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Abstract: The launch azimuth of the Naro Space Center is limited toward the south of the Korean
peninsula, at 170 ± 10 degrees, suitable for the polar orbit, sun-synchronous orbit, and safety range
issues. In this circumstance, one option to send a satellite into GEO is to perform a dog-leg maneuver
during ascent, thus forming a medium-inclination orbit under such a restrictive condition. However,
this option requires an immense amount of energy for the dog-leg maneuver, as well as a plane change
maneuver. The only remaining option is to raise the apogee to the Moon, utilizing lunar gravity to
lower the inclination to near zero and then returning to the vicinity of the Earth at an altitude of 35,786
km without maneuver. In order to design lunar-assisted GEO transfer, all feasible paths are defined,
but questions remain about how seasonal variations affect all these potential paths. Therefore, this
study aims to design and analyze all available trajectories for the year 2031 using a high-fidelity
dynamic model, root-finding algorithm, and well-arranged initial conditions, focusing on the impact
of seasonal trends. The simulation results indicate that cislunar free-return trajectories generally
require less ∆V compared to circumlunar free-return trajectories, and circumlunar trajectories are
minimally affected by lunisolar effects due to their relatively short return time of flight. Conversely,
cislunar trajectories show seasonal variations, so spring and fall seasons require up to 20 m/s less ∆V
than summer and winter seasons due to the relatively long time of return duration.

Keywords: Naro Space Center; GEO transfer; Lunar Gravity Assist; possible paths; circumlunar;
cislunar; Delta-V (∆V)

1. Introduction

Normally, it is preferred to have the launch site near the equator for a GEO satellite,
and then it is also necessary to have as low an inclination as possible to minimize the plane
change maneuver. However, Naro Space Center (NSC) is located at a northern latitude
of 34◦ and launches should be performed southward, because it passes through Japanese
territory if an eastward launch occurs. For this reason, the launch azimuth of the NSC is
near 170◦, and then the initial inclination of the satellite is approximately 80◦ [1]. Most
of all, traditionally, it seems that it is not possible to launch a GEO satellite from NSC,
so alternative ways need to be provided. One way is to perform a dog-leg maneuver of
the launch vehicle during ascent. The dog-leg maneuver, also called yaw ascent, occurs
when the launch vehicle is launched along a predefined azimuth and then performs a
maneuver in the left or right direction during ascent to change the plane of the Earth
orbit [2]. As there is an additional direction maneuver during ascent, this approach results
in being less efficient than general ascent without a dog-leg maneuver and, finally, in less
spacecraft mass capability on the initial parkin orbit. Although this approach forms a
medium-inclination orbit, for example, a 40◦ inclination (from 80◦), it still remains a big
plane change maneuver. Therefore, this approach has continued difficulty when selecting
it. The practical final option is to utilize the Moon’s gravity to decrease the inclination to
near zero without maneuvers and subsequently return to Earth, adjusting the trajectory to
an altitude of 35,786 km in GEO to solve this problem.
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Ivashkin et al. first showed a stationary Earth-satellite orbit injection using the Moon’s
gravitational field [3]. Graziani et al. also provided a concept of GEO transfer from a
launch site at a high latitude using the gravitational field of the Moon and found that
Lunar Gravity Assist (LGA) is more efficient if the initial inclination is higher than 25.9◦ [4].
Circi et al. recognized that lunar-assisted transfers have an economical trajectory if the
initial inclination is greater than the inclination of the Moon and provided results for a few
different times of the year [5]. Ocampo provided an approximate model for the motion
in the Earth–Moon system using a restricted three-body problem and rescue mission via
LGA for AsisSat-3, which was successfully achieved in spite of the failure of the last
stage of the launch vehicle [6,7]. Ramanan et al. also performed a GEO transfer using a
genetic algorithm with adaptive bounds to avoid the sensitivity problem due to the initial
conditions [8]. Previous research utilized only a subset of possible paths, and this field has
seen limited study. For this reason, Choi et al. conducted a comprehensive analysis by
defining all possible paths and then systematically organized the relationships between
the time of flight and required ∆V [9]. In September 2021, Spaceflight Inc. announced that
a rideshare mission of “GEO Pathfinder” will be launching on a SpaceX Falcon 9 in 2024
with the main payload of a lunar lander mission (IM-2 Lunar Lander). An orbital transfer
vehicle named “Sherpa-EA” delivers the GEO satellite after separation from cislunar orbit
to GEO using an LGA scheme [10]. In order to make a good initial guess, Short et al. used
a mapping-based approach for the Circular-Restricted Three-Body Problem, Bicircular
Four-Body problem. and Moon–Earth–Sun problem [11]. Furthermore, Bakhtiari et al.
introduced a simultaneous orbit and attitude initial states correction algorithm to achieve
precise initial conditions [12].

