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Abstract: This paper aims to study the distributed control problems of heterogeneous signed networks
whose communication topologies are undirected. A distributed control protocol is designed based
on neighboring state information. With this protocol be employed, the convergence results of the
heterogeneous signed network are provided. It is shown that the heterogeneous signed network can
achieve the static bipartite consensus (respectively, state stability) if and only if the signed graph
is structurally balanced (respectively, unbalanced). The associated convergence analyses can be
developed by constructing a suitable Lyapunov function. In addition, two simulation examples are
presented to validate the correctness of the obtained results.

Keywords: heterogeneous signed network; distributed protocol; static bipartite consensus; structural
balance
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1. Introduction

Networked systems mainly consist of multiple agents and interactions among agents,
which can accomplish the tasks that are difficult for single agent. When the dynamics of all
agents in the networked system are identical, we refer to this networked system as a homo-
geneous networked system. The dynamics of agents can include first-order integrators [1],
second-order integrators [2], higher-order integrators [3], or general linear dynamics [4].
In order to improve the convergence speed of the networked system, distributed control
problems with finite-time/fixed-time convergence have been studied [5]. If the dynamics
of agents in the network are different, we refer to this network system as a heterogeneous
networked system. Heterogeneous networked systems are quite common in our daily
lives [6,7]. Some of these applications include the following:

(1) Internet of Things (IoT): Heterogeneous networks play an important role in IoT
applications, where diverse devices such as sensors, actuators, and smart appliances
communicate and collaborate to collect and exchange data for monitoring, automation,
and optimization purposes.

(2) Smart cities: In urban environments, heterogeneous networked systems enable the
integration of various infrastructures such as transportation systems, energy grids,
public safety systems, and environmental monitoring systems. This integration
facilitates efficient resource management, traffic optimization, waste management,
and enhanced public services.

(3) Military and defense: Heterogeneous networked systems are deployed in military
and defense applications for situational awareness, battlefield communications, un-
manned vehicle control, and intelligence gathering. Integration of various sensors,
platforms, and communication technologies enhances military capabilities and mis-
sion effectiveness.
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When considering only cooperative interactions between agents, this kind of net-
worked systems is referred to as unsigned networks. The distributed control problems
of unsigned network systems whose agents contains heterogeneous dynamics have at-
tracted widespread attentions. When the communication topology of unsigned networks is
undirected, Ref. [8] has provided the conditions for achieving consensus when the agents’
dynamic simultaneously includes first-order integrators and second-order integrators.
Ref. [9] has extended the results of [8] to the case of directed fixed and switching topologies.
When the communication topology is disconnected, Ref. [10] investigates the group consen-
sus control problem of heterogeneous unsigned networks. To ensure the convergence speed
of the unsigned networks, nonlinear distributed control protocols have been proposed to
achieve finite-time consensus [11], fixed-time consensus [12,13], and predetermined-time
consensus [14] objectives for all agents. Considering the agent structure as general linear
dynamics, Refs. [15–18] have studied the output consensus problem of heterogeneous
unsigned networks. Ref. [19] has further investigated the output control problems under
switching topologies based on Lyapunov stability analysis methods. Ref. [20] has designed
a sub-linear control protocol based on sliding mode control, which can guarantee achieving
consensus within finite time. Ref. [21] has studied the predetermined-time consensus
problem, and the distributed control protocol designed can ensure consensus within the
predetermined time. In addition, Ref. [22] has investigated the controllability problem of
heterogeneous unsigned networks and provided conditions for the controllability.

