media.
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1. Introduction

In recent years, the nonlinear Schrödinger equation (NLS) [1,2] has emerged as an
important component of the soliton equation. It appears in many different physical appli-
cations, such as in plasma physics and nonlinear optics [3], which have a wide range of
applications. With the advances of this research, the classical Schrödinger equation [4–6],

iut + uxx + 2|u|2u = 0 (1)

and its evolutionary form can represent a well-known integrable system in the field of
mathematics. In Equation (1), u denotes the complex envelope of the waves, x and t
denote propagation distance and scaled time, respectively, and i is the imaginary unit.
The Schrödinger equation has a stable soliton solution, which can be properly denoted
by the linear dispersion problems. However, in physics, particularly in optical fibers, this
model needs to be described using the high-order Schrodinger equation because of interest
in the propagation of femtosecond light pulses. In the field of mathematics, the study of
nonlinear equations with variable coefficients has also led to the further development of
integrable systems. The similar transformation technique, Wronskian technique, Jacobi
elliptic approach, and direct algebraic method can solve the nonlinear Schrodinger equation
with variable coefficients [7–10]. By using the similar transformation technique, we can
solve the optically smooth position solution of the nonlinear Schrodinger equation with
variable coefficients. In 1984, Kundu proved that the nonlinear Schrödinger equation
leads to an integrable high-order nonlinear equation with variable coefficients under
nonlinear transformation, which is called the Kundu-NLS equation. It can be associated
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with the nonlinear Schrödinger equation via the Lax equation, and it does not change the
dispersion term.

In this article, we focus primarily on the Kundu-NLS equation [11–16],

iut + uxx + 2α2|u|2u − (γt + γ2 − iγxx)u + 2iγxux = 0, (2)

where γ(x, t) is a free gauge function, and α is a real constant. Using the ∂̄-dressing method,
we created one- and two-soliton solutions. The equation of the respirator and higher-order
rouge wave solutions was obtained using the Darboux transform [15,16]. It is also possible
to obtain the equation’s soliton solution by using the Riemann–Hilbert method [11–14].
As far as we know, the soliton solution of the Kundu-NLS equations has not been solved
by using the ∂̄-dressing method.

The ∂̄-dressing method suggested by Zakharov and Shabat [17,18] was later developed
by Beals, Coifman, Manakov, Ablowitz, Fokas, and others [19–23]. A wide variety of equa-
tions have been successfully investigated using the ∂̄-dressing method [24–30]. However,
the equations with a normalization boundary condition, ψ → I, at infinity are usually
considered. Consequently, the spectral problems and hierarchies on some significant inte-
grable equations, such as the KE equation, Kundu-NLS equations, and others, cannot be
adequately deduced using the ∂̄-dressing method. We are primarily concerned with the
∂̄-equation for normalization, ψ → D, where D is a nondegenerate matrix function of x
and t. Using the ∂̄-dressing method, the Lax pair and deriving the soliton solutions could
be investigated.

The structure of this article is as follows: In Section 2, by using the ∂̄-dressing method,
we obtained the Lax pair by generalizing the properties of the Cauchy–Green operators.
In Section 2.2, by using the ∂̄-dressing method, we derived the Kundu-NLS hierarchy
(with the source) from the relationship between the ∂̄-dressing transformation matrix and
the potential matrix. In Section 3, a formula for N-soliton solutions of the Kundu-NLS
equation was constructed, and we give explicit one- and two-soliton solutions for the
Kundu-NLS equation.

2. The ∂̄-Dressing Method
2.1. Spectral Transform and Lax Pair

In this section, in order to analyze the Kundu-NLS equation, we focus on the Lax
pair of Equation (2):

ψx = −izσ3ψ + Qψ,
ψt = −2iz2σ3ψ + Q̃iσ3ψ,

(3)

where Q̃ = Qx + Q2, with Q =

(
0 q

−q∗ 0

)
, σ3 =

(
1 0
0 −1

)
.