There are various possible paths, consisting of two free-return trajectories, two nodes
(descending and ascending) of the Moon’s orbit, and two departure trajectories. The most
important factor in designing the trajectory using LGA is to use the free-return trajectories
(circumlunar and cislunar). The cislunar free-return trajectory is where the apogee and
perilune at the lunar flyby are located in the line between the Earth and Moon, whereas
the circumlunar free-return trajectory is where the apogee and perilune are located out of
the line between the Earth and Moon [13]. Therefore, the apogee altitude for circumlunar
free return is higher than that for cislunar free return. Another important factor is the
flyby time, when the Moon passes through the near ascending and descending node of
the equator of the Earth. An ascending node of the Moon’s orbit means that the Moon
crosses the equator from south to north and a descending node of the Moon’s orbit means
the Moon crosses the equator from north to south. Only these times provide a chance to
have a near-zero inclination of the GEO satellite. Ascending and descending nodes of the
Moon’s orbit occur every sidereal period of the Moon with respect to the Earth, and the
time difference between them is approximately 14 days. The other important factor is the
departure geometry affected by the launch environment and facility readiness. Ascending
departure refers to the trajectory where the satellite passes over the Earth’s North Pole and
travels towards the Moon, while descending departure refers to the trajectory where the
satellite passes over the Earth’s South Pole [14].

Although Choi et al. showed best path for ∆V among all possible paths [9], curiosity
about how all these paths are influenced by the time, namely, the seasonal trend, still
remains. Therefore, the goal of this work was to design all available trajectories based on
the year 2031 and analyze how seasonal variations affect performance. The simulation
results comprehensively figured out that cislunar free return tended to have less ∆V
than circumlunar free return, and the circumlunar trajectories were not influenced by the
lunisolar effect, because the time of flight (3−4 days) of return trajectories is relatively
short. On the other hand, cislunar free-return trajectories showed that the spring and fall
seasons required ∆V of up to 20 m/s less than the summer and winter seasons, which is
because lunisolar perturbation affects long return trajectories (13−17 days). This study
demonstrated that an economical choice is possible by presenting the distribution of ∆V
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concerning seasonal variations when utilizing related trajectories. Additionally, it provided
a fundamental alternative by allowing a satellite with a high initial inclination to reach GEO.

Section 2 defines all available paths based on the Earth departure, node of the Moon’s
orbit, and free-return trajectories. It explains the differentiation between circumlunar
and cislunar return by defining the values of the B-plane parameters. Additionally, by
predicting the Moon’s right ascension, declination, and time using JPL DE421 ephemeris, it
outlines the necessary conditions for the right ascension of the ascending node (RAAN)
and argument of perigee (AOP) needed to design LGA. Section 3 describes a four-body
dynamic model and numerical search method, as well as the initial conditions for mission
scenarios. Section 4 shows the simulation results, their trajectories in terms of free-return
trajectories, and a coordinate system such as for Earth inertial and Earth–Moon rotating.
Converging parameters such as the initial RAAN, AOP, Bt, and Br for all possible paths
and seasonal variations for ∆V and ∆t are depicted in detail. Finally, Section 5 summarizes
the overall conclusions.

2. Problem Description
2.1. Possible Paths

Using lunar gravity assist to shift the high inclined orbit to near zero, the lunar flyby
should occur at a node of the Moon’s orbit [3,4,9]. There are two nodes of the Moon, where
one is the ascending node of the Moon and the other is the descending node of the Moon
with respect to the equator of the Earth. The occurrence times of the two nodes repeating
every lunar month in 2031 can be easily calculated using JPL DE421 ephemeris. As shown
in Figure 1, “circumlunar” refers to it occurring at the perilune on the far side of the Moon,
and “cislunar” refers to it occurring at the perilune on the near side of the Moon [13].
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Figure 1. Departure and free-return trajectory with respect to ascending node of Moon’s orbit are
described in detailed as [9,13]: (a) two departure trajectories with circumlunar free return and (b) two
departure trajectories with cislunar free return.

In this situation, the circumlunar return trajectory has a short time of flight (TOF) of
about 3.5 days, while the cislunar return trajectory has a long TOF of about 12 to 23 days.
One remaining option is the departure trajectory when transferring to the Moon, where
ascending departure refers to passing over the Earth’s North Pole, while descending
departure refers to passing over the Earth’s South Pole. Figure 1 shows four paths by
using the two departures and two free-return trajectories with respect to the ascending
node of the Moon’s orbit, and four other paths are possible with respect to the descending
node of the Moon’s orbit. With the combination of the departure, the node of the Moon’s



Aerospace 2024, 11, 321 4 of 16

orbit, and the free-return trajectory, abbreviations for the eight possible paths are defined
by AACCL (ascending departure, ascending node of Moon’s orbit, and CirCumLunar),
ADCCL, DACCL, and DDCCL for circumlunar free-return trajectories and AACSL, ADCSL,
DACSL, and DDCSL for cislunar free-return trajectories. Most of the previous studies have
focused on circumlunar free returns [4,6–8], and Circi et al. studied both types of free
return [5], while Choi et al. performed all possible paths and figured out that ADCSL
requires a minimum ∆V among the paths [9].