When the interactions between agents involve not only cooperative but also antago-
nistic relationships, this class of networked systems is referred to as signed networks. They
are termed as signed networks because this class of networked systems can be represented
using a signed graph, where positive edge weights represent cooperative relationships
between agents and negative edge weights represent antagonistic relationships between
agents. Similarly, the distributed control problem of signed networks has also attracted
significant attention. Ref. [23] has induced a distributed control protocol based on the
Laplacian potential function to ensure the bipartite consensus and established a framework
for studying the distributed control problem of signed networks. Considering agents with
general linear dynamics, Ref. [24] has provided conditions for how to select the control gain
matrix to achieve the bipartite consensus in signed networks. Ref. [25] has investigated
the presence of input saturation constraints on agents and designed a distributed control
protocol to achieve the bipartite consensus goals, which validated the effectiveness of
the proposed protocol through experiments with obstacle avoidance using mobile robots.
Ref. [26] has studied the bipartite consensus problems among agents with communication
noise and provided solvable conditions. Ref. [27] has designed distributed control pro-
tocols using state feedback and output feedback and provided conditions for solving the
bipartite consensus problems of signed networks. Ref. [28] has investigated distributed
control problems with multiple fixed communication delays among agents, providing an
upper bound for the allowable communication delay. Although recent research has yielded
many promising results in the analyses of dynamic behaviors in signed networks, most of
these studies focus on signed networks with homogeneous dynamics. Currently, there is
relatively limited research on the distributed control problems of heterogeneous signed
networks. Additionally, due to the existence of different dynamics of signed networks, the
eigenvalue-based methods that are suitable for analyzing the convergence of homogeneous
signed networks are no longer effective for studying the convergence of heterogeneous
signed networks. Therefore, there is a challenge in finding a new approach to study the
convergence of dynamic behaviors in heterogeneous signed networks.

Motivated by the above discussions, this paper aims to study the distributed control
problems of signed networks with heterogeneous dynamics, where both first-order integra-
tors and second-order integrators are considered. The contributions of this paper include
three aspects:

1. We propose a distributed control protocol based on the neighbor agents’ information.
The proposed protocol can ensure the static bipartite consensus (respectively, state sta-
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bility) if and only if the communication topology is structurally balanced (respectively,
structurally unbalanced).

2. We provide a Lyapunov-based approach to analyze the convergence of dynamic be-
haviors in heterogeneous signed networks. This method is applicable not only to struc-
turally balanced signed networks but also to those that are structurally unbalanced.

3. We extend the distributed control problems of homogeneous signed networks to
heterogeneous signed networks. We give a method for designing suitable distributed
control protocols and analyzing their convergence, which can significantly generalize
the existing results of signed networks [23].

The remainder of this paper is organized as follows: Section 2 provides some basic
knowledge of signed graphs. Section 3 presents the problem statement. Section 4 gives the
main results of static bipartite consensus. Section 5 gives the simulation results. In addition,
the conclusions are provided in Section 6.

Notations: we denote In = {1, 2, · · · , n}, 1n = [1, 1, · · · , 1]T , 0n = [0, 0, · · · , 0]T , and
diag{σ1, σ2, · · · , σn} as a diagonal matrix whose diagonal elements are σ1, σ2, · · · , σn and
non-diagonal elements are zero. For any real number a ∈ R, let |a| be its absolute value
and sgn(a) be its sign, i.e.,

sgn(a) =


1, a > 0

0, a = 0

− 1, a < 0.

2. Preliminaries

A signed network can be described by a signed graph, where nodes can represent
agents, and edges with positive and negative weights can denote the cooperative and
antagonistic interactions among agents.

Let G = (V , E , A) denote a signed graph of n-order, where V = {v1, v2, · · · , vn} is
a node set with n nodes, E ⊆ V × V = {(vi, vj) : ∀vi ∈ V , vj ∈ V} is an edge set, and
A = [aij]n×n is the adjacent weight matrix whose element aij satisfies aij ̸= 0 ⇔ (vj, vi) ∈ E .
We assume that there are no self-loops in the signed graph G, i.e., aii = 0 for ∀i ∈ {1, 2, · · · , n}.
If the edge (vj, vi) exists, then we say that vj is a neighbor of vi and all neighbors of vi can be
denoted by N(i) = {j : (vj, vi) ∈ E}. The in-degree of vi is ∆i = ∑j∈N(i) |aij| and the in-degree
matrix is given by

∆ = diag{∆1, ∆2, · · · , ∆n}.

The Laplacian matrix L = [lij]n×n of G is defined as L = ∆− A and its element satisfies

lij =


∑

k∈N(i)
|aik|, i = j

− aij, i ̸= j.

There is a directed path P = {(vi, vk1), (vk1 , vk2), · · · , (vkm−1 , vj)} with m edges, in
which vi, vk1 , vk2 , · · · , vkm−1 , vj are different nodes. For a signed graph G, if there exists
a directed path between any two nodes, then G is referred to as strongly connected. If
A = AT holds, we refer to the signed graph G as undirected. It can be easily developed that
L = LT also holds when the signed graph G is undirected. Below, we present the concepts
of structural balance and unbalance, which play a significant role in studying distributed
control problems of signed networks.