Consider a matrix ∂̄ problem with a non-normalization boundary condition. The ∂̄-
dressing method’s objective is to create a system of linear equations for ψ that is compatible.
We start from the 2 × 2 matrix ∂̄-problem in the complex z-plane,

∂̄ψ(z) = ψ(z)R(z), ψ(z) → D, z → ∞, (4)

where D = D(x, t) is a nondegenerate matrix function of x and t, and R(z, z̄) is the matrix
of spectral transform connected to a nonlinear equation and ∂̄ ≡ ∂/∂z. We obtained a
formal solution of the ∂̄-problem via Equation (4):

ψ(z) = D + ψRCz, (5)

where Cz represents the Cauchy–Green integral operator on the left, and this is given by

ψRCz =
1

2πi

∫ ∫ dζ ∧ dζ̄

ζ − z
ψ(ζ)R(ζ). (6)
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In this case, we suppressed the fact that the variable z̄ depends on ψ and R. The
expression in Equation (5) empowers us to officially compose an answer to the ∂̄ issue (5)
concerning the matrix R:

ψ(z) = D · (I − RCz)
−1, (7)

where I is the 2 × 2 unit matrix.
Define

D = ei(zx+2z2t)σ3 , (8)

where D satisfied Dx = izσ3D, Dt = 2iz2σ3D.
It is simple to demonstrate that the operator Cz satisfies (for a certain set of matrix

functions) f (z) and g(z),

g(z)[ f (z)Cz]Cz + [g(z)Cz] f (z)Cz = [g(z)Cz][ f (z)Cz]. (9)

Define a pair:
⟨ f , g⟩ = 1

2πi
∫ ∫

dz ∧ dz̄ f (z)gT(z),
⟨ f , g⟩T = ⟨g, f ⟩, (10)

where the superscript T means transposition. Then, it is evident that the above pairing has
the following features [24].

Proposition 1.
⟨ f , g⟩T = ⟨g, f ⟩
⟨ f R, g⟩ = ⟨ f , gRT⟩
⟨ f Cz, g⟩ = −⟨ f , gCz⟩
⟨ f RCz, g⟩ = −⟨ f , gRTCz⟩
⟨ f (I − RCz), g⟩ = ⟨ f , g(I + RTCz)⟩

(11)

In addition, it will be easy to test and verify the following prosperities:

1
µ − z

f (z)Cz =
1

µ − z
{[ f (z)Cz]− [ f (µ)Cµ]} (12)

and
z f (z)Cz = z[ f (z)Cz] + ⟨ f (z)⟩,

z2 f (z)Cz = z2[ f (z)Cz] + z⟨ f (z)⟩+ ⟨z f (z)⟩, (13)

or, in general, for some positive integer λ,

zλ f (z)Cz = zλ[ f (z)Cz] + Σλ−1
j=0 zj⟨zλ−1−j f (z)⟩, (14)

where ⟨ f (z)⟩ is defined by putting ⟨ f (z), I⟩.
We allow the x-dependence of the Kundu-NLS equation to be expressed as follows. It

is significant that the form of the Lax pair for a particular equation is entirely determined
by the space–time dependence of the transform matrix R(x, t, z):

Rx = iz[R, σ3]. (15)

Then, Equation (7) can be utilized to compute

ψx = Dx(I − RCz)
−1 + D[(I − RCz)

−1RxCz(I − RCz)
−1]

= izσ3D(I − RCz)
−1 + izψ[R, σ3]Cz(I − RCz)

−1

= izσ3D(I − RCz)
−1 + izψRσ3Cz(I − RCz)

−1 − izψσ3RCz(I − RCz)
−1.

(16)
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The first term on the right can be transformed as follows:

izψRCz =
1

2π

∫ ∫
ζdζ ∧ dζ̄

ζ − z
ψ(ζ)R(ζ)

= i⟨ψR⟩+ iz(ψRCz) = i⟨ψR⟩+ iz(ψ − D).
(17)

Hence,

ψx = izσ3D(I − RCz)
−1 + i⟨ψR⟩σ3(I − RCz)

−1 − izDσ3(I − RCz)
−1 + izψσ3.