2.2. B-Plane

B−Plane parameters, which are defined in a polar coordinate system of an assisting
body or other celestial body, have been widely used for targeting problems in gravity assist
and interplanetary missions [15]. The coordinate system used for the B−plane is based
on the Lunar Mean Equator and International Astronomical Unit vector of J2000, with the
k-vector pointing toward the north pole of the Moon. The lunar B−plane, which consists
of Br and Bt, is a mathematical construct that lies perpendicular to the incoming asymptote
of hyperbola and provides a convenient set of linear targets for a spacecraft approaching
the Moon, as described in Figure 2 [16]. The positive direction of Bt is “rightward” and the
positive direction of Br is “downward”. As the B−plane is easy to use as a constraint in
numerical search algorithms, its components are used as coarse pointing parameters to
design LGA.
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The targeted B−plane values for lunar flyby are carefully selected to approach the
satellite on the near side of the Moon (cislunar free return) and far side of the Moon
(circumlunar free return). For example, a negative value of Bt is required for a circumlunar
free-return trajectory, while a positive value of Bt is required for a cislunar free-return
trajectory. In the case of Br, a near-zero value is assumed as an initial condition.

2.3. Moon’s Position and Necessary Condition for LGA

The lunar sidereal period with respect to the Earth is around 27.3 days, so based
on observing four lunar cycles from 1 November 2030 to 1 March 2031, the distance of
the Moon’s orbit is estimated to be between 355,000 km and 405,000 km, as described in
Figure 3a. The declination of the moon (δMoon) shows a similar pattern to the distance of
the Moon. The ascending node (▲) and the descending node (▼) occur once per lunar cycle,
with an interval of approximately 13.7 days between the two nodes. The direct lunar flyby
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is established through a minimum energy ellipse with a perigee radius and the apogee
radius at the lunar distance that involves maneuvering in the direction of the velocity
vector at the perigee of the parking orbit. To target a lunar encounter at apogee, there is
the necessary condition that the apogee radius vector should lie in the plane of the Moon’s
orbit, which requires a unique combination for RAAN and AOP [7]. In addition, flyby
should occur at the ascending or descending node of the Moon’s orbit.
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Once we know the accurate time when the node of the Moon’s orbit occurs, the Earth
departure epoch of a satellite can be easily calculated based on the TOF from the Earth to
the Moon, and the initial condition of AOP (ω0) is zero or 180◦ because the Moon is located
at the near equator at the time of flyby. The right ascension of the Moon (αMoon) at the
time of the ascending and descending node of the Moon is approximately 347◦ and 167◦,
respectively, according to Figure 3b, and the difference between them is around 180◦. This
provides us with crucial information that the initial condition of the RAAN (Ω0) is highly
correlated with the αMoon at the lunar flyby, and thus, Ω0 is 167◦ or 347◦, depending on the
geometry of the Earth departure and node of the Moon. In summary, by predicting the
Moon’s right ascension and declination at the time of the node, the necessary conditions of
the RAAN, AOP, and departure time of a GEO satellite can be outlined to design LGA.

3. Dynamic Model and Numerical Search Method
3.1. Dynamic and Propagation Model

The equations of motion in this problem can be written as follows [17]: the first term of
Equation (1) describes Newton’s formulation of the gravitation of two orbiting bodies, the
second term describes the third-body gravitational perturbation, the third term represents
other forces affecting the GEO spacecraft, and the fourth term means thrust force using an
on-board propulsion system [17]:

..
r = −µ

r

∥r∥3 + ∑
i>0

µi

(
rBi − r

∥rBi − r∥3 − rBi

∥rBi∥3

)
+

1
m

Fs +
1
m

FT (1)

where
..
r and r are the acceleration and position of the spacecraft relative to a coordinate

system with an origin B0. The gravitational parameters for B0 (reference gravitational body)
and Bi (i–th gravitational body) are µ and µi. The position of Bi relative to B0 is rBi. This
problem deals with multiple bodies; for example, if the spacecraft is orbiting the Earth, the
reference central body is the Earth (µ is Earth), while the Sun and the Moon are modeled as
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particle masses (µi are Sun and Moon) to integrate Equation (1). On the other hand, if the
spacecraft is within the sphere of influence (SOI) of the Moon, µ should use the Moon’s
gravitational parameters and µi should be the Sun and Earth, as described in Table 1. The
mass of the spacecraft is m, Fs consists of atmospheric drag and the solar radiation pressure
(SRP) force, and FT is the thrust force using an on-board propulsion system. Atmospheric
drag is modeled if the spacecraft is within a low altitude of the Earth. The drag coefficient
is assumed to be 2.2 and the SRP is generated by the radiation from the Sun within the solar
system, so the SRP coefficient to simulate the effect of the SRP on the spacecraft is assumed
to be 1.0. The cross-sectional area is assumed to be 4 m2 and the mass of the spacecraft is
500 kg.