Definition 1. For a signed graph G, all of its nodes can be divided into two sets: V1 and V2, such
that V = V1

⋃ V2 and V1
⋂ V2 = ∅. If the two following conditions hold:

1. When two nodes vi and vj belong to the same set, i.e., vi, vj ∈ Vk, ∀k ∈ {1, 2}, the weight
aij ≥ 0 holds;

2. When two nodes vi and vj belong to different sets, i.e., vi ∈ Vk and vj ∈ V3−k, ∀k ∈ {1, 2},
the weight aij ≤ 0 holds.
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then we say that G is structurally balanced, and, otherwise, G is structurally unbalanced.

When all negative weights in the signed graph G are transformed into the associ-
ated positive weights, a new induced unsigned graph G = (V , E , A) is obtained, where
A = |A| = [|aij|]n×n. When the signed graph G is structurally balanced, there is a diagonal
matrix Dn = diag{σ1, σ2, · · · , σn}, σi ∈ {−1, 1}, ∀i ∈ In such that A = Dn ADn holds. In
the following, we provide an example.

Example 1. There are two signed undirected graphs in Figure 1. It is easy to see that all the vertices
in G1 can be divided into two groups: V1 = {v1, v2, v3} and V2 = {v4, v5, v6}. The weights of
all edges within each group are non-negative and the weights of all edges between the two groups
are non-positive, which satisfy the definition of structural balance. Therefore, the signed graph
G1 is structurally balanced. Conversely, for the signed graph G2, it is impossible to find two such
subsets, which does not satisfy the definition of structural balance. Hence, the signed graph G2 is
structurally unbalanced.

It follows from Figure 1 that the adjacent weight matrix A1 of G1 is given by

A1 =



0 1 0 0 0 −1
1 0 1 0 −1 0
0 1 0 −1 0 0
0 0 −1 0 1 0
0 −1 0 1 0 1
−1 0 0 0 1 0

.

Since the signed undirected graph G1 is structurally balanced, there exists a diagonal matrix
D6 = {1, 1, 1,−1,−1,−1} such that A1 = D6 A1D6 holds, i.e.,

A1 =



0 1 0 0 0 1
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 0
0 1 0 1 0 1
1 0 0 0 1 0

.

(a)

Figure 1. Cont.
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(b)

Figure 1. Two signed undirected graphs, (a): G1 and (b): G2.

3. Problem Statements

A signed network can be depicted through a signed graph, wherein nodes symbolize
agents and edges denote interactions between these agents. Positive weights indicate
cooperative relationships among agents, while negative weights denote antagonistic rela-
tionships. We consider a heterogeneous signed network with n agents whose dynamics are
described by 

ẋi(t) = νi(t), i ∈ Im,

ν̇i(t) = ui(t), i ∈ Im,

ẋi(t) = ui(t) i ∈ In − Im

(1)

where xi(t) and νi(t) are the position state and velocity state, respectively, and ui(t) is the
control input to be designed. For any initial states, we say that the system (1) can achieve
the following:

1. Static bipartite consensus if

lim
t→∞

(|xi(t)| − |xj(t)|) = 0, ∀i, j ∈ In

lim
t→∞

νi(t) = 0, ∀i ∈ Im

2. State stability if

lim
t→∞

xi(t) = 0, ∀i ∈ In

lim
t→∞

νi(t) = 0, ∀i ∈ Im.

Next, we aim to explore how to ensure that the system (1) can achieve the bipartite
consensus and state stability, respectively.

4. Main Results

The distributed control protocol is designed as follows:

ui(t) =


− ∑

j∈Ni

|aij|
[
xi(t)− sgn(aij)xj(t)

]
+ ξ̇i(t), ∀i ∈ Im

− ∑
j∈Ni

|aij|
[
xi(t)− sgn(aij)xj(t)

]
, ∀i ∈ In − Im

(2)
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with
ξ̇i(t) = −ξi(t)− ∑

j∈Ni

|aij|
[
xi(t)− sgn(aij)xj(t)

]
where ξ(t) is an auxiliary variable.

Theorem 1. We consider the system (1) under a signed undirected connected graph G. Let the
distributed protocol (2) be applied to the system (1). Then, the following results hold:

1. The system (1) can achieve the bipartite consensus if and only if G is structurally balanced;
2. The system (1) can reach the state stability if and only if G is structurally unbalanced.