Next, we calculate the second term, izDσ3(I − RCz)−1, from Equation (17), where
we have

zD =< ψR > +zψ(I − RCz)
zD(I − RCz)−1 =< ψR > (I − RCz)−1 + zψ = (< ψR > D−1 + z)ψ.

(18)

As a result,
ψx + iz[σ3, ψ] = izσ3ψ − i[σ3,< ψR >]D−1ψ. (19)

Next, we introduce the potential:

Q =

(
0 q
−q∗ 0

)
= −i[σ3,< ψR >]D−1, (20)

then we can also obtain the spectral problem of Zakharov–Shabat:

ψx + iz[σ3, ψ] = izσ3ψ + Qψ. (21)

In order to acquire the time dependency of R, we select a linear equation such that

Rt = [R, Ω]. (22)

We suppose

Ω(z) = 2iz2σ3 +
1

2πi

∫ ∫
ω(ζ)σ3

ζ − z
dζ ∧ dζ̄, (23)

which comprises both a polynomial part, Ωp(z), and a singular part, Ωs(z), and ω(ζ) is a
scalar function.

First, we use the polynomial dispersion relation only, Ω = Ωp = 2iz2σ3. Then, using
Equations (5), (7), and (22), we obtain

ψt = [D · (I − RCz)]t = Dt(I − RCz)
−1 + D(I − RCz)

−1RtCz(I − RCz)
−1

= 2iz2σ3D(I − RCz)
−1 + ψRΩCz(I − RCz)

−1 − ψΩRCz(I − RCz)
−1

= 2iz2σ3ψ + 2iz2ψRσ3Cz(I − RCz)
−1 − 2iz2ψσ3(I − RCz)

−1 + 2iz2ψσ3.

(24)

We form the definition of the left Cauchy operation:

z2ψRCz =
1

2π

∫ ∫
ζ2dζ ∧ dζ̄

ζ − z
ψ(ζ)R(ζ)

=< zψR > +z < ψR > +z2ψRCz

=< zψR > +z < ψR > +z2(ψ − D),

(25)

z2D =< zψR > +z < ψR > +z2ψ(I − RCz), (26)

and
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z2(I − RCz)
−1 = D−1z2ψ + D−1 < zψR > (I − RCz)

−1

+ D−1z < ψR > (I − RCz)
−1,

(27)

z(I − RCz)
−1 = D−1 < ψR > (I − RCz)

−1 + D−1zψ. (28)

From Equations (24) and (27), we obtain

ψt + 2iz2[σ3, ψ] = 2iz2σ3ψ + (−2Q < ψR >diag +2 < ψR >
o f f
x

−2izσ3 < ψR >o f f +2Q < ψR >)D−1ψ + 2zQψ.
(29)

We suppose •o f f means the off-diagonal part of matrix •, and •diag means the diagonal
part of matrix •. Furthermore,

QD = −i[σ3,< ψR >], (30)

< ψR >=
i
2

σ3QD, (31)

< ψR >
o f f
x =

i
2

σ3QxD +
i
2

σ3QDx =
i
2

σ3QxD − 1
2

zQD. (32)

So, the time-spectral problem is obtained:

ψt + 2iz2[σ3, ψ] = 2iz2σ3ψ + iσ3Q2ψ + iσ3Qxψ + 2zQψ,
ψt + 2iz2[σ3, ψ] = (2z2 + Q̃)iσ3ψ + 2zQψ.