Table 1. Propagation models for Earth and Moon.

Model Earth Propagator Moon Propagator

Gravitational field (µ) WGS84–EGM96 21 × 21 LP150Q 48 × 48
Atmospheric drag Jacchia–Roberts –

Solar radiation pressure Dual cone Dual cone
Third bodies (µi) Sun, Moon Earth, Sun

SOI distance 925,000 km 66,185 km

For propagation, a seventh-order Runge–Kutta–Fehlberg integrator with an eighth-
order error control and variable step size control was used. The integrator uses an absolute
error tolerance of 1 × 10−10 and a relative error tolerance of 1 × 10−13.

3.2. Mission Scenario and Initial Conditions (I.Cs)

The initial parking orbit of a GEO satellite launched from NSC has an altitude of
300 km and an inclination of 80◦ for a southward launch caused by safety range issues.
The fixed orbital elements of the parking orbit are a0 = 6678 km, e0 = 0.0, andi0 = 80◦

and remaining elements which are regarded as independent variables are Ω0 andω0 at the
given time t0, while ν0 = 0, because the Trans Lunar Injection (TLI) would be performed
at perigee.

An impulsive maneuver (∆V0) is performed to go to the periapsis of the Moon at a
given time t0, as described in Figure 4, while it is possible to determine t0 by choosing
∆t1, which is the duration between tlga and t0 described in (3), because we know when
the Moon passes over the ascending node of the Moon’s orbit. If LGA changes the initial
inclination to near zero, as well as the perigee altitude of the return trajectory to 35,786 km,
another impulsive maneuver (∆V1) is performed to put the satellite into GEO at a given
time t1. Therefore, the total maneuvers can be described in (2) and the free-return TOF
(∆t2), which is the duration between t1 and tlga, as described in (4).

∆VTotal = ∆V0 + ∆V1 (2)

∆t1 = tlga − t0 (3)

∆t2 = t1 − tlga (4)

After reviewing previous research, it was found that ∆t1 depended on ∆V0 and the range of
this value was from approximately 4 to 6 days [9,14,18]. Therefore, ∆t1 is set to 5 days as an
initial guess, and thus, t0 = tlga − 5 days and tlga is the time of the ascending or descending
node of the Moon’s orbit. As mentioned in Section 2.3, a necessary condition requires a
unique combination of the Ω0 and ω0, while these combinations depend on the geometry
between the Earth departure and node of the Moon. For ω0, ascending departure requires
a near-zero degree because it will pass over the North Pole, but descending departure
requires near 180◦. For Ω0, it is highly correlated with the right ascension of the Moon at
flyby and it depends on both the Earth departure and node of the Moon. The ascending
departure/ascending node of the Moon and descending departure/descending node of the
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Moon require Ω0 = 167◦, while the ascending departure/descending node of the Moon
and descending departure/ascending node of the Moon require Ω0 = 347◦, regardless
of the type of free-return trajectories. As a result, the initial conditions for four different
combinations at t0 are established in Table 2.
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Table 2. Initial conditions for four different combinations at given time t0.

Type (Departure/Node) a0(km) e0 i0(◦) Ω0(◦) ω0(◦) ν0(◦)

Ascending/Ascending 6678 0.0 80.0 167 0.0 0.0
Ascending/Descending 6678 0.0 80.0 347 0.0 0.0
Descending/Ascending 6678 0.0 80.0 347 180.0 0.0
Descending/Descending 6678 0.0 80.0 167 180.0 0.0

∆V0 =

√
2µ

r0
− µ

a−lga
−
√

µ

r0
,∆V1 =

√
µ

rf
−
√

2µ

rf
− µ

a+lga
(5)

Equation (5) describes the initial condition of ∆V0, where a−lga means the semimajor
axis from the Earth to Moon before a lunar flyby [19]. Using the mean Moon distance
(384,400 km) at the node of the Moon’s orbit depicted in Figure 3a and r0 (6678 km), the
initial ∆V0 is guessed as 3106 m/s. In order to set the value of a+lga, it is necessary to first
determine which free-return trajectory to use. According to the result of Choi et al. [9],
a+lga is around 600,000 km and 700,000 km for the circumlunar and cislunar free returns,
respectively. Based on the rf (42,164 km), the initial ∆V1 using Equation (5) for circumlunar
and cislunar free returns are guessed as 1148 m/s and 1128 m/s.

