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Abstract: In this paper, a new adaptive critic design is proposed to approximate the online Nash
equilibrium solution for the robust trajectory tracking control of non-zero-sum (NZS) games for
continuous-time uncertain nonlinear systems. First, the augmented system was constructed by
combining the tracking error and the reference trajectory. By modifying the cost function, the
robust tracking control problem was transformed into an optimal tracking control problem. Based
on adaptive dynamic programming (ADP), a single critic neural network (NN) was applied for
each player to solve the coupled Hamilton–Jacobi–Bellman (HJB) equations approximately, and the
obtained control laws were regarded as the feedback Nash equilibrium. Two additional terms were
introduced in the weight update law of each critic NN, which strengthened the weight update process
and eliminated the strict requirements for the initial stability control policy. More importantly, in
theory, through the Lyapunov theory, the stability of the closed-loop system was guaranteed, and the
robust tracking performance was analyzed. Finally, the effectiveness of the proposed scheme was
verified by two examples.

Keywords: adaptive dynamic programming (ADP); non-zero-sum (NZS) games; robust trajectory
tracking; Hamilton–Jacobi–Bellman (HJB) equation; uncertain nonlinear systems
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1. Introduction

Control theory has been gradually developed to meet the needs of engineering. In
practical engineering, environmental uncertainties, such as noise, temperature, etc., greatly
affect the stability of a system, so it is very important to find a control method to solve this
problem. In recent years, some methods to deal with disturbance or uncertainty have been
proposed, such as sliding mode control, type-2 fuzzy control [1,2], internal model control,
and so on. However, in a sense, robust control can be also applied to solve the control prob-
lems of uncertain dynamic systems [3,4]. Based on the development of adaptive dynamic
programming (ADP) and control algorithms, some methods have been effective in solving
robust control problems, including guaranteed cost control [5], the system transformation
method [6–8], control schemes for robust stabilization using integral reinforcement learning
(IRL) methods [9,10]. These methods mainly embody the ideas of reinforcement learning
and adaptive dynamic programming. When studying the optimal control problem using
adaptive dynamic programming [11–13], the key is to solve the Hamilton–Jacobi–Bellman
(HJB) equation; however, due to the curse of dimensionality, it is almost impossible to
solve directly. Combining neural network (NN) approximation methods and ADP ideas,
the adaptive critic design has been widely used in robust control [14,15]. Considering the
adaptive critic design, the approximate solution of the HJB equation can be attained to cope
with robust control problems [5,9,15]. For a system with uncertainties, the upper bound
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function of uncertainties is usually given, and then the cost function is modified so that the
robust control problem can be transformed into the optimal control problem of a nominal
system [15]. It has inspired our processing method for uncertain disturbance. From the
above results, it can be seen that the basic regulation problem has been solved.

As the complexity of a system increases, a large class of systems often has multiple
controllers, such as immune systems [16] and interconnected systems [17]. Game theory
considers individual predictive behavior and practical behavior in a game, and studies
optimization strategies, and multi-controller system issues can be well addressed by it [18].
As an important theory in game theory, non-zero-sum (NZS) game theory was first pro-
posed in [19] and it aims to find a set of feedback control strategies to achieve the so-called
Nash equilibrium while satisfying the defined performance indicators and guaranteeing
the system’s stability. In this process, the most important aspect is to solve the coupled HJB
equations. Since the coupled HJB equations are difficult to solve directly, many advanced
algorithms have been developed. In general, iteration-based algorithms can be used to
approximate the solution of HJB equations. A policy-based iteration algorithm was used
to solve the system of NZS game problems in [20,21]. Considering that it is difficult to
know the specific dynamics of complex systems, in [22], based on the iteration algorithm,
the Nash equilibrium was obtained approximately by the data-based IRL, which does not
need known system dynamics. As policy iteration requires an initial stable control policy,
an off-policy IRL method was given to solve the coupled HJB equations in [23]. Recently,
the ADP method has become an effective tool in solving the coupled HJB equations. To
solve the NZS game of unknown nonlinear systems, using a generalized fuzzy hyper-
bolic model, an approximately optimal control scheme based on the ADP method was
presented in [24]. Combined with the ADP method and the NN structure, the adaptive
critic design was also applied to the NZS game. Based on the structure of an actor?critic
NN, an adaptive algorithm was proposed for NZS games in the nonlinear system in [25].
In [26], using experience replay techniques, based on the framework of a single critic NN,
the NZS game of the unknown dynamical systems was studied. The method proposed
above can effectively solve the NZS game. However, there are few studies on NZS games
with uncertain disturbances. Therefore, based on adaptive critic design, the NZS game of
nonlinear systems with uncertain perturbations was studied in this work.

Initially, our research for the system was limited to allowing the state of the system
to converge to the origin; however, many system controller designs also require the con-
trolled object to track a reference trajectory, especially in noisy and uncertain environments.
Usually, this is a very common control problem. Trajectory tracking control problems have
been solved by some algorithms in [27–34]. The iterative algorithm can still be effectively
applied to trajectory tracking control. In [27], to overcome some shortcomings of the tra-
ditional controller, an adaptive iterative algorithm was proposed for the robot trajectory
tracking problem. Considering disturbance, an iterative algorithm based on Q-learning
was presented to solve the H∞ tracking problem of discrete-time systems in [28], which
didn’t require system dynamics. In [29], the tracking problem was transformed into the
tracking error adjustment problem through system transformation, which was solved by
the iterative ADP algorithm. Then, some non-iterative algorithms for tracking problems
were proposed in [30–34]. In [30], the optimal tracking control was studied using online ap-
proximators, but this method involved the reversibility of the control matrix. To overcome
the requirement of invertibility of the control matrix, some new methods were proposed.
In [31], based on system transformation, a self-learning optimal control method was used
to solve the robust trajectory tracking design of uncertain nonlinear systems. Considering
the need for multiple outputs in some systems, the robust tracking control of discrete-time
systems with multiple inputs and multiple outputs was studied utilizing the adaptive
critic design in [32]. By modifying the cost function and introducing a discount factor, the
guaranteed cost tracking problem was transformed into an optimal tracking problem, and
by developing a new critic NN the optimal tracking control problem could be addressed
without policy iteration in [33]. As with some systems with unmatched perturbation, the



Mathematics 2022, 10, 1904 3 of 23

NN-based ADP algorithm was used to obtain the approximately optimal tracking control
law of uncertain nonlinear systems with a predefined cost function in [34]. In this paper,
based on the critic NN structure and the ADP method, an augmented system was used to
solve the tracking control problem for NZS games with perturbation.

The main contributions of this paper are as follows:

(1) An augmented system was constructed by combining the tracking error and the
reference trajectory. The robust tracking control problem was transformed into an
optimal tracking control problem of the nominal augmented system by modifying
the cost functions. This method no longer strictly required the control matrix to be
reversible. Moreover, in most cases, robust tracking control is applied to some special
systems, but here we considered a general system similar to a spring-mass-damper
system [31].

(2) For the NZS game between two players with uncertainties, a newly improved adaptive
critic design was proposed to solve the revised coupled HJB equations. Two additional
terms were introduced in the critic NN weight design, one was used to ensure that
the system could always be in a stable state without the need for the initial stability
control policy, and the other was used to analyze the stability of the system.

(3) Compared with the actor–critic NN, each player only used one critic NN to approxi-
mate their value function and control policy, which could greatly reduce the amount
of calculation. By the Lyapunov theory, the stability of the closed-loop system was
proved, and the trajectory tracking performance was analyzed. What is more, the
adaptive critic design could be carried out online.