(33)

In what follows, we consider the singular dispersion relation in Equation (23):

ψt = (ψRΩsCz − ψΩs)(I − RCz)
−1 + ψΩs. (34)

Resorting in Equations (23) and (23); ψRΩsCz in Equation (34) satisfies

ψRΩsCz = ψΩs +
1

2πi

∫ ∫
ω(ζ)ψ(ζ)σ3

ζ − z
dζ ∧ dζ̄. (35)

Hence, we have

ψt = − 1
2πi

∫ ∫
ω(ζ)ψ(ζ)σ3

ζ − z
dζ ∧ dζ̄(I − RCz)

−1 + ψΩs. (36)

By using the relations

1
ρ − z

1
ζ − ρ

=
1

ζ − z
(

1
ρ − z

− 1
ρ − ζ

), (37)

we find that
1

z − ζ
(I − RCz)

−1 =
1

z − ζ
ψ−1(ζ)ψ(z). (38)

according to which Equation (36) then gives a time-dependent linear equation with the
singular dispersion relation:

ψt = − 1
2πi

(ω(z)Czψσ3ψ−1)ψ + ψΩs. (39)

The time-spectral problem is

ψt + 2iz2[σ3, ψ] = 2iz2σ3ψ + iσ3Q2ψ + iσ3Qxψ + 2zQψ+

− 1
2πi

(ω(z)Czψσ3ψ−1)ψ + ψΩs.
(40)
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2.2. Recursion Operator

In this section, we derive the Kundu-NLS equation with the source. In fact, if we want
to work with the ∂̄ method, we need the ∂̄ problem from Equation (4) together with the
linear Equations (15) and (22) controlling the space-time dependence of R(x, t, z). From
Equations (20) and (22), we are aware of the time evolution of the potential Q:

Qt = −i[σ3,< ψR >t]D−1 − i[σ3,< ψR >t]D−1
t . (41)

By applying the obvious relation ∂̄ f (z)Ck = f (z), we obtain

−i[σ3,< ψR >t]D−1 = −i[σ3, 2iz2σ3 < ψR > + < ψRt, I(I + RTCz)
−1 >]D−1

= 2z2[σ3, σ3 < ψR >]D−1 − i[σ3,< ψRtψ
−1 >],

(42)

−i[σ3,< ψR >t]D−1
t = i[σ3,< ψR >]D−1DtD−1 = −2iz2Qσ3. (43)

Since ∂̄(ψ−1)T = −(ψ−1)T RT , it is demonstrable that I · (I + RTCz)−1 = (ψ−1)T .
Hence,

Qt = 2z2[σ3, σ3 < ψR >]D−1 − i[σ3,< ψRtψ
−1 >]− 2iz2Qσ3 (44)

−i[σ3,< ψRtψ
−1 >] = i[σ3,< ψ(RΩ − ΩR)ψ−1, I >], (45)

Qt = 2z2[σ3, σ3 < ψ, R >]D−1 − 2iz2Qσ3 − iαn[σ3,< ∂̄(zn M(z) >]

+ i[σ3,< w(z)M(z) >].
(46)

where M(x, t, z) = ψ(x, t, z)σ3ψ−1(x, t, z), and M(x, t, z) satisfies the following equation:

Mx + 2iz[σ3, M] = [Q, M]. (47)

Let us decompose M as the total of the off-diagonal and diagonal parts,

M =
1
2

σ3(σ3M + Mσ3) +
1
2

σ3(σ3M − Mσ3) = Mdiag + Mo f f . (48)

Then, Equation (48) can be written as the following two equations:

Mdiag
x = −[Q, Mo f f ],

Mo f f
x + 4izσ3Mo f f = [Q, Mdiag].

(49)

Based on the asymptotic condition ψ → D when x → ∞, we have Mdiag = σ3 +
∂−1

x [Q, Mo f f ]; then, we can rewrite the second equation of (45) as

Mo f f
x + 4izσ3Mo f f = [Q, σ3 + ∂−1

x [Q, Mo f f ]]. (50)

It is challenging to determine the explicit solution for Equation (46). Hence, we
introduce the operator for recursion in the form

∧· = i
4

σ3(∂x − [Q, ∂−1
x [Q, ·]], (51)

which, evidently, does not depend on k. Then, Equation (50) gives

Mo f f = − i
2 (∧− z)−1Q,

Qt = −2iαnσ3 < ∂̄(zn Mo f f ) > +2z2[σ3, σ3 < ψR >]D−1

− 2iz2Qσ3 + i[σ3,< w(z)M(z) >].