3.3. Numerical Search Model

To design the trajectory of the GEO satellite using LGA, a differential corrections pro-
cess using the Newton–Raphson method, which is a root-finding algorithm, was used [20].
This approach is a robust mathematical mechanism, and its form is described in Equation
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(6). The vector of the control variables is x, the evaluation function using Equation (1) with
a state vector of x is f(x), and the vector of equality constraints is yd [20]:

∼
y = f(x)− yd ≈ 0 (6)

In order to solve Equation (6), a partial derivative of f(x) is used with a Taylor series
about the initial conditions of the control variables x0. A Jacobian matrix (J) consisting
of partial derivatives of f(x) is described in Equation (7) [20] with the number of control
variables (n) and equality constraints (m):

J =


∂y1
∂x1

. . .
∂y1
∂xn

...
. . .

...
∂ym
∂x1

. . .
∂ym
∂xn

 (7)

To find the control variable (x) using a numerical search algorithm, Equation (6) can be
rearranged as Equation (8) [20]. The i-th column of J is Ji = (f(x + δxi)− f(x))/δxi and the
perturbation of the i-th control variable is δxi =

[
0 . . . δxi . . . 0

]T. This algorithm
process repeats until the error of each equality constraint satisfies the predefined tolerance.

xk+1 = xk − J−1
k (f(xk)− yd) (8)

The trajectory design from LEO (Low Earth Orbit) to GEO using LGA is classified
into two numerical search problems to enhance the convergence of the free-return trajec-
tory after the flyby, where one is from LEO to the periapsis of the Moon and the other
one is from LEO to GEO. The initial states are x0 = [t0, a0, e0, i0, Ω0,ω0,ν0, ∆V0], while
[a0, e0, i0,ν0] are already fixed, and thus, the remaining states are independent variables of
x0 = [t0, Ω0,ω0, ∆V0] in Equation (8). The first part of the trajectory design is from LEO
to perilune (t0 ≤ t ≤ tlga) to distinguish the free-return trajectory, satisfying the equality
constraints of yd = [Bt, Br, ∆t1]. For example, in the case of AACCL, where the ascending
node of the Moon’s orbit is 29 December 2030 21:30:00 (UTC) shown in Figure 3b, the initial
conditions are listed in Table 2 and the equality constraints are mentioned in Section 2.2, as
described below.

The numerical search algorithm of the first part is rewritten in detail using independent
variables and equality constraints with the tolerance vectors of

∼
y in Equation (9).

x0 =
[
24 December 2030 21 : 00 : 00 167◦ 0◦ 3106 m/s

]T
yd =

[
−10000 0.0 5 days

]T for circumlunar free return

yd =
[
10000 0.0 5 days

]T for cislunar free return


tnew
0

Ωnew
0

ωnew
0

∆Vnew
0

 =


told
0

Ωold
0

ωold
0

∆Vold
0

− J−1
k

f


told
0

Ωold
0

ωold
0

∆Vold
0

−

 Bt
Br

∆t1


,

∼
y =

 eBt

eBr

e∆t1

 =

1.0 km
1.0 km
10 sec

 (9)

The first part aims to distinguish different types of free return, but in fact, a more crucial
aspect is finding the initial conditions of the control variables to enhance the convergence
of the free-return trajectories after flyby. Therefore, the converged control variables (xnew

0 )
are used as the initial conditions for the second part (t0 ≤ t ≤ t1), satisfying the equality
constraints yd = [rf, if, Vα]

T after flyby to reach GEO, where Vα is the azimuth velocity. The
numerical search algorithm of the second part is rewritten in detail using the converged
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independent variables (xnew′
0 ) and equality constraints with the tolerance vectors (

∼
y) in

Equation (10).
x0 =

[
t0_new Ω0_new ω0_new ∆V0_new

]T
yd =

[
42, 164 km 0.0◦ 90.0◦

]T
tnew′
0

Ωnew′
0

ωnew′
0

∆Vnew′
0

 =


tnew
0

Ωnew
0

ωnew
0

∆Vnew
0

− J−1
k

f


tnew
0

Ωnew
0

ωnew
0

∆Vnew
0

−

 rf
if

Vα


,

∼
y =

 erf

eif
eVα

 =

1.0 km
0.1◦

1.0◦

 (10)

Once the free-return trajectory approach to the perigee radius for GEO is formulated,
one more numerical search algorithm is performed to reach GEO, with an independent
variable of x0 = [∆V1 = 1148m/s] for circumlunar free return or x0 = [∆V1 = 1128m/s]
for cislunar free return, equality constraints of yd = [ef = 0.0] and

∼
y = [ee = 0.001], and ef

as the final eccentricity and ee as the eccentricity error.