The rest of this paper is arranged as follows. In the second section, the description
of the two-player NZS game with uncertain terms and the construction method of the
augmented matrix structure are given. Then in the third section, a single critic NN structure
is used to approximate the value function for each player, and the approximate feedback
Nash equilibrium is then solved. Moreover, the system stability analysis and the tracking
performance analysis are given. Finally, the effectiveness of the proposed scheme is verified
by two examples.

2. Problem Statement

A class of continuous-time uncertain nonlinear dynamical systems for two-player NZS
games is given by

ẋ(t) = f (x(t)) + g(x(t))u(t) + k(x(t))v(t) + ∆ f (x(t)), (1)

where x ∈ Rn is the system state, u ∈ Rm is the first control input, v ∈ Rq is the second
control input. The known functions f (·), g(·) and k(·) are Lipschitz continuous on a
compact set Ω ⊆ Rn with f (0)=0. ∆ f (x(t)) = M(x)d(x) is the unknown perturbation
satisfying ∆ f (0) = 0. Here, M(·) ∈ Rn×r is a known function, and d(·) ∈ Rr is an uncertain
function with d(0) = 0. One chooses the initial state as x(0) = x0. Let the uncertain term
∆ f (x(t)) be bounded by a known function λ f (x), i.e., ‖∆ f (x)‖ ≤ λ f (x) with λ f (0) = 0.

Here, we introduce a system reference trajectory command generator to implement
the trajectory tracking, that is

ṡ(t) = ϕ(s(t)), (2)

where s(t) ∈ Rn denotes the bounded reference trajectory. Let the initial trajectory be
s(0) = s0 and ϕ(s(t)) is a Lipschitz continuous function with ϕ(0) = 0. The tracking error
is defined as

er(t) = x(t)− s(t). (3)

Then, the initial error vector is er(0) = er0 = x0− s0. According to (1)–(3), the tracking
error dynamics can be obtained as

ėr(t) = f (x(t))− ϕ(s(t)) + g(x(t))u(t) + k(x(t))v(t) + ∆ f (x(t)). (4)
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Due to x(t) = er(t) + s(t), system (4) is written as

ėr(t) = f (er(t) + s(t))− ϕ(s(t)) + g(er(t) + s(t))u(t) + k(er(t) + s(t))v(t)

+ ∆ f (er(t) + s(t)).
(5)

To introduce the augmented system, we define an augmented state vector ζ(t) =
[eTr (t), sT(t)]T ∈ R2n, and we can choose its initial condition as ζ(0) = ζ0 = [eTr (0), sT(0)]T

∈ R2n. Combining (2) and (5), the augmented system dynamics is simplified to

ζ̇(t) = F (ζ(t)) + G(ζ(t))u(t) +K(ζ(t))v(t) + ∆F (ζ(t)), (6)

where F (·), G(·) and K(·) are new system matrices. What is more, ∆F (ζ) represents the
augmented system uncertainty, and they are written in the following specific form:

F (ζ(t)) =
[

f (er(t) + s(t))− ϕ(s(t))
ϕ(s(t))

]
, (7)

G(ζ(t)) =
[

g(er(t) + s(t))
0n×m

]
, (8)

K(ζ(t)) =
[

k(er(t) + s(t))
0n×q

]
, (9)

∆F (ζ(t)) =
[

∆ f (er(t) + s(t))
0n×1

]
. (10)

It’s easy to conclude that ∆F (ζ) is upper bounded, and the details are as follows:

‖∆F (ζ)‖ = ‖∆ f (er + s)‖ = ‖∆ f (x)‖ ≤ λ f (er + s) , λ f (ζ). (11)

In order to better analyze the NZS game with the uncertain perturbation, we decom-
pose the uncertain term ∆F (ζ) into

∆F (ζ) = ∆F1(ζ) + ∆F2(ζ) = M1(ζ)d1(ζ) + M2(ζ)d2(ζ), (12)

where M1(·) ∈ Rn×r and M2(·) ∈ Rn×r are known functions in the uncertain term.
d1(·) ∈ Rr and d2(·) ∈ Rr are the uncertain functions satisfying d1(0) = d2(0) = 0.
Similarly, two known functions λ f 1(ζ) and λ f 2(ζ) are the upper bounds of ∆F1(ζ) and
∆F2(ζ) with λ f 1(0) = λ f 2(0) = 0.

Assumption 1. The control function matrixes g(x) and k(x) are bounded as ‖g(x)‖ ≤ λg and
‖k(x)‖ ≤ λk [31], where λg and λk are positive constants, and hence

‖G(ζ)‖ = ‖g(er + s)‖ = ‖g(x)‖ ≤ λg, (13)

‖K(ζ)‖ = ‖k(er + s)‖ = ‖k(x)‖ ≤ λk. (14)

By constructing the augmented dynamics (6), the feedback control laws u(ζ) and v(ζ)
are found to make the state of system move along the reference trajectory. At the same
time, the closed-loop system is asymptotically stable under the influence of the uncertain
term. Next, we can give the appropriate cost functions to transform the robust control the
problem into the optimal control problem for its nominal system.

For the augmented system (6), we focus on the nominal system part

ζ̇(t) = F (ζ(t)) + G(ζ(t))u(t) +K(ζ(t))v(t). (15)
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The two-player cost functions are

J1(ζ0, u, v) =
∫ ∞

0
{Γ1(ζ(t)) + U1(ζ(t), u(t), v(t))}dt, (16)

J2(ζ0, u, v) =
∫ ∞

0
{Γ2(ζ(t)) + U2(ζ(t), u(t), v(t))}dt, (17)

where U1(ζ, u, v) and U2(ζ, u, v) are the the basic parts of utility functions with U1(0, 0, 0) =
U2(0, 0, 0) = 0, U1(ζ, u, v) ≥ 0 and U2(ζ, u, v) ≥ 0 for all ζ, u and v. Utility functions are
chosen as U1(ζ, u, v) = ζTQ̄1ζ + uTR11u + vTR12v and U2(ζ, u, v) = ζTQ̄2ζ + uTR21u +
vTR22v, where Q̄1 = diag{Q1, 0n×n}, Q̄2 = diag{Q2, 0n×n}, Q1, Q2, R11, R12, R21 and R22
are positive definite matrices. Γ1(ζ) and Γ2(ζ) are related to the dynamical uncertainty
with Γ1(ζ) ≥ 0 and Γ2(ζ) ≥ 0. What is more, the feedback controllers required to solve
the optimal control problem are admissible. Then, the definition of admissible policies is
described below.

Definition 1. (Admissible policies) Control functions u(ζ) and v(ζ) are said to be admissible with
respect to (16) and (17) on Ω ⊆ Rn [26], if u(ζ) and v(ζ) are continuous on Ω, u(0) = v(0) = 0,
u(ζ) and v(ζ) stabilize system (15) on Ω, moreover, the cost functions (16) and (17) are finite
∀ζ0 ∈ Ω.

