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Abstract: Uncertainties in the atmosphere and flight conditions can drastically impact the per-
formance of an aircraft and result in certification delays. However, uncertainty propagation in
high-fidelity simulations, which have become integral to the design process, can pose intractably
high computational costs. This study presents a non-intrusive, parametric reduced order modeling
(ROM) method to enable the prediction of uncertain fields with thousands of random variables and
nonlinear features under limited sampling budgets. The methodology combines linear dimensional-
ity reduction with sparse polynomial chaos expansions and is assessed in a variety of CFD-based
test cases, including 3D supersonic flow over a passenger aircraft with uncertain flight conditions.
Each problem has strong nonlinearities, such as shocks, to investigate the effectiveness of models
in real-world aerodynamic simulations that may arise during conceptual or preliminary design.
The performance is assessed by comparing the uncertain mean, variance, point predictions, and
integrated quantities of interest obtained using the ROMs to Monte Carlo simulations. It is observed
that if the flow is entirely supersonic or subsonic, then the method can predict the pressure field
accurately and rapidly. Moreover, it is also seen that statistical moments can be efficiently obtained
using closed-form analytical expressions and closely match Monte Carlo results.

Keywords: reduced order modeling; polynomial chaos expansion; uncertainty quantification;
shockwaves; dimension reduction

1. Introduction

Historically, the development of aircraft has depended on the combined use of empiri-
cal data, experimental testing, physics-based models, and simulations. But, as practitioners
seek to develop unconventional aircraft or designs that have little to no historical data, the
use of physics-based models has become integral to the design process. Moreover, rather
than relying solely on integrated parameters, such as lift or drag coefficients, to quantify
the high-level performance of the system, it is crucial to consider the spatio-temporal
distribution of quantities, such as pressure over the wing, to guide decision making. These
distributions are often referred to as fields and may have thousands to millions of data
points, which can be used to obtain integrated parameters. Understanding and accurately
analyzing these high-dimensional fields, including the strength, shape, position, and varia-
tion of nonlinear features within them, such as shocks, is vital to optimizing the structural,
aerodynamic, and aeroelastic performance of the aircraft. Physics-based models not only
enable the precise determination of these features and their variations to design changes,
but also reduce program costs and accelerate the time to production.

However, depending on the field being evaluated, it may be greatly impacted by
geometry changes, uncertainties in flight and atmospheric conditions, and variations in the
manufacturing process. Ideally, the design of aircraft would not simply account for these
uncertainties, but also focus time and resources to enhance system robustness. Uncertainty
quantification (UQ) refers to the process of propagating the impact of these changes in
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uncertain parameters through the system to calculate statistical moments, such as expected
value and standard deviation, and obtain output distributions on key performance metrics.
The Monte Carlo (MC) method is the standard approach for performing UQ, but it suffers
from slow convergence rates and requires a significant number of samples to accurately
model the system. For computationally expensive analyses, their limited sampling bud-
get poses a practical challenge for such MC-based approaches. Thus, there is a need to
develop a methodology to not only efficiently propagate uncertainty, but also do so in
high-dimensional fields to enable robust design.

1.1. Surrogate Modeling

In the literature, there exist several methods to reduce the computational cost of
MC and enable UQ. One example is to reduce the number of samples needed for MC by
omitting certain variables. This approach is followed in [1], where the authors explore
the sensitivity of variables to uncertainties, but use prior knowledge about the simulation
to remove certain variables. This strategy, though powerful when the dynamics of the
system are well understood, is unsuitable for simulations where the practitioner has little
or no prior knowledge. In such cases, reducing variables may lead to the loss of valuable
information and insights, limiting the effectiveness of the UQ procedure.

An alternative to this approach is to use adjoint-based methods, which rely on analyti-
cal equations to calculate sensitivities of outputs with respect to inputs. This is commonly
used in robust design and optimization where the goal is to generate designs that are
resilient to uncontrollable variations. There, the purpose of uncertainty propagation is
to obtain expressions for the sensitivity of the outputs to uncertain parameters. In such
cases, this adjoint-based formulation enables a drastic reduction in computational cost [2].
However, one significant challenge of these methods is that they require substantial code
modifications to implement the adjoint equations. Often, software packages and simula-
tion tools utilize proprietary solvers which cannot be modified or even accessed, severely
limiting the usability of adjoint-based methods.

A common option that overcomes the limitations of the above methods is surrogate
modeling. In this approach, the practitioner first builds a mathematical approximation
of the underlying system being analyzed and then uses this cheap-to-evaluate model to
perform MC. While there exist a variety of approaches to perform surrogate modeling in
UQ [3,4], this study focuses on polynomial chaos expansions (PCE).