4. Simulation Results
4.1. Trajectory Overview

Figure 5 shows circumlunar free-return trajectories, where the apogee and perilune
are located in the line between the Earth and Moon, for the target year of 2031 with respect
to an Earth-Centered Inertial (ECI) frame and an Earth–Moon Rotating (EMR) frame. The
ADCCL (green dotted line) and the DDCCL (blue solid line) used for the descending node
of the Moon’s orbit and the DACCL (green dotted line) and the AACCL (blue solid line)
used for the ascending node of the Moon’s orbit with respect to the ECI frame are shown in
in Figure 5a,b, respectively. Although it has a high initial inclination, a near-zero inclination
after flyby is available, and the free-return trajectories can be seen to have a similar pattern,
regardless of which departure trajectory was used.

Figure 5c shows the circumlunar free-return trajectories with the descending node
of the Moon’s orbit and Figure 5d shows the circumlunar free-return trajectories with the
ascending node of the Moon’s orbit with respect to the EMR frame. When using the Moon’s
descending node, the flyby distance from the Earth is approximately 400,000 km, whereas
using the ascending node results in a flyby distance of about 380,000 km. Consequently,
the required ∆V0 (Trans–Lunar–Injection) using the descending node of the Moon’s orbit
would be larger when using the ascending node of the Moon’s orbit.

Figure 6 shows cislunar free-return trajectories for the target year of 2031 with respect
to an ECI frame and an EMR frame. The cislunar problem was solved using a numerical
method; however, while ADCSL and DACSL could find continuous solutions on a monthly
basis, DDCSL and AACSL could not find continuous solutions. Upon analyzing the process
where solutions did not converge, it was observed that, after lunar flyby, either the ∆t2
became excessively large and did not converge, or even with an appropriate ∆t2, the GEO
inclination did not converge to 0 degrees, but stayed below 5 degrees. This phenomenon
occurred because the combination of the same Earth departure and the node of the Moon’s
orbit (AA and DD) in a specific season created a geometry that was difficult to enter GEO
due to the lunisolar effect. For DDCSL and AACSL, the seasonal convergence results are
described in detail in Tables A1 and A2.
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Figure 5. All circumlunar return trajectories for the targeting year of 2031: (a) circumlunar return
trajectories with descending node of the Moon’s orbit in ECI frame; (b) circumlunar return trajectories
with ascending node of the Moon’s orbit in ECI frame; (c) circumlunar return trajectories with
descending node of the Moon’s orbit in EMR frame; and (d) circumlunar return trajectories with
ascending node of the Moon’s orbit in EMR frame.

Figure 6a,b show the ADCSL and DACSL trajectories with respect to the ECI frame,
and Figure 6c,d show the trajectories with respect to the EMR frame. In general, the DACSL
trajectories appear more dispersed compared to the ADCSL trajectories. Specifically, from
an EMR frame perspective, the departure trajectories of DACSL are slightly more convex
than ADCSL, because the flyby distance from the Earth center of the ADCSL is slightly
farther than the flyby distance of the DACSL. Furthermore, the free-return trajectories after
a flyby of DACSL are more dispersed due to the increased influence of the lunar gravity
compared to ADCSL.
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4.2. Converged Geometry

The set of converging right ascensions of the ascending node (Ω0) and argument of
perigee (ω0) were as below and are depicted in Figure 7a; for DDCSL and AACSL, only
seasonally converging results are obtained.
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• for AACCL, Ω0 ∈ [170.5◦, 172.5◦], ω0 ∈ [357.9◦, 360.4◦]
• for AACSL, Ω0 ∈ [175.2◦, 179.0◦], ω0 ∈ [355.6◦, 356.6◦]
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As mentioned in the initial conditions specified in Table 2, Ω0 for “AA” and “DD” was
167◦ and Ω0 for “DA” and “AD” was 347◦, while ω0 for “AA” and “AD” was 0◦ and ω0
for “DA” and “DD” was 180◦. These results show that the initial conditions are a good
starting point for the GEO transfer trajectory and the circumlunar free-return trajectories
have a less dispersed set of Ω0 and ω0 compared to the cislunar free return.

All the circumlunar return trajectories have a negative Bt value and its mean value of
Br is near zero, while all the cislunar return trajectories have a positive Bt value, as shown
in Figure 7b. The “AA” and “DD” combination has a near-zero value of Br, regardless of
return trajectories, and the cislunar return trajectories of Br are more dispersed compared to
the circumlunar return trajectories. The reason for this is that the cislunar free return for the
combination of “AA” and “DD” only converging seasonally is thought to be the difficulty
in sufficiently reducing the high initial inclination, as Br converges around zero. In contrast,
cislunar trajectories with the “AD” and “DA” combination converge to a relatively large
value of Br, forming favorable geometries for reducing the high initial inclination.