Given admissible feedback policies u(ζ) ∈ A(Ω) and v(ζ) ∈ A(Ω), one can define
value functions that correspond to the cost functions as

V1(ζ(t)) =
∫ ∞

t
{Γ1(ζ(τ)) + U1(ζ(τ), u(τ), v(τ))}dτ, (18)

V2(ζ(t)) =
∫ ∞

t
{Γ2(ζ(τ)) + U2(ζ(τ), u(τ), v(τ))}dτ, (19)

where one can define Γ1(ζ) and Γ2(ζ) as

Γ1(ζ) = λ2
f 1(ζ) +

1
4
(∇V1(ζ))

TM1(ζ)MT
1 (ζ)∇V1(ζ), (20)

Γ2(ζ) = λ2
f 2(ζ) +

1
4
(∇V2(ζ))

TM2(ζ)MT
2 (ζ)∇V2(ζ). (21)

In this paper, a 2-tuple of policies {u, v} is found to minimize (18) and (19), thus, the
optimal value functions V∗1 and V∗2 are defined as

V∗1 (ζ(t)) = min
u∈A(Ω)

∫ ∞

t
{Γ1(ζ(τ)) + U1(ζ(τ), u(τ), v(τ))}dτ, (22)

V∗2 (ζ(t)) = min
v∈A(Ω)

∫ ∞

t
{Γ2(ζ(τ)) + U2(ζ(τ), u(τ), v(τ))}dτ. (23)

In addition, there exists a Nash equilibrium in the NZS game between two players.
Next, we give the Nash equilibrium definition.

Definition 2. (Nash equilibrium policies) A 2-tuple of policies {u∗, v∗} with u, v ∈ A(Ω) is
said to constitute a Nash equilibrium solution for the two-player game [35], if the following two
inequalities are satisfied for all u, v ∈ A(Ω):

J ∗1 (u∗, v∗) ≤ J1(u, v∗), (24)

J ∗2 (u∗, v∗) ≤ J2(u∗, v). (25)
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Under the admissible feedback policies, if the value functions (18) and (19) are contin-
uously differentiable, their differential equivalents are given by

0 = Γ1(ζ) + U1(ζ, u, v) + (∇V1)
T[(F (ζ) + G(ζ)u(ζ) +K(ζ)v(ζ)], (26)

0 = Γ2(ζ) + U2(ζ, u, v) + (∇V2)
T[F (ζ) + G(ζ)u(ζ) +K(ζ)v(ζ)], (27)

with Vi(0) = 0 and ∇Vi = ∂Vi/∂ζ, i = 1, 2. Define the Hamiltonian functions

H1(ζ, u(ζ), v(ζ),∇V1) =Γ1(ζ) + U1(ζ, u(ζ), v(ζ))

+ (∇V1)
T[(F (ζ) + G(ζ)u(ζ) +K(ζ)v(ζ)],

(28)

H2(ζ, u(ζ), v(ζ),∇V2) =Γ2(ζ) + U2(ζ, u(ζ), v(ζ))

+ (∇V2)
T[(F (ζ) + G(ζ)u(ζ) +K(ζ)v(ζ)].

(29)

According to the stationarity conditions [36], two players’ optimal feedback control
policies are given by

∂H1

∂u
= 0⇒ u∗ = −1

2
R−1

11 G
T(ζ)∇V∗1 , (30)

∂H2

∂v
= 0⇒ v∗ = −1

2
R−1

22 K
T(ζ)∇V∗2 . (31)

Combining (26), (27), (30) and (31), one obtains the coupled HJB equations

0 =Γ1(ζ) + ζTQ̄1ζ + (∇V∗1 )
TF (ζ)− 1

2
(∇V∗1 )

TG(ζ)R−1
11 G

T(ζ)(∇V∗1 )

− 1
2
(∇V∗1 )

TK(ζ)R−1
22 K

T(ζ)(∇V∗2 ) +
1
4
(∇V∗1 )

TG(ζ)R−T11 R11R−1
11 G

T(ζ)∇V∗1

+
1
4
(∇V∗2 )

TK(ζ)R−T22 R12R−1
22 K

T(ζ)∇V∗2 ,

(32)

0 =Γ2(ζ) + ζTQ̄2ζ + (∇V∗2 )
TF (ζ)− 1

2
(∇V∗2 )

TG(ζ)R−1
11 G

T(ζ)(∇V∗1 )

− 1
2
(∇V∗2 )

TK(ζ)R−1
22 K

T(ζ)(∇V∗2 ) +
1
4
(∇V∗1 )

TG(ζ)R−T11 R21R−1
11 G

T(ζ)∇V∗1

+
1
4
(∇V∗2 )

TK(ζ)R−T22 R22R−1
22 K

T(ζ)∇V∗2 ,

(33)

where V∗1 (0) = 0 and V∗2 (0) = 0. To simplify the operation, eight non-negative matrices
Ai(ζ), Bi(ζ), Ci(ζ) and Di(ζ), i = 1, 2 are given by

A1(ζ) = M1(ζ)MT
1 (ζ), (34a)

A2(ζ) = M2(ζ)MT
2 (ζ), (34b)

B1(ζ) = G(ζ)R−1
11 G

T(ζ), (34c)

B2(ζ) = K(ζ)R−1
22 K

T(ζ), (34d)

C1(ζ) = K(ζ)R−T22 R12R−1
22 K

T(ζ), (34e)

C2(ζ) = G(ζ)R−T11 R21R−1
11 G

T(ζ), (34f)

D1(ζ) = K(ζ)R−1
22 K

T(ζ), (34g)

D2(ζ) = G(ζ)R−1
11 G

T(ζ). (34h)

We all know that it is difficult to directly solve the coupled HJB equations, so, next, we
approximate their solutions using the NN-based adaptive critic design.
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3. Robust Trajectory Tracking Design for Non-Zero-Sum Games

This section mainly includes two parts. First, the solution of coupled HJB equations
is approximated by the adaptive critic design based on a single NN structure, so that the
so-called Nash equilibrium is found. Secondly, the stability of the system is proved and the
tracking performance is analyzed via the Lyapunov theory.

3.1. Neural Network Implementation

In order to realize the neural network approximation, we first introduce the Weierstrass
high-order approximation theorem [37,38].

Assumption 2. The solutions to (26) and (27) are smooth.

According to Assumption 2, there exist complete independent basis sets {vi(ζ)} and
{µi(ζ)} such that the solutions to (26) and (27) and their gradients are uniformly approxi-
mated, that is, there exist coefficients ci and zi such that

V1(ζ) =
∞

∑
i=1

civi(ζ) =
K

∑
i=1

civi(ζ) +
∞

∑
i=K+1

civi(ζ), (35)

V2(ζ) =
∞

∑
i=1

ziµi(ζ) =
K

∑
i=1

ziµi(ζ) +
∞

∑
i=K+1

ziµi(ζ). (36)

Then we have

V1(ζ) ≡ CT
1 φ1(ζ) +

∞

∑
i=K+1

civi(ζ), (37)

V2(ζ) ≡ ZT
1 φ2(ζ) +

∞

∑
i=K+1

ziµi(ζ), (38)

where φ1(ζ) = [v1(ζ), v2(ζ) . . . vK(ζ)]
T, φ2(ζ) = [µ1(ζ), µ2(ζ) . . . µK(ζ)]

T, and the last
terms in these equations converge uniformly to zero as K → ∞. Next, we give the specific
content of the value function approximation.

For the augmented dynamics (15), the value functions are re-expressed as

V1(ζ) = WT
1 φ1(ζ) + ε1, (39)

V2(ζ) = WT
2 φ2(ζ) + ε2, (40)

where W1, W2 ∈ RK are ideal weights, φ1(ζ), φ2(ζ) ∈ RK are defined as activation function
vectors, K is the number of hidden neurons, and ε1 and ε2 are the critic NN approximation
errors. When K → ∞, ε1 and ε2 converge to zero; however, when K is a fixed constant they
are bounded.