PCE models rely on a set of predefined orthogonal basis functions to express the
output random variable by separating its deterministic and stochastic contributions. PCE
boasts a robust mathematical foundation rooted in probability theory and provides guaran-
tees on error convergence rates [5,6]. More important, the coefficients of a PCE surrogate
model can be used to analytically obtain precise estimates for statistical moments and Sobol
sensitivities without the need for MC simulations. This not only reduces the overall sam-
pling cost, but also prevents the accumulation of additional errors. Given these strengths,
this study explores the use of PCE for high-dimensional UQ problems. For the past two
decades, PCE has been widely adopted and extensively studied in capturing and handling
scalar stochastic variables. However, the application of PCE to high-dimensional stochastic
simulations which produce millions of correlated random variables is still challenging and
an active area of study. Hence, the discussion below focuses on methods for performing
UQ in high-dimensional spaces.

1.2. Reduced Order Models

Reduced order modeling is a data-driven surrogate modeling method to efficiently
handle high-dimensional data and approximate a complex simulation. The core concept
behind ROM is that the high-dimensional data exist on some lower-dimensional space,
which captures all the essential features of the problem. ROMs strive to identify this
low-dimensional space and employ it to predict solutions at unseen points, all while
keeping computational costs low. Using a process known as dimensionality reduction,
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ROMs not only compress the data into a smaller, low-dimensional space, but also maintain
spatial coherence within the model. Further, since ROMs provide estimates of the entire
spatio-temporal field, they can be used to predict all downstream integrated quantities
of interest.

The proper orthogonal decomposition (POD) method is a linear method for dimen-
sionality reduction and has been predominantly used for ROMs due to its simplicity. Over
the past decade, researchers have attempted to combine POD-based approaches with PCE
to enable UQ in high-dimensional problems. For example, Raisee et al. [7] developed a
POD approach to reduce the high cost associated with training PCE models (discussed
further below), but still relied on fitting a scalar-PCE model at each node in the computa-
tional mesh. Moreover, as noted by several researchers [8,9], Raisee’s method still relies on
expert knowledge and can be viewed as a variant of a scalar surrogate model, introducing
inconsistencies in spatial coherence.

Recently, some researchers have explored the use of POD to first reduce the dimen-
sionality of the problem and then construct a PCE model in the latent space to capture the
dynamics of the stochastic simulation. The application of this method has however largely
been restricted to problems with small degrees of nonlinearity or benchmark problems
from mathematics [10–16]. An assessment of the performance of these models in problems
with discontinuities, nonlinearities, and real-world engineering datasets is necessary prior
to their adoption in the aircraft conceptual design process. Therefore, the combination of
POD and PCE remains a subject requiring further investigation.

1.3. Contribution of the Paper

This study leverages the POD–PCE method in uncertain aerodynamic problems with
possibly millions of outputs. Specifically, the problems addressed are from computational
fluid dynamics (CFD) simulations designed to resemble those seen in supersonic and tran-
sonic aircraft design, where aerodynamic solutions can have several localized nonlinear,
discontinuous features, such as shocks. To the knowledge of the authors, a comparison of
POD–PCE with Monte Carlo results for real-world aircraft in supersonic or transonic CFD
simulations has been unexplored in the literature. More broadly, given that the previous
literature has mostly been confined to linear problems, this would provide empirical insight
into the performance and robustness of POD–PCE in non-trivial problems encountered
often during aerodynamic design. Through methodical demonstration, the research show-
cases a comprehensive characterization of the ROM in accurately and efficiently predicting
statistical moments and point predictions at a fraction of the original computational cost.

The conclusions drawn from these experiments will not only offer new perspectives
for the fields of ROM and UQ but also contribute to the advancement of robust aircraft
design methodologies.

The structure of the manuscript is as follows: Section 2 provides an overview of
the POD and PCE methods. Section 3 outlines the UQ methodology with error metrics.
Section 4 discusses the performance of the method in three test cases and Section 5 summa-
rizes key findings and next steps.

2. Reduced Order Modeling

The sections below provide the underlying theory and numerical details for proper
orthogonal decomposition and polynomial chaos expansion.

2.1. Proper Orthogonal Decomposition

The POD method is renowned for its simplicity and has been used not only in
aerospace engineering, but also in numerous other fields, such as statistics and computer
science. The fundamental concept behind POD is to identify a linear subspace using the
principal component vectors or singular vectors of the training data supplied. These vec-
tors are obtained using Singular Value Decomposition (SVD) and identify those directions
in the high-dimensional vector space that best capture the variance of the outputs. In
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approximating the Full Order Model (FOM) with this reduced order approximation, the
computational cost is drastically reduced.