(52)

The Kundu-NLS equation can be obtained; we expand (∧− z)−1:
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(∧− z)−1 = −
∞

∑
j=1

z−j∧j−1,

then one possible rewrite for the second equation in Equation (52) is

Qt = −αnσ3

∞

∑
j=1

< ∂̄zn−j > ∧j−1Q + i[σ3,< w(z)M(z) >]. (53)

By utilizing ∂̄zn−j = πδ(z)δj,n+1, j = 1, 2, 3 · · · , and ∑∞
j=1 < ∂̄(zn−j) > ∧j−1Q =

−∧n Q, we are able to derive the hierarchy of equations containing the Kundu-NLS that
corresponds to the specific x-dependence of the spectral transform:

Mx + iz[σ3, M] = [Q, M],
Qt + αnσ3 ∧n Q = 2z2[σ3, σ3 < ψ, R >]D−1 − 2iz2Qσ3 + i[σ3,< w(z)M(z) >].

(54)

3. Soliton Solution

In this section, we will provide the soliton solution of the Kundu-NLS equations
within the ∂̄-dressing method. First, we will construct the N-solitons of the Kundu-NLS
Equation (1), which is still based on the ∂̄-dressing method.

We choose a spectral transform matrix R as

R(z) =
∞

∑
j=1

π

(
0 −cje−2iθ(z)δ(z − zj)

c̄je2iθ(z)δ(z − z̄j) 0

)
, (55)

where cj is constant and θ(z) = zx + 2z2t. Let Q̃ = QD; then, we have

Q̃ = −i[σ3,< ψR >] =

(
0 E
−Ē 0

)
. (56)

Substituting Equation (55) into Equation (56) leads to

E(x, t) = −2i < ψR >12= −
∞

∑
j=1

cj

∫ ∫
dz ∧ dz̄ψ11(z)R12(z)

= −
∞

∑
j=1

cj

∫ ∫
dz ∧ dz̄ψ11(z)e−2iθ(z)δ(z − zj)

= −2i
∞

∑
j=1

cje
−2iθ(zj)ψ11(zj).

(57)

In order to obtain the ψ11(z1), substituting Equation (57) into Equation (5), we have

ψ11(z) = d11 +
∞

∑
j=1

c̄j

z − z̄j
e2iθ(z̄j)ψ12(z̄j), (58)

ψ12(z) = −
∞

∑
m=1

cm

z − zm
e−2iθ(zm)ψ11(zm), (59)

where d11 represents the Equation (4) position element of the matrix D. By replacing z in
Equation (58) with zn and z in (59) with z̄j, we obtain a linear equation system for ψ11(zn):

ψ11(zn) +
∞

∑
m=1

Bn,mψ11(zm) = d11, n = 1, 2, . . . , N, (60)

with
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Bn,m =
∞

∑
j=1

Cj(zn)Cm(zj),

Cj(zn) =
∞

∑
j=1

c̄j

z − z̄j
e2iθ(z̄j),

(61)

where B is a square matrix of the order of N.
Furthermore, we introduce notations

V = I + (Bn,m),

ψ̂11 = (ψ11(z1), . . . , ψ11(zN))
T .

(62)

Then, Equation (62) will reduce to the linear system in the matrix form:

Vψ̂11 = D = (d11, . . . , d11)
T . (63)

From this, substituting ψ̂11 into Equation (57) gives the formula

E(x, t) = 2id11m, (64)

where
m =

detVaug

detV
, (65)

V are N × N matrices, and Vaug are (N + 1)× (N + 1) matrices, defined by

Vaug =

(
0 Y
I V

)
, Y = (Y1, Y2, . . . , YN), Yj = −cje

−2iθ(zj). (66)