Assumption 3. In order to ensure the boundedness, we make the following assumptions, as in [26].

(1) The critic NN activation functions and their gradients are bounded such as ‖φi‖ ≤ λφi and
‖∇φi‖ ≤ λdφi

, i = 1, 2. λφi and λdφi
are positive constants.

(2) The critic NN approximation errors and their gradients are bounded by positive constants
such that ‖ε1‖ ≤ λεi and ‖∇εi‖ ≤ λdεi

, i = 1, 2. λεi and λdεi
are positive constants.

(3) The critic NN weights are upper bounded such that ‖Wi‖ ≤ W̄i, i = 1, 2. W̄i are positive
constants.

The derivatives of (39) and (40) along with ζ are

∇V1(ζ) = ∇φT
1 (ζ)W1 +∇ε1, (41)



Mathematics 2022, 10, 1904 8 of 23

∇V2(ζ) = ∇φT
2 (ζ)W2 +∇ε2, (42)

where ∇φi = ∂φi/∂ζ,∇εi = ∂εi/∂ζ, i = 1, 2. Noticing (30), (31), (41) and (42), the optimal
control laws are written as

u∗ = −1
2

R−1
11 G

T(ζ)[∇φT
1 (ζ)W1 +∇ε1], (43)

v∗ = −1
2

R−1
22 K

T(ζ)[∇φT
2 (ζ)W2 +∇ε2]. (44)

Then the associated Bellman equations can be derived as

Γ1(ζ) + U1(ζ, u, v) + WT
1 ∇φ1(ζ)[F (ζ) + G(ζ)u(ζ) +K(ζ)v(ζ)] = εb1 , (45)

Γ2(ζ) + U2(ζ, u, v) + WT
2 ∇φ2(ζ)[F (ζ) + G(ζ)u(ζ) +K(ζ)v(ζ)] = εb2 , (46)

where εbi
= −(∇εi)

T(F + Gu +Kv), i = 1, 2 are the Bellman equation errors. When the
number of the critic NN hidden neurons K → ∞, they converge to zero [36]. However,
when K is a fixed constant they are bounded by constants such as ‖εbi

‖ ≤ λεbi
, i = 1, 2.

Based on (32), (33), (43) and (44), one obtains

H1 =ζTQ̄1ζ + λ2
f 1(ζ) + WT

1 ∇φ1(ζ)F (ζ) +
1
4

WT
1 ∇φ1(ζ)A1(ζ)∇φT

1 (ζ)W1

− 1
4

WT
1 ∇φ1(ζ)B1(ζ)∇φT

1 (ζ)W1 +
1
4

WT
2 ∇φ2(ζ)C1(ζ)∇φT

2 (ζ)W2

− 1
2

WT
1 ∇φ1(ζ)D1(ζ)∇φT

2 (ζ)W2 = εHJ1 ,

(47)

H2 =ζTQ̄2ζ + λ2
f 2(ζ) + WT

2 ∇φ2(ζ)F (ζ) +
1
4

WT
2 ∇φ2(ζ)A2(ζ)∇φT

2 (ζ)W2

− 1
4

WT
2 ∇φ2(ζ)B2(ζ)∇φT

2 (ζ)W2 +
1
4

WT
1 ∇φ1(ζ)C2(ζ)∇φT

1 (ζ)W1

− 1
2

WT
2 ∇φ2(ζ)D2(ζ)∇φT

1 (ζ)W1 = εHJ2 .

(48)

εHJ1 and εHJ2 are the coupled HJB equations approximation errors shown in [36]. Without
loss of generality, as the number of the critic NN hidden neurons K → ∞, they converge to
zero. However, when K is a fixed constant they are bounded by positive constants such
that ‖εHJi‖ ≤ λεHJi

, i = 1, 2.

Since the ideal weights W1 and W2 are unknown, they are estimated as Ŵ1 and Ŵ2,
then the weight estimation errors are defined as W̃i = Wi − Ŵi, i = 1, 2. The estimated
value functions are given by

V̂1(ζ) = ŴT
1 φ1(ζ), (49)

V̂2(ζ) = ŴT
2 φ2(ζ). (50)

Meanwhile, the approximate optimal control policies are presented as

û∗ = −1
2

R−1
11 G

T(ζ)∇φT
1 (ζ)Ŵ1, (51)

v̂∗ = −1
2

R−1
22 K

T(ζ)∇φT
2 (ζ)Ŵ2. (52)
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Based on (32), (33), (51) and (52), the approximate Hamilton functions are

Ĥ1 =ζTQ̄1ζ + λ2
f 1(ζ) + ŴT

1 ∇φ1(ζ)F (ζ) +
1
4

ŴT
1 ∇φ1(ζ)A1(ζ)∇φT

1 (ζ)Ŵ1

− 1
4

ŴT
1 ∇φ1(ζ)B1(ζ)∇φT

1 (ζ)Ŵ1 +
1
4

ŴT
2 ∇φ2(ζ)C1(ζ)∇φT

2 (ζ)Ŵ2

− 1
2

ŴT
1 ∇φ1(ζ)D1(ζ)∇φT

2 (ζ)Ŵ2 , e1,

(53)

Ĥ2 =ζTQ̄2ζ + λ2
f 2(ζ) + ŴT

2 ∇φ2(ζ)F (ζ) +
1
4

ŴT
2 ∇φ2(ζ)A2(ζ)∇φT

2 (ζ)Ŵ2

− 1
4

ŴT
2 ∇φ2(ζ)B2(ζ)∇φT

2 (ζ)Ŵ2 +
1
4

ŴT
1 ∇φ1(ζ)C2(ζ)∇φT

1 (ζ)Ŵ1

− 1
2

ŴT
2 ∇φ2(ζ)D2(ζ)∇φT

1 (ζ)Ŵ1 , e2,

(54)

where e1 and e2 are the residual errors. The next tasks are to train neural networks and
design Ŵ1 and Ŵ2 to minimize the target function E = 1

2 eT1 e1 +
1
2 eT2 e2. Then Ŵ1 and Ŵ2

converge to W1 and W2.
To overcome the difficulty of finding the initial admissible controllers, the following

assumption is given. Furthermore, an additional term is developed to strengthen the
learning process of the critic NN.

Assumption 4. Given the cost functions (16) and (17), for the nominal augmented system (15),
under the optimal control policies of the two players, we define a continuously differentiable Lyapunov
function candidate Js(ζ) satisfying

J̇s(ζ) = (∇Js(ζ))
T[F (ζ) + G(ζ)u∗(ζ) +K(ζ)v∗(ζ)] < 0, (55)

where ∇Js(ζ) = ∂Js(ζ)/∂ζ. Suppose there exists a positive definite matrix Ξ(ζ) such that

(∇Js(ζ))
T[F (ζ) + G(ζ)u∗(ζ) +K(ζ)v∗(ζ)] = −(∇Js(ζ))

TΞ(ζ)∇Js(ζ) (56)

holds [5].