To begin, assume that there exists some deterministic modelM which acts on a set
of inputs, ξ, and yields some vector output, x ∈ Rn×1. Consider a matrix, X ∈ Rn×m, that
consists of m training vectors obtained at m input parameters. For simplicity, but without
loss of generality, assume that the matrix is mean-centered:

x̄ =
1
m

m

∑
j

xj = 0 (1)

The SVD algorithm applied to this matrix results in:

X = UΣV T (2)

where U ∈ Rn×n is the matrix of POD modes, V ∈ Rm×m is a matrix of right singular vectors,
and Σ ∈ Rn×m is a diagonal matrix of singular values, such that σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0
and r = min(n, m).

The next step is to identify the d most dominant POD modes using a measure like the
Relative Information Content (RIC). The RIC is defined as:

RIC(d) =
∑d

i=1 σ2
i

∑r
j=1 σ2

j
(3)

Most often, the practitioner sets the RIC to some δ ∈ [0, 1], then selects d basis vectors
such that RIC(d) ≥ δ. A matrix spanned by the d most dominant POD modes is then
constructed: Φ =

[
φ1, . . . , φd

]
∈ Rn×d. Having obtained this matrix, each snapshot is then

projected onto the reduced space:
Z = ΦTX (4)

where Z is the matrix whose columns correspond to each snapshot’s coordinates in the
latent space, such that Z = [z1, . . . , zm] ∈ Rd×m. Each z is then paired with its associated
set of input parameters, ξ, and used to train a scalar regression model.

2.2. Polynomial Chaos Expansion

Polynomial Chaos Expansion is a method for uncertainty quantification that sepa-
rates a random variable into its deterministic and stochastic contributions using a linear
combination of orthogonal polynomials [17].

Suppose thatM : ξ 7→ y ∈ Rn represents a full-order model which acts on a set of
uncertain random variables and yields a field. Let y ∈ Rn be a random field where each
spatial location is a scalar random variable and is determined by ξ = {ξ1, . . . , ξb} random
inputs that form a random vector.

For each ξi, one selects a family of polynomials
{

Ψ(i)
αi (ξi)

}
αi∈N

with a polynomial

order, αi. Define the inner product:

〈φ1, φ2〉 =
∫

φ1(x)φ2(x) fXi (x)dx (5)

For each random variable, using the underlying probability density function (PDF),
ρξi , it is possible to derive an associated set of orthogonal polynomials, Ψ(ξi), that satisfy

〈
ψi, ψj

〉
=
∫

ψi(ξi)ψj(ξi)ρξi (ξi)dξi

= δij

〈
ψ2

i

〉 (6)
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where δij is the Kronecker delta. Xiu and Karniadakis [17] found the orthogonal polynomial
basis for common PDF distributions. These are summarized in Table 1 and offer exponential
convergence rates of error for statistical moments [5,6].

Table 1. Askey scheme of polynomials and their links to common PDFs.

Input PDF Density Function PCE Basis Support Range

Normal 1√
2π

e−0.5x2 Hermite [−∞, ∞]

Uniform 0.5 Legendre [−1, 1]
Gamma xαe−x

Γ(α+1)
Generalized Legendre [0, ∞]

Exponential e−x Laguerre [0, ∞]

By multiplying the polynomial basis for every input variable with every other vari-
able’s basis, one obtains the following multivariate basis, which is orthogonal with respect
to the joint probability distribution of all the inputs:

ψα(ξ) =
d

∏
i=1

ψ
(i)
αi (ξi) (7)

Using this multivariate polynomial basis, it is possible to express y(x, ξ):

y(x, ξ) ≡M(x, ξ) =
∞

∑
α=0

aα(x)ψα(ξ) (8)

where aα are deterministic coefficients that vary with x.
As was done with POD, the practitioner typically truncates the infinite expansion to

some order P depending upon the accuracy sought.

y(x, ξ) ≈M(x, ξ) =
P

∑
α=0

aα(x)ψα(ξ) (9)

A common way to truncate the expansion is to set an upper bound on the total degree
of the polynomial expansion to p such that

|α| =
d

∑
i=1

αi ≤ p (10)

Thus, the total number of terms in the expansion is given by P + 1 = (d + p)!/(d!p!).
Since the PCE model is constructed using orthogonal polynomials, statistical moments

can be obtained using closed-form expressions:

µ(y) = E[y(x, ξ)] ≈
∫ (

∑
α

aαψα(ξ)

)
ρ(ξ)dξ = a0(x) (11)

and

σ2 =
P

∑
α=0

a2
α(x)〈ψα, ψα〉 (12)

Having established the underlying theory for PCE models, the discussion below
focuses on the numerical details of the non-intrusive training procedure.