4.3. ∆V and ∆t

For the TLI ∆V shown at the top of Figure 8a, all TLI ∆Vs tended to have similar values
(TLI ∆V ∈ [3100, 3115]), and cases that use the descending node of the Moon’s orbit (dotted
line) require a little bit more ∆V than cases that use the ascending node of the Moon due to
the flyby distance from the center of the Earth. On the other hand, GEO insertion ∆V at the
bottom of Figure 8a demonstrates which combination requires the minimum amount of ∆V
and how the ∆V varies depending on the seasonal influences. First, the circumlunar return
trajectories were found to be minimally affected by seasonal factors, primarily influenced
by both the Earth departure and node of the Moon. More importantly, DACCL consistently
exhibited a low ∆V, regardless of the season, making it a favorable choice for the fast return
trajectories. In contrast, the cislunar return trajectories demonstrated a low ∆V during
spring and fall and a slightly higher ∆V during summer and winter, indicating a seasonal
effect. This helped us to figured out that seasonal influence resulted in a maximum ∆V
difference of approximately 20 m/s.
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and ∆V1(GEO Insertion) and (b) total ∆V and ∆t2.

At the top of Figure 8b, the total ∆V shown is similar to the GEO insertion ∆V,
and it is observed that DDCCL without seasonal effects among the circumlunar return
trajectories required the largest ∆V at around 4280 m/s, while the ADCSL needed the
least ∆V, reflecting seasonal influences effectively. According to a GEO transfer spacecraft
launched from Cape Canaveral with an initial parking orbit (altitude of 185 km and an
inclination of 28.5◦), the total ∆V is around 4296 m/s, including ∆V(2459 m/s) from LEO



Aerospace 2024, 11, 321 13 of 16

to GTO and ∆V(1837 m/s) from GTO to GEO with a plane change maneuver [21]. The
fact that a larger ∆V is required for a general GEO transfer with the most demanding
DDCCL further validated the superiority of the method using LGA. Above all, this study
numerically demonstrated that the cislunar return trajectories are influenced by seasonal
variation. Additionally, it provided an alternative combination, defined as DACCL, that
can be considered.

The bottom of Figure 8b illustrates the return TOF (∆t2) for both circumlunar and
cislunar trajectories and its ranges were as below:

• for DDCCL, ∆t1 ∈ [4.31, 5.24], ∆t2 ∈ [2.80, 2.98]
• for DACCL, ∆t1 ∈ [4.31, 5.20], ∆t2 ∈ [3.08, 3.34]
• for ADCCL, ∆t1 ∈ [4.28, 5.35], ∆t2 ∈ [3.05, 3.25]
• for AACCL, ∆t1 ∈ [4.26, 5.20], ∆t2 ∈ [2.79, 3.01]
• for ADCSL, ∆t1 ∈ [4.22, 5.31], ∆t2 ∈ [11.55, 15.12]
• for DACSL, ∆t1 ∈ [3.97, 5.28], ∆t2 ∈ [13.38, 20.83]

The ∆t2 of the circumlunar return trajectories showed relatively short durations com-
pared to ∆t1 and did not show seasonal variations, while the ∆t2 of the cislunar return
trajectories was than 10 days. This easily leads to the conclusion that these cases reflect the
seasonal factors related to the lunisolar effect. In addition, it was numerically confirmed
that a shorter ∆t2 between ADCSL and DACSL results in a benefit in terms of ∆V.

4.4. Analysis of Seasonal Factors

In order to specifically analyze the seasonal effect on the ∆V, cislunar free-return cases
were mapped in the Sun–Earth Rotating (SER) frame with the Earth, Sun, and Moon, as
shown in Figure 9. The SER frame, also known as a heliocentric frame, was used to analyze
the motion of objects in the solar system. In this frame of reference, the center of this frame
is the Earth and the motion of the Earth and Sun appears stationary. The Moon is moving
in its orbit around the center of the Earth, and thus, the Sun is located in the -X axis and the
Z axis is perpendicular to the ecliptic plane.
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Figure 9. Transfer trajectories for target year of 2031 with respect to the Sun−Earth rotating frame:
(a) transfer trajectories of ADCSL and (b) transfer trajectories of DACSL.

Figure 9a,b show the thirteen trajectories of ADCSL and DACSL in 2031, respectively,
which consist of departure (green dotted line) and free return (blue solid line). According
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to Figure 9, the Sun is located on the left side and the Moon rotates in the counterclockwise
direction. As ∆V1 directly affects the a+lga in Section 3.2, DACSL requires more ∆V1 than
ADCSL to meet the near-zero eccentricity, because DACSL has a higher apogee altitude
after flyby than ADCSL.