Remark 1. We assume that ‖F (ζ)+G(ζ)u∗(ζ)+K(ζ)v∗(ζ)‖ ≤ θ‖∇Js(ζ)‖, and θ is a positive
constant [5]. Hence, we have ‖(∇Js(ζ))TF (ζ) + G(ζ)u∗(ζ) +K(ζ)v∗(ζ)‖ ≤ θ‖∇Js(ζ)‖2. The
minimum and maximum eigenvalues of matrix Ξ(ζ) are λm and λM, then we obtain

λm‖∇Js(ζ)‖2 ≤ (∇Js(ζ))
TΞ(ζ)∇Js(ζ) ≤ λM‖∇Js(ζ)‖2. (57)

Here, Js(ζ) can be selected as Js(ζ) = 0.5ζTζ.
Now, based on the normalized gradient descent algorithm, the weights of the critic

NN for each player are tuned with two additional terms, that is

˙̂W1 =− a
σ11

(1 + σT
11σ11)2

[σT
11Ŵ1 + λ2

f 1(ζ) + U1(ζ, û, v̂)− 1
4

ŴT
1 ∇φ1(ζ)A1(ζ)∇φT

1 (ζ)Ŵ1]

+
b
2

Π(ζ, û, v̂)∇φ1(ζ)B1(ζ)∇Js(ζ) +
aσ11

4× (1 + σT
11σ11)2

[ŴT
1 ∇φ1(ζ)A1(ζ)∇φT

1 (ζ)Ŵ1

− ŴT
1 ∇φ1(ζ)B1(ζ)∇φT

1 (ζ)Ŵ1 − ŴT
2 ∇φ2(ζ)C1(ζ)∇φT

2 (ζ)Ŵ2],

(58)

˙̂W2 =− a
σ22

(1 + σT
22σ22)2

[σT
22Ŵ2 + λ2

f 2(ζ) + U2(ζ, û, v̂)− 1
4

ŴT
2 ∇φ2(ζ)A2(ζ)∇φT

2 (ζ)Ŵ2]

+
b
2

Π(ζ, û, v̂)∇φ2(ζ)B2(ζ)∇Js(ζ) +
aσ22

4× (1 + σT
22σ22)2

[ŴT
2 ∇φ2(ζ)A2(ζ)∇φT

2 (ζ)Ŵ2

− ŴT
2 ∇φ2(ζ)B2(ζ)∇φT

2 (ζ)Ŵ2 − ŴT
1 ∇φ1(ζ)C2(ζ)∇φT

1 (ζ)Ŵ1],

(59)
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where a > 0 is the learning rate of the critic NN and the third term, b > 0 is the learning rate
of the second term. σii = ∇φi(F (ζ) + G(ζ)û +K(ζ)v̂) + 1

2∇φi(ζ)Mi(ζ)MT
i (ζ)∇φT

i (ζ)Ŵi,
i = 1, 2. In addition, Js(ζ) is given in Assumption 3. In (58) and (59), the Π(ζ, û, v̂) is the
additional stabilizing term defined as

Π(ζ, û, v̂) =
{

0, if J̇s(ζ) = (∇Js(ζ))T[F (ζ) + G(ζ)û(ζ) +K(ζ)v̂(ζ)] < 0
1, else

(60)

Remark 2. The second term introduced guarantees that the system remains stable during the
weight update process. When the system is stable, the value of this item is 0. When the system is
unstable, this item is activated to reinforce system stability by enhancing the training process. On
account of

−∂ J̇s(ζ)

∂Ŵ1
= −

(
∂û

∂Ŵ1

)
J̇s(ζ)

∂û
=

1
2
∇φ1(ζ)B1(ζ)∇Js(ζ) (61)

and

−∂ J̇s(ζ)

∂Ŵ2
= −

(
∂v̂

∂Ŵ2

)
J̇s(ζ)

∂v̂
=

1
2
∇φ2(ζ)B2(ζ)∇Js(ζ), (62)

the additional stability term makes the weights update in the opposite direction of J̇s(ζ). If J̇s(ζ) ≥ 0,
the reinforced training process can reduce it to a negative value. On the other hand, when the probing
noise is needed to satisfy the persistent excitation (PE) condition, the additional stabilizing term
can keep the system in a closed-loop stable state, which leads the system to no longer need initial
stability control. The third terms given in (58) and (59) are for the next stability analysis.

3.2. Stability Analysis

In this section, we give several theorems and then add some assumptions to prove the
stability of the closed-loop nominal augmented system and analyze the tracking performance.

Assumption 5. Assume that the matrices associated with each player’s control input have upper
bounds, i.e.R11 ≤ R11M, R12 ≤ R12M, R21 ≤ R21M and R22 ≤ R22M. Eight non-negative matri-
ces Ai(ζ), Bi(ζ), Ci(ζ) and Di(ζ), i = 1, 2 are bounded, i.e.Ai(ζ) ≤ λAi, Bi(ζ) ≤ λBi, Ci(ζ) ≤
λCi and Di(ζ) ≤ λDi, i = 1, 2, λAi, λBi, λCi and λDi, i = 1, 2 are positive constants. More-
over, B1(ζ)∇ε1(ζ) ≤ λ2 and B2(ζ)∇ε2(ζ) ≤ λ3. λ2, λ3, R11M, R12M, R21M and R22M are
positive constants.

Theorem 1. For the nominal augmented system (15), a pair of feedback control laws {u∗, v∗} are
derived by (51) and (52), moreover, the weight vectors of the critic NN are trained by (58) and (59),
respectively. Then, we have that the closed-loop system state and the critic NN weights’ estimation
errors are both uniformly ultimately bounded (UUB).

Proof. See the Appendix A.

According to Thereom 1, it is easy to conclude that the feedback control laws converge.

Corollary 1. The control policies converge to the approximate Nash equilibrium solution of the
NZS game.

Proof of Corollary 1. Based on (43), (44), (51) and (52), we have

u∗ − û∗ = −1
2

R−1
11 G

T(ζ)∇φT
1 (ζ)W̃1 −

1
2

R−1
11 G

T(ζ)∇ε1(ζ), (63)

v∗ − v̂∗ = −1
2

R−1
22 K

T(ζ)∇φT
2 (ζ)W̃2 −

1
2

R−1
22 K

T(ζ)∇ε2(ζ). (64)
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According to Theorem 1, Assumption 1 and Assumption 3, we conclude that W̃i,
i = 1, 2, the terms R−1

11 GT(ζ)∇φT
1 (ζ)W̃1, R−1

22 KT(ζ)∇φT
2 (ζ)W̃2, R−1

11 GT(ζ)∇ε1(ζ) and
R−1

22 KT(ζ)×∇ε2(ζ) are bounded. Furthermore, we have

‖u∗ − û∗‖ ≤ 1
2

R−1
11Mλgλdφ1M+

1
2

R−1
11Mλgλdε1 , λu, (65)

‖v∗ − v̂∗‖ ≤ 1
2

R−1
22Mλkλdφ2M+

1
2

R−1
22Mλkλdε2 , λv. (66)

where λu and λv are the finite bounds. Therefore, ‖u∗ − û∗‖ and ‖v∗ − v̂∗‖ are UUB. This
completes the proof.

In addition to the convergence of system states to the origin, the tracking performance
of the system is also an important indicator. Therefore, we put forward Theorem 2 to show
that system (1) can track the reference trajectory (2) well, and the proof is given.

Theorem 2. Given the cost functions (16) and (17), for the nominal augmented system (15), the
approximate optimal control laws obtained by (51) and (52) ensure that the tracking error dynamics
are UUB.

Proof. See the Appendix A.

Remark 3. In this section, we give an optimal robust tracking control scheme for the NZS game,
which can be extended to the N-player NZS game system in theory.