Proof. We can write (1) and (2) as

ẋi(t) = νi(t), i ∈ Im,

ν̇i(t) = − ∑
j∈N(i)

|aij|
[
xi(t)− sgn(aij)xj(t)

]
+ ξ̇i(t), i ∈ Im,

ξ̇i(t) = −ξi(t)− ∑
j∈N(i)

|aij|
[
xi(t)− sgn(aij)xj(t)

]
, i ∈ Im,

ẋi(t) = − ∑
j∈N(i)

|aij|
[
xi(t)− sgn(aij)xj(t)

]
, i ∈ In − Im

(3)

We can construct a candidate Lyapunov function:

V(t) =
n

∑
i=1

n

∑
j=1

|aij|
[
xi(t)− sgn(aij)xj(t)

]2
2

+
m

∑
i=1

(ξi(t))2 +
m

∑
i=1

[νi(t)− ξi(t)]
2.

We can easily verify that V(x) is positive definite. Taking the derivative of V(x) with
respect to the time t, we can obtain

V̇(t) =
n

∑
i=1

n

∑
j=1

|aij|
[
xi(t)− sgn(aij)xj(t)

][
ẋi(t)− sgn(aij)ẋj(t)

]
+ 2

m

∑
i=1

ξi(t)ξ̇i(t) + 2
m

∑
i=1

[νi(t)− ξi(t)]
[
ν̇i(t)− ξ̇i(t)

]
We bring Equation (3) into V̇(t) to get

V̇(t) =
m

∑
i=1

m

∑
j=1

|aij|
[
xi(t)− sgn(aij)xj(t)

][
νi(t)− sgn(aij)νj(t)

]
+

n

∑
i=m+1

m

∑
j=1

|aij|
[
xi(t)− sgn(aij)xj(t)

][
ẋi(t)− sgn(aij)νj(t)

]
+

m

∑
i=1

n

∑
j=m+1

|aij|
[
xi(t)− sgn(aij)xj(t)

][
νi(t)− sgn(aij)ẋj(t)

]
+

n

∑
i=m+1

n

∑
j=m+1

|aij|
[
xi(t)− sgn(aij)xj(t)

][
ẋi(t)− sgn(aij)ẋj(t)

]
+ 2

m

∑
i=1

ξi(t)

[
−ξi(t)−

n

∑
j=1

|aij|
[
xi(t)− sgn(aij)xj(t)

]]

+ 2
m

∑
i=1

[νi(t)− ξi(t)]

(
−

n

∑
j=1

|aij|
[
xi(t)− sgn(aij)xj(t)

])
.
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Because of the fact that the signed graph G is undirected and connected, we can
deduce that its adjacency weight matrix A is symmetric, i.e., aij = aji, ∀i, j ∈ In. We can
further induce

m

∑
i=1

m

∑
j=1

|aij|
[
xi(t)− sgn(aij)xj(t)

]
νi(t)

=
m

∑
j=1

m

∑
i=1

|aji|
[
xj(t)− sgn(aji)xi(t)

]
νj(t)

=
m

∑
i=1

m

∑
j=1

|aij|
[
xj(t)− sgn(aij)xi(t)

]
νj(t)

=
m

∑
i=1

m

∑
j=1

|aij|
[
sgn(aij)xj(t)− xi(t)

]
sgn(aij)νj(t)

= −
m

∑
i=1

m

∑
j=1

|aij|
[
xi(t)− sgn(aij)xj(t)

]
sgn(aij)νj(t).

Therefore, we can deduce

m

∑
i=1

m

∑
j=1

|aij|
[
xi(t)− sgn(aij)xj(t)

][
νi(t)− sgn(aij)νj(t)

]
= 2

m

∑
i=1

m

∑
j=1

|aij|
[
xi(t)− sgn(aij)xj(t)

]
νi(t).

(4)

n

∑
i=m+1

m

∑
j=1

|aij|
[
xi(t)− sgn(aij)xj(t)

][
ẋi(t)− sgn(aij)νj(t)

]
=

n

∑
j=m+1

m

∑
i=1

|aji|
[
xj(t)− sgn(aji)xi(t)

][
ẋj(t)− sgn(aji)νi(t)

]
=

m

∑
i=1

n

∑
j=m+1

|aij|
[
xj(t)− sgn(aij)xi(t)

][
ẋj(t)− sgn(aij)νi(t)

]
=

m

∑
i=1

n

∑
j=m+1

|aij|
[
sgn(aij)xj(t)− xi(t)

][
sgn(aij)ẋj(t)− νi(t)

]
=

m

∑
i=1

n

∑
j=m+1

|aij|
[
xi(t)− sgn(aij)xj(t)

][
νi(t)− sgn(aij)ẋj(t)

]
.