Collocation-Based PCE

During implementation, the estimation of the PCE coefficients can be accomplished
using different techniques such as Galerkin approaches, quadratures, and stochastic collo-
cation. The reader is referred to [18,19] for a thorough overview of the various methods for
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determining the PCE coefficients. The discussion below provides a brief review and the
implementation details for stochastic collocation methods.

The Galerkin procedure is part of a family of methods known as intrusive methods, all
of which require modifications to the underlying FOM. Since this is unsuitable for black-box
codes, it is not explored below. Quadrature methods involve collecting samples at specific
integration points in the domain. However, this approach may request samples at points in
the domain where the simulation cannot converge to an answer (which can occur frequently
with CFD simulations at high angles of attack or complex geometries with complicated
flow patterns). Stochastic collocation, alternatively referred to as regression-based PCE, is a
robust, cost-effective approach to perform PCE with black-box tools.

Stochastic collocation starts by generating N ≥ P + 1 samples of the random vector
ξ, which are used to acquire snapshots of the FOM. Since each element of the field is a
random variable, for simplicity, the discussion below focuses on scalar outputs. However,
these approaches can be readily extended to fields with millions of random variables. The
coefficients aα can be found by solving the following over-determined linear system:

ψ0(ξ0) ψ1(ξ0) · · · ψP(ξ0)
ψ0(ξ1) ψ1(ξ1) · · · ψP(ξ1)

...
...

. . .
...

ψ0(ξN) ψ1(ξN) · · · ψP(ξN)




a0
a1
...

aP

 =


y(ξ0)
y(ξ1)

...
y(ξN)

 (13)

The procedure above requires a minimum of P + 1 points to ensure a solution exists.
It is common to use an oversampling of at least twice more than the required points as this
yields a better approximation for the statistical moments [20]. The formulation above uses
an L2-norm, but this study also explores the use of sparse methods which employ least
angle regression to determine the most significant PCE coefficients [21].

The two research domains of UQ and ROM have developed several techniques which
have strong parallels. Recently, the combined usage of UQ and ROM has been an active
area of research.

3. Methodology

The section below introduces the POD–PCE method, which is a parametric, non-
intrusive ROM technique to propagate user-defined uncertainties to high-dimensional
fields. In general, the procedure can be decomposed into two phases: the offline phase,
where the model is trained, and the online phase, where the model is used to predict
uncertain fields for unseen parameter points. During the offline phase, the following steps
occur (see Algorithm 1):

1. The uncertain parameters, ξ ∈ Rb, are identified, and the underlying probability
density function for each random variable, ξi, is defined.

2. A design of experiments (DOE) is used to sample m combinations of design variables,
[ξ1, . . . , ξm] ∈ Rb×m, and the FOM,M, is evaluated to generate the solutions X =
[x1, . . . , xm] ∈ Rn×m of the random field.

3. The matrix of snapshots, X, is generated, and the POD procedure is employed to con-
struct a low-dimensional embedding, Z = [z1, . . . , zm] ∈ Rd×m. The dimensionality
of the latent space is based on the desired RIC threshold, δ, such that RIC(d) ≥ δ of
the data.

4. A multivariate PCE model is used to learn the dynamics of each stochastic latent space
coordinate, zi, to obtain g such that gi : ξ 7→ zi. This parameterizes the latent space.

During the online phase, the multivariate PCE models are used to first predict the
latent space coordinates at some specified input parameter, ξ∗, using z = g(ξ). Then, the
POD modes are used to transform the embedded coordinates to the full-dimensional space
by the projection x̂(ξ∗) = Φg(ξ∗).



Aerospace 2023, 10, 1017 7 of 24

The above training procedure results in the following model:

x(ξ) ≈
d

∑
i=0

(
P

∑
α=0

ai,αψα(ξ)

)
φi (14)

where ψα and φi are the PCE and POD basis functions, respectively. This formulation
highlights that the model is a linear combination of POD modes; the coefficients of those
modes are determined by a PCE expansion. Figure 1 provides a visualization of the
training process.

Snapshots

Low-Dim.
Coordinates

FOM ROM

Inputs

ξ DOE POD

PCE

Φ

Z

g

Basis

Interp. Model

x

Figure 1. Overview of POD–PCE training process.