4. Simulation
4.1. Two-Player Linear Non-Zero-Sum Game

Consider a continuous-time uncertain linear system:

ẋ =

[
x2

−3x1 − 0.5x2

]
+

[
0
1

]
u +

[
0
2

]
v +

[
η1x2cosx1
η2x1sinx2

]
, (67)

where x = [x1, x2]
T ∈ R2 is the state variable, u ∈ R and v ∈ R are the control inputs and

the uncertain parameters η1, η2 ∈ [−1, 1]. The last term of system (67) is the uncertain term

that is bounded by λ f (ζ) =
√

x2
1 + x2

2, then we have λ f 1(ζ) =
√

x2
2 and λ f 2(ζ) =

√
x2

1.

Let the initial system state vector be x0 = [−1, 1]T.
Here, the reference trajectory s(t) is generated by the following system:

ṡ =
[
−0.5s1 − s2cos(s1)

3sin(s1)− s2

]
, (68)

where s = [s1, s2]
T ∈ R2 is the reference state. One lets the initial reference state vector be

s0 = [0.5, 0.5]T.
Defining the tracking error as er = x− s so that ėr = ẋ− ṡ, let the augmented state

vector be ζ = [eTr , sT]T. Then, we have the augmented system dynamics as follows:

ζ̇ =


ζ2 + ζ4 + 0.5ζ3 + ζ4cos(ζ3)

−3(ζ1 + ζ3)− 0.5(ζ2 + ζ4)− 3sin(ζ3) + ζ4
−0.5ζ3 − ζ4cos(ζ3)

3sin(ζ3)− ζ4

+


0
1
0
0

u +


0
2
0
0

v + ∆F (ζ), (69)

where ζ = [ζ1, ζ2, ζ3, ζ4]
T ∈ R4 with ζ1 = er1, ζ2 = er2, ζ3 = s1, ζ4 = s2, and ∆F (ζ)

is the uncertain term of the augmented system. Here, we choose M1(ζ) = [1, 0, 0, 0]T

and M2(ζ) = [0, 1, 0, 0]T. Meanwhile, the decomposed the uncertain term are respec-
tively λ f 1(ζ) =

√
(ζ2 + ζ4)2 and λ f 2(ζ) =

√
(ζ1 + ζ3)2. Therefore, the initial state of
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the augmented system is ζ0 = [−1.5, 0.5, 0.5, 0.5]T with the initial tracking error vector
er0 = x0 − s0 = [−1.5, 0.5].

Select Q̄1 = diag{2I2, 02×2}, Q̄2 = diag{I2, 02×2}, R11 = R21 = 1, R12 = R22 = 0.5,
η1 = 1 and η2 = −1. The critic NN activation functions are chosen as φ1(ζ) = φ2(ζ) =
[ζ2

1, ζ1ζ2, ζ1ζ3, ζ1ζ4, ζ2
2, ζ2ζ3, ζ2ζ4, ζ2

3, ζ3ζ4, ζ2
4]
T. Let the learning rates be a = 2 and b = 0.5.

Moreover, one brings in a probing noise to satisfy the persistence excitation (PE) condition.
The state trajectories and reference trajectories are displayed in Figures 1 and 2. After
the learning process, Figures 3 and 4 show that the weights of critic NN1 and NN2 con-
verged to [0.2521, 0.0627,−0.0501, 0.0213,−0.0487, 0.0373, 0.0134, 0.0188, 0.0171, 0.0273]T

and [0.1934,−0.0558, 0.0248, 0.2574, 0.1487,−0.0026,−0.1406,−0.0039,−0.0134, 0.0928]T.
Since the value of the initial weights was all set as zero, we could conclude that the system
did not require the initial stable control policies. The control trajectories for each player are
in Figure 5. Figure 6 demonstrates that the tracking errors convergenced to 0, which indi-
cated that system (67) could track the reference trajectory (68) well. To verify the robustness
of the method, one could choose η1 = −0.5 and η2 = 0.5, and then perform the simulation
and verification.The tracking error and control input are depicted in Figures 7 and 8, which
still demonstrated the desired trajectory tracking performance again.

0 5 10 15 20 25 30 35 40 45 50

Time (s)

-1

-0.5

0

0.5

1

1.5
System state and tracking trajectory

x
1

s
1

Figure 1. System state x1 and its tracking trajectory when η1 = 1 and η2 = −1.
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1.5
System state and tracking trajectory
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Figure 2. System state x2 and its tracking trajectory when η1 = 1 and η2 = −1.
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Figure 3. Convergence curves of the critic NN1 weights for player 1.
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Figure 4. Convergence curves of the critic NN2 weights for player 2.
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Figure 5. Control trajectories for two players when η1 = 1 and η2 = −1.
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Figure 6. Tracking error trajectories when η1 = 1 and η2 = −1.
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Figure 7. System state x1 and its tracking trajectory when η1 = −0.5 and η2 = 0.5.
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Figure 8. System state x2 and its tracking trajectory when η1 = −0.5 and η2 = 0.5.
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4.2. Two-Player Nonlinear Non-zero-Sum Game

Consider a continuous-time uncertain nonlinear system:

ẋ =


x2

x2 − 0.5x1 − 0.25x2(cos(2x1) + 2)2

−0.25x2(sin(4x1) + 2)2

+

 0

cos(2x1) + 2

u +

 0

sin(4x2
1) + 2

v

+

η1x2cosx1sinx2

η2x1sinx2
2

.

(70)

In this example, the reference signal s(t) is derived by

ṡ =

 −s1 + sin(s2)

−2sin3(s1)− 0.5s2

. (71)

The critic NN activation functions, a and b are the same as in the first example.
Similarly, the augmented system dynamics are as follows:

ζ̇ =



ζ2 + ζ4 + ζ3 − sin(ζ4)

ζ2 + ζ4 − 0.5(ζ1 + ζ3)− 0.25(ζ2 + ζ4)(cos(2(ζ1 + ζ3)) + 2)2 − 0.25(ζ2 + ζ4)

×(sin(4(ζ1 + ζ3)) + 2))2 + 2sin3(ζ3) + 0.5ζ4

−ζ3 + sin(ζ4)

−2sin3(ζ3)− 0.5ζ4



+



0

cos(2(ζ1 + ζ3)) + 2

0

0


u +



0

sin(4(ζ1 + ζ3)
2) + 2

0

0


v + ∆F (ζ).

(72)

Here, we select M1(ζ) = [1, 0, 0, 0]T, M2(ζ) = [0, 1, 0, 0]T, λ f 1(ζ) =
√
(ζ2 + ζ4)2 and

λ f 2(ζ) =
√
(ζ1 + ζ3)2. Let the initial system state vector be x0 = [−0.5,−0.5]T and the

initia reference trajectory vector be s0 = [0.5, 0.5]T, then the initial state of the augmented
system is ζ0 = [−1,−1, 0.5, 0.5]T.