(5)

Due to

−
n

∑
i=m+1

n

∑
j=m+1

|aij|
[
xi(t)− sgn(aij)xj(t)

]
sgn(aij)ẋj(t)

= −
n

∑
j=m+1

n

∑
i=m+1

|aji|
[
xj(t)− sgn(aji)xi(t)

]
sgn(aji)ẋi(t)

= −
n

∑
i=m+1

n

∑
j=m+1

|aij|
[
sgn(aij)xj(t)− xi(t)

]
ẋi(t)

=
n

∑
i=m+1

n

∑
j=m+1

|aij|
[
xi(t)− sgn(aij)xj(t)

]
ẋi(t),
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we have

n

∑
i=m+1

n

∑
j=m+1

|aij|
[
xi(t)− sgn(aij)xj(t)

][
ẋi(t)− sgn(aij)ẋj(t)

]
= −2

n

∑
i=m+1

n

∑
j=m+1

|aij|
[
xi(t)− sgn(aij)xj(t)

]
sgn(aij)ẋj(t).

(6)

Substituting Equations (4)–(6) into V̇(x) and further simplifying, we can obtain

V̇(x) = −2
m

∑
i=1

ξ2
i (t)− 2

n

∑
i=1

n

∑
j=m+1

|aij|
[
xi(t)− sgn(aij)xj(t)

]
sgn(aij)ẋj(t)

= −2
m

∑
i=1

ξ2
i (t)− 2

n

∑
j=1

n

∑
i=m+1

|aji|
[
xj(t)− sgn(aji)xi(t)

]
sgn(aji)ẋi(t)

= −2
m

∑
i=1

ξ2
i (t)− 2

n

∑
i=m+1

ẋi(t)
n

∑
j=1

|aij|
[
−xi(t) + sgn(aij)xj(t)

]
= −2

m

∑
i=1

ξ2
i (t)− 2

n

∑
i=m+1

ẋ2
i (t) ≤ 0.

(7)

V̇(x) = 0 implies limt→∞ ẋi(t) = 0 for ∀i ∈ {m + 1, m + 2, · · · , n} and limt→∞ ξi(t) = 0 for
∀i ∈ {1, 2, · · · , m}. Because of ẋi(t) = −∑n

j=1 |aij|
[
xi(t)− sgn(aij)xj(t)

]
, we can induce

n

∑
i=1

xi(∞)
n

∑
j=1

|aij|
[
xi(∞)− sgn(aij)xj(∞)

]
=

n

∑
i=1

n

∑
j=1

|aij|
[
xi(∞)− sgn(aij)xj(∞)

]2
= 0.

(8)

(1) When G is structurally balanced, we can derive

n

∑
i=1

n

∑
j=1

|aij|
[
xi(∞)− sgn(aij)xj(∞)

]2
= xT(∞)Lx(∞). (9)

Because G is structurally balanced, there exists a diagonal matrix Dn such that L = DnLDn
holds. Then, we can rewrite (9) as

xT(∞)Lx(∞) = xT(∞)D2
nLD2

nx(∞)

= (Dnx(∞))T(DnLDn)(Dnx(∞)) = 0.

Therefore, we can derive that xT(∞)Lx(∞) = 0 implies Dnx(∞) = c1n for some c ∈ R. We
can further develop x(∞) = cDn1n. The position’s states of the system (1) can achieve the
bipartite consensus. Based on this, we can further develop νi(∞) = ẋi(∞) = 0, ∀i ∈ Im.
Hence, we can induce

lim
t→∞

(
|xi(t)| − |xj(t)|

)
= 0, ∀i, j ∈ In,

lim
t→∞

|νi(t)| = 0, ∀i ∈ Im.

Hence, the system (1) can achieve the static bipartite consensus under the control of
the protocol (2).

(2) When G is structurally unbalanced, we can deduce

xT(∞)Lx(∞) = 0.
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Because L is symmetric, it can be written as L = MT M. We can derive

xT(∞)Lx(∞) = xT(∞)MT Mx(∞)

= (Mx(∞))T(Mx(∞)) = 0
(10)

Hence, Mx(∞) = 0n holds, which implies x(∞) = 0n. This, together with ν(∞) = ẋ(∞),
ensures ν(∞) = 0m. Thus,

lim
t→∞

|xi(t)| = 0, ∀i ∈ In,

lim
t→∞

|νi(t)| = 0, ∀i ∈ Im

which indicates the static state stability of the system (1) when the distributed protocol (2)
is applied. We complete this proof.