Note that once the PCE models are built in the latent space, the coefficients of the
polynomials can be readily used to obtain the mean, standard deviation, and any statistical
moment of the reduced space analytically. Once these latent space moments are calculated,
the POD modes can be used to map them to the high-dimensional space. For example, the
mean can be analytically computed as follows:

E[x(ξ)] =
d

∑
i=0

ai,0φi (15)

This capability of rapidly and analytically obtaining moments without the need for
further MC simulations is a primary benefit of the POD–PCE method.

Algorithm 1: Offline ROM Algorithm

Input: ξ = {ξ1, . . . , ξb} ∈ Rb

1 Utilize DOE to generate m samples of input uncertainties, [ξ1, . . . , ξm] ∈ Rb×m

2 Construct snapshot matrix, X = [x1, . . . , xm] ∈ Rn×m, using FOM evaluations
3 Perform dimensionality reduction to identify latent space coordinates

Z = [z1, . . . , zm] ∈ Rd×m // RIC(d) ≥ δ

4 Train regression models for each latent space coordinate, zi, to obtain g such that
gi : ξ 7→ zi

5 Return Φ and g

The analysis below uses several error metrics to characterize the performance of the
ROMs. In general, the error metrics can be decomposed into scalar and vector metrics.
The scalar metrics enable the rapid comparison of one model to another by providing one
numerical value that measures accuracy. On the other hand, the vector metrics provide
a visual representation of the error for a particular model over the entire computational
domain. This allows the practitioner to determine regions of the domain where the models
deteriorate in accuracy.

The root mean square error (RMSE) is one vector metric that provides an assessment
of the overall predictive performance of the models over the entire validation set. This
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error is evaluated at each node in the n−dimensional computational mesh across all Nt test
cases. Each component of this vector can be determined using:

eRMSE,i =

√
∑Nt

j=1(x∗j,i − x̂j,i)2

Nt
(16)

where x̂j,i is the predicted solution from the ROM and x∗j,i is the exact FOM solution at the
ith node for the jth test case.

To visualize the discrepancy for a particular test case, the following error metric can
be defined:

erel. =
abs(x̂− x∗)
‖x∗‖∞

(17)

Note that this metric can be used to compare the predicted moments from the ROM to
those obtained using the FOM. Suppose that the mean field predicted using the ROM is
denoted as x̂. Then, the error between the predicted solution to the exact FOM mean, x, is:

erel. =
abs(x̂− x)
‖x‖∞

(18)

Having established the vector metrics, the normalized RMSE (NRMSE) will be used
as a scalar measure to assess the overall accuracy across ROMs:

NRMSE =

√√√√√√∑Nt
j=1

∥∥∥x∗j − x̂j

∥∥∥2

∑Nt
j=1

∥∥∥x∗j − x
∥∥∥2 (19)

NRMSE can be decomposed into a reconstruction and regression error. The former
measures the error introduced by the dimensionality reduction procedure, while the latter
measures the error from the PCE models. The reconstruction error is given by:

erc =

√√√√√√∑Nt
j=1

∥∥∥x∗j −ΦΦTx∗
∥∥∥2

∑Nt
j=1

∥∥∥x∗j − x
∥∥∥2 (20)

The regression error is given by:

erg =

√√√√√√∑Nt
j=1

∥∥∥Φ(ΦTx∗j − ẑ)
∥∥∥2

∑Nt
j=1

∥∥∥x∗j − x
∥∥∥2 (21)

where ẑ is the predicted latent space coordinate found using the PCE regression models.
Lastly, a scalar metric using the L2-norm will be used to compare statistical moments:

e =
‖x− x̂‖2

‖x‖2
(22)

4. Experimentation and Results

The empirical investigation below sheds novel insight into the behavior of the linear
UQ procedure when applied to engineering datasets that may be encountered during
aircraft design. These test cases include uncertain flow inside a converging-diverging
nozzle, over a 2D airfoil, and over a 3D geometry. In each case, the flow field is high-
dimensional, with at least 1000 random variables and as large as 77,000 variables in the
3D case. Further, the solutions are obtained using CFD solvers that either use the Euler
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equations or Navier–Stokes equations, which are second-order nonlinear partial differential
equations. The geometry and boundary conditions are set such that there is a localized
region of supersonic flow in each solution that results in expansion fans and shockwaves,
further increasing the complexity of the underlying model. Lastly, the number of inputs is
increased from one to three as the training data are varied to test the performance in multiple
input parameter problems. Thus, these experiments are tailored to meticulously assess the
proposed method in practical problems and establish its advantages and disadvantages for
future practitioners.