Select Q̄1 = diag{5I2, 02×2}, Q̄2 = diag{2I2, 02×2}, R11 = R21 = 2, R12 = R22 = 1,
η1 = −0.2 and η2 = 0.2. The state trajectories and reference trajectories are displayed in
Figures 9 and 10. Figures 11 and 12 show that the weights of critic NN1 and NN2 converge
to [0.4582, 0.2514,−0.2907,−0.2567, 0.1455,−0.1353,−0.1050, 0.1527, 0.1321, 0.1112]T and
[0.2622, 0.0666,−0.0854,−0.0858, 0.0879,−0.0610,−0.0470, 0.0601, 0.0487, 0.0406]T, respec-
tively. It could also be seen that initial stability control policies were not required. The
control trajectories for each player are in Figure 13. The tracking errors are displayed in
Figure 14, which indicated that system (70) could track the reference trajectory (71) well.
These experimental results verified the effectiveness of the proposed method in this paper.
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Figure 9. System state x1 and its tracking trajectory when η1 = −0.2 and η2 = 0.2.
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Figure 10. System state x2 and its tracking trajectory when η1 = −0.2 and η2 = 0.2.
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Figure 11. Convergence curves of critic NN1 weights for player 1.
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Figure 12. Convergence curves of critic NN2 weights for player 2.
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Figure 13. Control trajectories for two players when η1 = −0.2 and η2 = 0.2.
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Figure 14. Tracking error trajectories when η1 = −0.2 and η2 = 0.2.
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5. Conclusions

In this paper, an ADP-based robust tracking control design was proposed for the
NZS game of nonlinear systems with dynamic uncertainties. Firstly, the tracking error
and reference trajectory were used to construct the augmented system. The coupled HJB
equations were modified by defining appropriate performance indicators. Then, a new
adaptive critic design was proposed to solve the coupled HJB equations. A single-network
structure was used to approximate the value function and control policy for each player. By
a modified critic NN weights’ tuning law, the control policies of the two players converged
to the Nash equilibrium of NZS games. What is more, the proof that the system state,
tracking error and weight estimation error were UUB was given via the Lyapunov theory.
Finally, two simulation results verified the effectiveness of the proposed scheme. We will
consider the input constraints and state constraints for this problem in the future.
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Appendix A

Proof of Theorem 1. We choose the following Lyapunov function candidate:

L =
1
2a

W̃T
1 W1 +

1
2a

W̃T
2 W2 +

b
a

Js(ζ), (A1)

where Js(ζ) is presented in Assumption 3. Let σ
′
ii = −σii, σ̄

′
ii = −σ̄ii, msii = 1 + σT

ii σii, σ̄ii =
σii/msii, i = 1, 2, combining (47), (48), (51), (52), (58) and (59), we obtain the weight estima-
tion error dynamics as

˙̃W1 =− a
σ̄
′
11

ms11
(σ
′T
11 W̃1 +

1
4

WT
1 ∇φ1 A1(ζ)∇φT

1 W1 −
1
2

W̃T
1 ∇φ1 A1(ζ)∇φT

1 W1

− 1
4

WT
1 ∇φ1B1(ζ)∇φT

1 W1 +
1
2

W̃T
1 ∇φ1B1(ζ)∇φT

1 W1 −
1
4

WT
2 ∇φ2C1(ζ)∇φT

2 W2

+
1
2

W̃T
2 ∇φ2C1(ζ)∇φT

2 W2 −
1
2

W̃T
2 ∇φ2C1(ζ)∇φT

1 W2 +
1
2

WT
1 ∇φ1D1(ζ)∇φT

2 W̃2 + εHJ1)

− b
2

Π∇φ1B1(ζ)∇Js(ζ),

(A2)

˙̃W2 =− a
σ̄
′
22

ms22
(σ
′T
22 W̃2 +

1
4

WT
2 ∇φ2 A2(ζ)∇φT

2 W2 −
1
2

W̃T
2 ∇φ2 A2(ζ)∇φT

1 W2

− 1
4

WT
2 ∇φ2B2(ζ)∇φT

2 W2 +
1
2

W̃T
2 ∇φ2B2(ζ)∇φT

2 W2 −
1
4

WT
1 ∇φ1C2(ζ)∇φT

1 W1

+
1
2

W̃T
1 ∇φ1C2(ζ)∇φT

1 W1 −
1
2

W̃T
1 ∇φ1C2(ζ)∇φT

2 W1 +
1
2

WT
2 ∇φ2D2(ζ)∇φT

1 W̃1 + εHJ2)

− b
2

Π∇φ1B2(ζ)∇Js(ζ).

(A3)
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Based on (A2) and (A3), the derivation of L can be rewritten as

L̇ =
1
a

W̃T
1

˙̃W1 +
1
a

W̃T
2

˙̃W2 +
b
a
(∇Js(ζ))

Tζ̇

= −W̃T
1 σ̄

′
11σ̄

′T
11 W̃1 − W̃T

1 σ̄
′
11

1
4ms11

WT
1 ∇φ1 A1(ζ)∇φT

1 W1 + W̃T
1 σ̄

′
11

1
2ms11

W̃T
1 ∇φ1 A1(ζ)∇φT

1

×W1 + W̃T
1 σ̄

′
11

1
4ms11

WT
1 ∇φ1B1(ζ)∇φT

1 W1 − W̃T
1 σ̄

′
11

1
2ms11

W̃T
1 ∇φ1B1(ζ)∇φT

1 W1 + W̃T
1

× σ̄
′
11

1
4ms11

WT
2 ∇φ2C1(ζ)∇φT

2 W2 − W̃T
1 σ̄

′
11

1
2ms11

W̃T
2 ∇φ2C1(ζ)∇φT

1 W2 − W̃T
1 σ̄

′
11

1
2ms11

×WT
1 ∇φ1D1∇φT

2 W̃2 − W̃T
2 σ̄

′
22σ̄

′T
22 W̃2 − W̃T

2 σ̄
′
22

1
4ms22

WT
2 ∇φ2 A2(ζ)∇φT

2 W2 + W̃T
2 σ̄

′
22

× 1
2ms22

W̃T
2 ∇φ2 A2(ζ)∇φT

2 W2 + W̃T
2 σ̄

′
22

1
4ms22

WT
2 ∇φ2B2(ζ)∇φT

2 W2 − W̃T
2 σ̄

′
22

1
2ms22

× W̃T
2 ∇φ2B2(ζ)∇φT

2 W2 + W̃T
2 σ̄

′
22

1
4ms22

WT
1 ∇φ1C2(ζ)∇φT

1 W1 − W̃T
2 σ̄

′
22

1
2ms22

W̃T
1 ∇φ1

× C2(ζ)∇φT
2 W1 − W̃T

2 σ̄
′
22

1
2ms22

WT
1 ∇φ2D2∇φT

1 W̃1 − W̃T
2 σ̄

′
22

1
ms22

εHJ2 −
b
2

ΠW̃2∇φ2

× B2(ζ)∇Js(ζ)− W̃T
1 σ̄

′
11

1
ms11

εHJ1 −
b
2

ΠW̃1∇φ1B1(ζ)∇Js(ζ).

(A4)

Defining p = [W̃T
1 σ̄

′
11, W̃T

2 σ̄
′
22, W̃T

1 , W̃T
2 ]T, the derivation of L can be rewritten as

L = −pT


N11 N12 N13 N14
N21 N22 N23 N24
N31 N32 N33 N34
N41 N42 N43 N44

p + pTψ (A5)

where

N11 = N22 = I,

N12 = N21 = N33 = N34 = N43 = N44 = 0,

N13 = NT
31 =

WT
1

4ms11
(∇φ1B1(ζ)∇φT

1 −∇φ1 A1(ζ)∇φT
1 ),

N14 = NT
41 =

1
4ms11

WT
2 ∇φ2C1(ζ)∇φT

2 −
1

4ms11
WT

2 ∇φ1C1(ζ)∇φT
2

+
1

4ms11
WT

1 ∇φ1D1(ζ)∇φT
2 ,

N23 = NT
32 =

1
4ms11

WT
1 ∇φ1C2(ζ)∇φT

1 −
1

4ms11
WT

1 ∇φ2C2(ζ)∇φT
1

+
1

4ms11
WT

2 ∇φ2D2(ζ)∇φT
1 ,

N24 = NT
42 =

WT
2

4ms22
(∇φ2B2(ζ)∇φT

2 −∇φ2 A2(ζ)∇φT
2 ),

and the vector ψ = [ψ1, ψ2, ψ3, ψ4]
T is given by

ψ1 =
1

4ms11
(WT

1 ∇φ1 A1(ζ)∇φT
1 W1 + WT

1 ∇φ1B1(ζ)∇φT
1 W1

+ WT
2 ∇φ2C1(ζ)∇φT

1 W2)−
1

ms11
εHJ1 ,
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ψ2 =
1

4ms22
(WT

2 ∇φ2 A2(ζ)∇φT
2 W2 + WT

2 ∇φ2B2(ζ)∇φT
2 W2

+ WT
1 ∇φ1C2(ζ)∇φT

2 W1)−
1

ms22
εHJ2 ,

ψ3 = ψ4 = 0.