Remark 1. According to Theorem 1, we can develop the convergence results of signed networks
with heterogeneous dynamics. It is shown that with the proposed protocol being used, the signed
network subject to both first-order and second-order integrators can achieve the static bipartite
consensus (respectively, state stability) if and only if the associated signed graph is structurally
balanced (respectively, unbalanced). Additionally, we should point out that the computational
complexity of Theorem 1 is related to the number of agents in signed networks. This computational
complexity may grow as the number of nodes increases.

5. Simulations

In this section, we introduce two examples to validate the correctness of the obtained
results. We consider the system (1) consisting of eight agents, whose communication
topology can be represented by Figure 2, where the dynamics of four agents v1, v2, v3,
and v4 are second-order integrators and the dynamics of four agents v5, v6, v7, and v8 are
first-order integrators. The initial states of these eight agents are selected as follows:

x(0) = [200, 110, 60, 40,−60,−80,−50, 10]T ,

ν(0) = [2, 2, 2, 1]T .

Example 2. We consider the system (1) whose communication topology is described by Figure 2a.
We can easily see that the signed graph G3 is structurally balanced and all nodes can be divided
into two groups: V1 = {v1, v2, v3, v4} and V2 = {v5, v6, v7, v8}. The Laplacian matrix of G3 is
given by

L3 =



7 −2 0 0 0 0 3 2
−2 8 −1 0 0 5 0 0
0 −1 6 −3 2 0 0 0
0 0 −3 4 1 0 0 0
0 0 2 1 5 −2 0 0
0 5 0 0 −2 8 −1 0
3 0 0 0 0 −1 7 −3
2 0 0 0 0 0 −3 5


.

Applying the distributed control protocol (2) to the system (1), the state evolutions of eight agents
are shown in Figure 3.

From Figure 3, it can be seen that the position states of the eight agents (as indicated by the red
lines) can achieve the bipartite consensus, and the velocity states of four agents (as indicated by the
blue lines) with second-order integrator dynamics eventually converge to zero. This indicates that,
under the distributed control algorithm (2), the system (1) can achieve the goal of static bipartite
consensus, which validates the correctness of the results of Theorem 1.
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(a)

(b)

Figure 2. Two signed undirected graphs, (a): G3 and (b): G4.
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Figure 3. State evolutions of the system (1) under the signed graph G3.
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Example 3. For the system (1) under the signed graph G4 in Figure 2b, let the distributed control
protocol (2) be employed. It can be easily seen that the signed graph G4 is structurally unbalanced
based on the definition of structural balance. The Laplacian matrix of G4 is given by

L4 =



7 −2 0 0 0 0 3 2
−2 8 −1 0 0 5 0 0
0 −1 6 −3 −2 0 0 0
0 0 −3 4 1 0 0 0
0 0 −2 1 5 −2 0 0
0 5 0 0 −2 8 −1 0
3 0 0 0 0 −1 7 −3
2 0 0 0 0 0 −3 5


.

The evolution of the states of all eight agents is shown in Figure 4.
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Figure 4. State evolutions of the system (1) under the signed graph G4.

From Figure 4, it can be observed that when the communication topology is structurally
unbalanced, the positional states of eight agents (as indicated by the red lines) and the velocity states
of four agents (as indicated by the blue lines) eventually converge to zero under the control of the
distributed protocol (2), which denotes that the system (1) can reach the state stability. Hence, these
derived results satisfy Theorem 1.

6. Conclusions

In this paper, we have studied the distributed control problems of heterogeneous
signed networks under undirected communication topologies, in which both first-order
integrators and second-order integrators are considered. We have designed a distributed
control protocol based on only position information. With this protocol being employed,
we have developed the convergence results of signed networks. It is shown that the signed
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network can achieve the static bipartite consensus (respectively, state stability) if and only if
the signed undirected graph is structurally balanced (respectively, unbalanced). In addition,
we have given two examples to verify the correctness of our derived results.

In our future work, we aim to explore the distributed control problems of heteroge-
neous signed networks under directed topologies, in addition to those with communication
delays and external disturbances.
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