4.1. Converging-Diverging Nozzle

The first experiment addresses a simplified test problem with uncertain flow through
a converging-diverging nozzle due to geometry changes. The governing equations for the
FOM are

∂(ρuA)

∂x
= 0

∂(ρu2 A + pA
γ )

∂x
− pγ

∂A
∂x

= 0

(23)

where A = A(x) is the area distribution, ρ is density, p is pressure, u is velocity, and γ is the
specific heat ratio of the fluid. Uncertainty is introduced in the problem through changes in
the throat area (Ae/At) which impact the pressure ratio through the nozzle. The nozzle has
a parabolic shape whose cross sectional area changes from A(x = −5) = A(x = 5) = 3,
with the throat located at x = 0. The throat area varies as a uniform random variable on the
interval [0.75, 1]. Using the boundary conditions, p(x = −5) = 1 and p(x = 5) = 0.7, the
governing equations are solved using a finite difference procedure over a uniform grid with
1000 nodes. This results in a shockwave inside the nozzle. A Latin Hypercube Sampling
(LHS) DOE is used to generate m samples for training and Nt = 10, 000 for testing. The
training set is varied in size (m = [25, 50, 100, 200, 300]) to evaluate the impact of sampling
density on prediction results.

The variation of the pressure distribution inside the nozzle for different uncertain
parameters is shown in Figure 2. It is seen that the size and location of the shockwave
depends on the throat area. Equally important, the pressure value after the shock is
dependent on the strength of the shock. Thus, the accurate prediction of the flow field
requires both the precise determination of the large amplitude changes in shocks and the
smooth pressure variation at all other points.

−4 −2 0 2 4
x

0.2

0.4

0.6

0.8

1.0

p/
p 0

Figure 2. CD Nozzle—Visualization of pressure changes due to uncertainties in throat area. Each
curve represents a different realization of the model given uncertain inputs.
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Figure 3 illustrates the test case responses predicted using the ROM for both a low-
order and high-order PCE model. The results demonstrate that the POD–PCE model can
accurately predict responses away from the shock region, but exhibits significant errors
near the shockwave. Specifically, the solution exhibits overshoots and undershoots and
errors persist in locations away from the actual discontinuity. Increasing the PCE order
decreases the magnitude of the error, but higher-frequency oscillations appear near the
shock. This behavior is referred to as the Gibbs phenomenon [22], and is expected to occur
since the PCE model may not be able to capture the latent space accurately [23].

−4 −2 0 2 4
x

0.2

0.4

0.6

0.8

1.0

p/
p 0

FOM

PCE Order = 1

PCE Order = 5

Figure 3. CD Nozzle—Pressure variation inside the nozzle for Ae/At = 7.38.

To better understand the effectiveness of the ROM, it is possible to analyze the latent
space identified after dimension reduction. Figure 4 shows some of the POD modes
identified. In general, it is seen that other than the first mode, most of the variations have
high frequency. These modes are associated with the sharp discontinuity and contribute to
the oscillatory behavior seen in the above plots. This necessitates the use of higher-order
PCE models, but, even with a fifth-order regression, a large portion of the shockwave
variation may not be precisely captured. To verify this, Figure 5 shows the predictive
performance of the PCE models for the first and tenth latent space coordinates. It is
observed that the PCE model is able to capture the low-order dynamics of the first latent
space coordinate. On the other hand, the tenth POD mode has an extremely nonlinear
latent space, requiring a large number of PCE coefficients to fit it. These discrepancies
manifest as oscillations and highlight the importance of precisely predicting the dynamics
in the latent space.

Figure 6 provides a visualization of the RMSE for ROMs trained using 300 samples but
with different PCE regressions. The low-order model exhibits consistently high errors, not
simply near discontinuities but also in the regions without shocks. As the order increases,
the regression model better captures the dynamics of the latent space. This diminishes the
error in the regions away from the shock, but the solution continues to exhibit oscillations
near the discontinuity. Figure 6b provides a more refined assessment of error as the PCE
order increases. Though errors monotonically decrease with increases in the PCE order,
there is no clear asymptote, which indicates that even the largest PCE model is insufficient
to accurately model the latent space. This is because flows with shockwaves have a slow
eigenvalue decay and thus a large number of POD modes are required to meet the relative
information content threshold of 99.99%. However, as additional singular vectors are
added to the POD basis, the regression procedure becomes more complex. Thus, a higher-
order PCE model is required during training. Similarly, increases in the samples provided
during training also decrease the error, though with only marginal improvements. Since



Aerospace 2023, 10, 1017 11 of 24

the NRMSE is more impacted by the PCE order than the number of samples, it is once
again seen that the regression model cannot predict variations of the embeddings.
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Figure 4. CD Nozzle—POD modes identified after dimension reduction using 300 samples.
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Figure 5. CD Nozzle—Predictive performance of PCE models in latent space.
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Figure 6. CD Nozzle—Variation of RMSE.