By using Equations (64) and (65), we obtain the N-soliton solution of the Kundu-NLS
equation:

u = 2imei(zx+2z2t)D11

= 2imei(zx+2z2t)ei(zx+2z2t) = 2ime2i(zx+2z2t).
(67)

For N = 1, set

R(z) = π

(
0 −ce−2izxδ(z − z1)

c̄e2izxδ(z − z̄1) 0

)
, (68)

where c = c(t) can be found in Equation (22).
As follows from Equation (20), the soliton solution is given by

q = −2i < ψR >12 D−1
22 = − 1

π
D−1

22

∫ ∫
dz ∧ dz̄ψ11(z)R12(z)

= −cD−1
22

∫ ∫
dz ∧ dz̄ψ11(z)e−2izxδ(z − z1)

= −2icD−1
22 e−2iz1xψ11(z1).

(69)

In order to confirm ψ11(z1), by substituting Equation (68) into Equation (5), we obtain

ψ11(z) = D11 +
c̄

z − z̄1
ψ12(z̄1)e2iz̄1x, (70)

ψ12(z) =
−c

z − z1
ψ11(z1)e2iz1x. (71)

We set z = z1 in Equation (70) and set z = z̄1 in Equation (71),

ψ11(z1) = (D11 −
|c|2

|z − z̄1|2
e2i(z̄1−z1)x)−1 = D11 − e4η(x−a)ψ11(z1), (72)
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where z1 = ξ + iη. The function c(t) has the following representation:

c = −2ηe−2ηa+iϕ, (73)

where a and ϕ are the undetermined functions about t. We rewrite the Equation (23) as

Ω(z) = 2iz2σ3 +
1

2πi

∫ ∫
ω(ζ)σ3

ζ − z
dζ ∧ dζ̄ = [2iz2

1 + (ω0 − iω1)]σ3. (74)

On the one hand, by using Equation (68), we obtain

ct = −4icz2
1 − 2cω0 + 2ciω1. (75)

On the other hand, using Equation (72),

ct = c(−2ηat + iϕt). (76)

By comparing the two Equations (74) and (75), we find that

a = (4ξ + ω1
η )t + ξ0,

ϕ = −4(ξ2 − η2)t + 2ω0t + ϕ0,
(77)

where ξ0 and ϕ0 are constants.
By substituting these results into Equation (69), we obtain the following soliton solution:

u = 4iηe−2iξx+iϕ+2zx+4z2tsech2η(x − a). (78)

For N = 2, the formula Equation (55) gives the two-soliton solution of the Kundu-NLS
Equation (2), which is given by

u = 2ime2i(zx+2z2t), (79)

where m = detVaug

detV , and

V =

(
1 + B11 B12

B21 1 + B22

)
, (80)

Vaug =

 0 −c1e−2ixz1−4itz2
1 −c2e−2ixz2−4itz2

2

1 1 + B11 B12
1 B21 1 + B22

, (81)

Bij = −
Fj,1

(zi − z̄1)(zj − z̄1)
−

Fj,2

(zi − z̄2)(zj − z̄2)
,

cj c̄i = e fi+ f j , Fi,j = e[2i(z̄i−zj)x+4i(z̄2
i −z2

j )t+ fi+ f j ], i, j = 1, 2,

(82)

where fi, f j are two arbitrary constants.
According to Formula (78), one-soliton solution of the Kundu-NLS Equation (2) is

shown in Figure 1.
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Figure 1. One-soliton solution of (65) with η = 1, a = 1, ξ = 1, ϕ = 1, z = 1 + i.

4. Conclusions and Remarks

In this study, we systematically investigate the Kundu-NLS equation by using the
∂̄-dressing method. By employing matrix spectral analysis, spectral problems regarding
time and space were obtained, which were reduced to Lax pairs of Kundu-NLS equations.
In order to obtain the solution, matrix transformation was applied. The soliton solution is
obtained by using the ∂̄-dressing method. In short, the ∂̄-dressing method is an effective
method for solving equations in integrable systems, and this ∂̄-dressing method shows
great potential to address equations in integrable systems in the future.
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