According to Assumption 3 and the fact that σii, i = 1, 2 are bounded, we derive that ψ
is bounded. Selecting the appropriate parameters such that N > 0, one lets λmin(N) denote
the minimum eigenvalue of N and ψ be bounded by ψM, We can conclude that

L̇ ≤− λmin(N)‖p‖2 + ψM‖p‖ − b
2

ΠW̃1∇φ1B1(ζ)∇Js(ζ)

− b
2

ΠW̃2∇φ1B2(ζ)∇Js(ζ) +
b
a
(∇Js(ζ))

Tζ̇.
(A6)

In the following, the cases of Π = 0 and Π = 1 will be considered.

Case 1. Π = 0. Since∇Js(ζ)Tζ̇ < 0, we have−∇Js(ζ)Tζ̇ > 0. According to the density property
of real numbers, there exists a positive constant λ1 such that 0 < λ1‖∇Js(ζ)‖ ≤ −(∇Js(ζ))Tζ̇
holds for all ζ ∈ Ω, i.e.,(∇Js(ζ))Tζ̇ ≤ −λ1‖∇Js(ζ)‖. Hence, the inequality (A6) becomes

L̇ ≤ −λmin(N)‖p‖2 + ψM‖p‖ − b
a

λ1‖∇Js(ζ)‖. (A7)

Therefore, given that the following inequalities

‖p‖ ≥ ψM
λmin(N)

,M1 (A8)

or

‖∇Js(ζ)‖ ≥
bψ2

M
4aλmin(N)λ1

, N1 (A9)

hold, we conclude L̇ < 0.

Case 2. Π = 1. Adding and subtracting b(∇Js(ζ))TB1(ζ)∇ε1(ζ)/(2a) and b(∇Js(ζ))TB2(ζ)
×∇ε2(ζ)/(2a) to the right hand side of (A6), meanwhile taking Assumption 1 and Assumption 4
into consideration, we can conclude that

L̇ ≤ −λmin(N)‖p‖2 + ψM‖p‖ − b
2

ΠW̃1∇φ1B1(ζ)∇Js(ζ)−
b
2

ΠW̃2∇φ1B2(ζ)∇Js(ζ)

+
b
a
(∇Js(ζ))

Tζ̇

= −λmin(N)‖p‖2 + ψM‖p‖+ b
a
(∇Js(ζ))

T(F (ζ) + G(ζ)u∗ +K(ζ)v∗) + b
2a

(∇Js(ζ))
T

× B1(ζ)∇ε1(ζ) +
b

2a
(∇Js(ζ))

TB2(ζ)∇ε2(ζ)

≤ −λmin(N)‖p‖2 + ψM‖p‖ − b
a

λm‖∇Js(ζ)‖2 +
b

2a
(λ2 + λ3)‖∇Js(ζ)‖.

(A10)

Therefore, given that the following inequalities

‖p‖ ≥

√
ψ2

M
4λ2

min(N)
+

b(λ2 + λ3)2

16aλmin(N)λm
+

ψM
2λmin(N)

,M2 (A11)

or

‖∇Js(ζ)‖ ≥

√
aψ2

M
4λmin(N)λm

+
(λ2 + λ3)2

16λ2
m

+
λ2 + λ3

4λm
, N2 (A12)
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hold, we conclude L̇ < 0.

To summarize, if the inequality ‖p‖ > max(M1,M2) =M or ‖∇Js(ζ)‖ > max(N1,
N2) = N holds, then L̇ < 0 and we have that system state and the weight estimation errors
are UUB. This completes the proof.

Proof of Theorem 2. We choose the following Lyapunov function candidate:

L1 = V1 + V2. (A13)

Differentiating L1 along ζ, we have

V̇1 =− ζTQ̄1ζ − [λ2
f 1(ζ) +

1
4

WT
1 ∇φ1 A1∇φT

1 W1 + ∆F (ζ)T∆F (ζ)]− 1
4

WT
1 ∇φ1B1∇φT

1 W1

+
1
2

WT
1 ∇φ1B1∇φT

1 W̃1 −
1
4

WT
2 ∇φ2C1∇φT

2 W2 +
1
2

WT
1 ∇φ1D1∇φT

2 W̃2 − [∇φT
1 W1

− ∆F (ζ)]T[∇φT
1 W1 − ∆F (ζ)] + εHJ1 + εb1 + εF1,

(A14)

where εF1 = ∇ε1∆F (ζ), since ∇ε1 and ∆F (ζ) are bounded, let εF1 ≤ λεF 1 . V̇2 is similarly
as V̇1, it is not hard to see that

L̇1 = V̇1 + V̇2 ≤ −ζT(Q̄1 + Q̄2)ζ − qTYq + λ4

≤ −λmin(Q̄1 + Q̄2)‖ζ‖2 − λmin(Y)‖q‖2 + λ4,
(A15)

where εHJ1 + εb1 + εHJ2 + εb2 + εF1 + εF2 ≤ λεHJ1
+ λεHJ2

+ λεb1 + λεb2 + λεF 1 + λεF 2 = λ4,

q = [WT
1 , WT

2 , W̃1, W̃2]
T, λmin(Q̄1 + Q̄2) and λmin(Y) are the minimum eigenvalues of

Q̄1 + Q̄2 and Y, respectively. In the top formula,

Y =


Y11 Y12 Y13 Y14
Y21 Y22 Y23 Y24
Y31 Y32 Y33 Y34
Y41 Y42 Y43 Y44


and

Y11 =
1
4
∇φ1B1∇φT

1 +
1
4
∇φ1C2∇φT

1 ,

Y22 =
1
4
∇φ2B2∇φT

2 +
1
4
∇φ2C1∇φT

2 ,

Y13 = YT
31 = −1

4
∇φ1B1∇φT

1 ,

Y14 = YT
41 = −1

4
∇φ1D1∇φT

2 ,

Y23 = YT
32 = −1

4
∇φ2D2∇φT

1 ,

Y24 = YT
42 = −1

4
∇φ2B2∇φT

2 .

Therefore, if the following inequalities

‖ζ‖ ≥
√

λ4

λmin(Q̄1 + Q̄2)
, C1 (A16)

or

‖q‖ ≥
√

λ4

λmin(Y)
, C2 (A17)
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hold, we obtain L̇1 < 0.
To summarize, if the inequality ‖ζ‖ > C1 or ‖q‖ > C2 holds, then L̇1 < 0 and we

have that the tracking errors of the closed-loop uncertain augmented system are UUB. This
completes the proof.
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