Figure 7 shows the variations in the reconstruction and regression error that contribute
to NRMSE. It is observed that increasing the number of samples from 25 to 100 reduces
the reconstruction error by over 50%. Further increasing the samples does result in an
error decrease, though with diminishing returns. The PCE order and reconstruction error
are independent of one another. Note that the number of POD modes required to capture
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the RIC increases rapidly with training samples (see Table 2). Consequently, for a fixed
PCE order, regression errors increase with more sampling data, given the increasingly
nonlinear and higher-dimensional nature of the latent space. Thus, any improvement to
the regression procedure that would have been obtained with the additional training data
is nullified by the increasing complexity of the latent space. In fact, the regression error
contributes more than 75% of the NRMSE, reflecting the latent space modeling challenges.
Thus, the hypothesis that the regression error, and therefore the PCE model’s limitations,
contribute more significantly to the NRMSE than the reconstruction error is supported.
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Figure 7. CD Nozzle—Variation of reconstruction and regression errors.

Table 2. CD Nozzle—POD modes retained to capture 99.99% variance.

Samples Modes Retained

25 4
50 49

100 88
200 137
300 159

Figure 8 presents statistical moments calculated through Monte Carlo analysis using
the FOM and those obtained using analytical expressions for PCE coefficients. The FOM
results shown utilize a bootstrapping procedure with 500 re-samples to obtain confidence
intervals for the moments, but the confidence interval is small enough that the solutions
collapse onto one curve. The mean response shows a gradual pressure change that is a
byproduct of averaging the discontinuous jumps in pressure across samples. The variance
plot shows that the largest changes occur between x = [1.5, 3.6] because the shockwave
exhibits the most significant variation within this range. The results show that when
the mean is calculated analytically, it perfectly matches the MC results. Note that the
convergence of the moments calculated using MC to the exact moments is slow. Specifically,
it can be shown that the error for MC drops with a rate of O(1/

√
m), where m is the

number of samples. POD–PCE avoids this additional MC cost and yet maintains precision,
and therefore is a powerful tool for uncertainty propagation. While increasing the order
improves the accuracy of predicting the variance, a fifth-order PCE model still cannot
predict the maximum variance.

Figure 9 depicts the impact of different training samples and PCE orders on the relative
L2-norm errors in the mean and variance. In both figures, an increase in the samples leads
to a decrease in error. More important, the POD–PCE method can accurately estimate the
mean response, and the error is largely unaffected by the order of regression. This indicates
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that a sparse POD–PCE model is able to not only create parsimonious models, but also
maintain the salient features of the problem for analytical computation of moments.
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Figure 8. CD Nozzle—Comparison of statistical moments.

Note that the integrated error for variance is two orders of magnitude larger than
that of the mean. To minimize variance error, high-order PCE models should be used.
However, it is equally important that this be accompanied with an increase in RIC during
dimensionality reduction. The RIC used to truncate the POD modes during dimensionality
reduction measures the amount of variance captured by the low-dimensional subspace.
Thus, the maximum accuracy for a POD–PCE model’s variance prediction is set during the
POD truncation phase. For flows with discontinuities, which have slow eigenvalue decay,
an RIC near 1 improves the variance and shock prediction, but drastically increases the
number of POD modes retained.
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Figure 9. CD Nozzle—Variation of integrated errors for statistical moments.

Lastly, since the discussion above has focused on the accuracy of the models over
the entire field, it is important to also assess the performance at specific points in the
computational domain. Each point would represent a scalar random variable and would
have an associated distribution. Figure 10 shows the distribution obtained from the FOM
and the ROM at two points in the domain. The first location is at x = 1.5, where the flow
has no discontinuities. It is seen that the ROM is able to perfectly reconstruct the variation
and distribution of the outputs without any inconsistency. On the other hand, at x = 2.5,
the flow varies significantly due to the presence of the shock and the model is unable to
predict the discrete jump. The linear model smooths this distribution. Thus, it can be
concluded that the performance of POD–PCE is accurate in flows where the shockwave
is restricted to a small portion of the domain or in regions where the shockwave does
not exist.
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Figure 10. CD Nozzle—Distribution of scalar random variables in domain. All results shown are for
a 5th-order PCE model trained with 300 samples.