As illustrated in Figure 8b, the cislunar return trajectories exhibited a low ∆V during
the late spring seasons (5,6,7) and late autumn seasons (12,13,14). Therefore, it was observed
that it is advantageous for the position of apogee to be in either the second or fourth
quadrant after flyby. Conversely, during the late winter seasons (2,3,4) and late summer
seasons (8,9,10,11), the trajectory displayed a relatively higher ∆V. Hence, it was noted that
it is disadvantageous for the position of apogee to be in either the first or third quadrant
after flyby.

5. Conclusions

This study designed a set of trajectories utilizing lunar gravity assist to avoid large
plane change maneuvers caused by a high initial inclination, which is inherent to launch
sites located at mid-latitude with a southward launch azimuth, thus facilitating an econom-
ical transfer for GEO satellites. For a comprehensive analysis of possible paths utilizing the
Moon’s gravity, a total of eight trajectories were defined by combining the Earth departure,
the node of Moon’s orbit, and free-return trajectories. However, currently, there is not any
information on how seasonal variations impact all potential paths. Therefore, this study
aimed to design all available trajectories for the year 2031 using a high-fidelity dynamic
model, root-finding algorithm, and well-arranged initial conditions, as well as the realistic
positions of the primary bodies using JPL ephemeris. It was possible to easily determine the
initial independent variables of Ω0(RAAN), ω0(AOP), and t0 (Earth departure time) based
on the necessary conditions that flyby should occur when the Moon crosses the ascending
and descending nodes of the Earth. Numerical computations were performed to figure out
the characteristics of each path and seasonal influence. According to the simulation results,
it was observed that the free-return duration (∆t2) of cislunar was over 5 times longer than
that of circumlunar, requiring a relatively lower ∆V. Particularly, due to the long ∆t2 of the
cislunar trajectory, it was evident that it is significantly affected by seasonal variations, thus
confirming potential savings of up to 20 m/s. On the other hand, circumlunar had a short
∆t2 of about 3 days, so seasonal factors did not impact ∆V. However, in case of DACCL,
specific combinations of Earth departures and lunar nodes consistently resulted in a low
∆V. Consequently, it can be a potential alternative to the cislunar trajectory by significantly
shortening the overall mission duration.
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Appendix A

This appendix includes the summary of the converged results of the DDCSL and
AACSL trajectories, which could not find continuous solutions due to geometrical difficulty.
These are major parameters to investigate the simulation results.
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Table A1. Summary of converged results of DDCSL trajectories.

No. t0(UTC) ∆V0(m/s) tlga(UTC) ∆V1(m/s) t2(UTC) ∆V(m/s)

1 2031-04-01
10:56:33

3104.73 2031-04-06
00:48:27

1128.24 2031-04-25
14:18:52

4232.97

2 2031-04-28
09:04:54

3105.50 2031-05-03
09:33:04

1119.24 2031-05-20
00:04:52

4224.74

3 2031-05-24
07:19:55

3111.06 2031-05-30
17:36:16

1127.16 2031-06-17
12:01:10

4238.22

4 2031-06-22
05:10:11

3107.85 2031-06-26
21:23:02

1133.16 2031-07-15
18:14:41

4241.01

5 2031-10-09
22:28:58

3106.66 2031-10-14
08:23:44

1128.13 2031-11-02
23:33:25

4234.79

6 2031-11-05
20:34:32

3106.75 2031-11-10
15:59:50

1119.80 2031-11-27
06:39:31

4226.55

7 2031-12-02
18:38:18

3108.42 2031-12-07
22:37:28

1124.91 2031-12-24
22:02:37

4233.33

8 2031-12-30
16:35:13

3110.13 2032-01-04
02:05:38

1142.91 2032-01-25
10:59:48

4253.04

Table A2. Summary of converged results of AACSL trajectories.

No. t0(UTC) ∆V0(m/s) tlga(UTC) ∆V1(m/s) t2(UTC) ∆V

1 2031-04-14
09:34:40 3105.04 2031-04-19

04:37:12 1137.45 2031-05-11
08:33:31 4242.50

2 2031-05-11
07:52:28 3105.51 2031-05-16

07:32:05 1134.80 2031-06-05
14:15:37 4240.31

3 2031-06-07
05:43:38 3106.07 2031-06-12

09:43:42 1147.32 2031-07-05
05:14:03 4253.38

4 2031-10-22
21:02:37 3103.24 2031-10-27

12:35:10 1133.56 2031-11-17
12:47:03 4236.80

5 2031-11-18
19:05:01 3104.38 2031-11-23

15:42:32 1133.56 2031-12-13
05:57:33 4237.94

6 2031-12-15
17:09:26 3104.71 2031-12-20

18:01:28 1149.38 2032-01-13
00:00:40 4254.08
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