4.2. RAE2822 Airfoil in Transonic Flow

The following experiment for uncertain transonic flow over an RAE2822 airfoil further
increases the complexity of the problems in three ways: First, the number of inputs increases
from one to three, which makes the latent space regression more challenging. Second,
the underlying governing equations are now the Navier–Stokes equations solved with
turbulence models, which make both the dimensionality reduction and regression step
difficult. Third, the flow domain itself is 2D and has 10 times the number of random
variables. Moreover, the field has mixed supersonic and subsonic flows and shockwaves
that vary in size, shape, strength, and location. Thus, this experiment adds significant,
novel empirical insight into the performance of POD–PCE in real-world aerodynamic
simulations that may arise during conceptual design or aerodynamic shape optimization.

The FOM used in this simulation is a Reynolds-Averaged Navier–Stokes (RANS) CFD
solver, SU2. A Spalart–Allmaras (SA) turbulence model is used to resolve the viscous
effects over an O-grid mesh with 10,500 nodes. An RAE2822 airfoil is parameterized using
the Free-Form Deformation (FFD) approach, whereby a bounding box around the airfoil is
used to perturb its shape [24]. Uncertainties are introduced by defining two control points
at the mid-chord of the airfoil and independently changing their vertical displacement
from the baseline by [−3%, 3%] of the chord length. Perturbations from the baseline are
uniformly distributed. The angle of attack is also an uncertain parameter, which varies
uniformly over the interval [−2◦, 2◦]. The freestream Mach number is fixed at 0.725 for all
simulations, resulting in a shockwave either on the upper or lower surface.

An LHS DOE with 2500 points is used to sample the FOM. From this set, 60% of points
are randomly selected to be a part of the validation set and the training dataset is varied
such that m = [50, 100, 200, 300, 400]. In doing so, the impact of sparse training data on
overall performance is evaluated as was done in the previous test case.

Figure 11 compares the accuracy of the ROM to the CFD solution for a case from the
validation set. The POD–PCE method accurately predicts the pressure distribution around
the body in regions with fully subsonic flow. However, near shockwaves, the error steadily
increases and is largest near the actual discontinuity location. This large region of localized
error is due to the imprecise prediction of the shock shape and location and also due to
the presence of Gibbs oscillations. Since the POD–PCE model performs well in the purely
subsonic regions, it can be hypothesized that the method is most proficient in problems
where shockwaves are a small fraction of the overall solution or when discontinuities are
absent. The last experiment investigates whether this accuracy is maintained in purely
supersonic flows over 3D bodies.
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Figure 11. RAE2822—Comparison of the predicted CP and relative prediction errors. Solutions are
for ROMs trained with 400 samples and a 5th-order expansion.

When the performance is inspected across the entire validation set (Figure 12), the
limitations of the linear methodology become clearer. The RMSE is nearly 0 throughout
the computational domain, except on the upper surface where the shock varies most. As
the regression order is increased, the RMSE steadily decreases and the region of error
shrinks significantly in size. In fact, when a first-order model is used, both the upper
and lower surfaces have a large RMSE, while a fifth-order model restricts the error to
the mid-chord of the upper surface. This is because an increase in the regression order
improves the latent space prediction of all modes, but especially assists with the prediction
of the trialing modes that are associated with the shock dynamics. Quantitatively, as the
PCE order increased, the maximum RMSE decreased by nearly 50% from 0.144 to 0.76. This
performance improvement is reflected in the NRMSE plots in Figure 13a with a decrease in
error of 61%.

RMSE
0.0 0.04 0.12 0.160.08

(a) 1st Order

RMSE
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(b) 5th Order

Figure 12. RAE2822—Visualization of RMSE (400 Samples).
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Figure 13. RAE2822—Variation of NRMSE, reconstruction error, and regression error.

Further, when the training data points are increased, the NRMSE consistently de-
creases, though with diminishing returns. This is because the oversampling ratio increases
and improves the accuracy of the PCE coefficients. It is worth noting that the number of
modes does not change after 200 training samples (see Table 3), thus fixing the dimensional-
ity of the latent space. As such, any improvement in NRMSE beyond 200 samples is purely
due to improvements in the regression procedure and minor changes in the accuracy of
the POD modes. As the PCE order is increased, the differences between the ROMs become
amplified and there is a monotonic decrease in error. Specifically, for sparse datasets, there
is a rapid asympotote in the regression error as the PCE order increases. For larger ones,
the asymptote is delayed and error continues to diminish because of the availability of
more training data without an increase in the number of POD modes. This behavior is
seen for all sample sizes except when 50 training data points are supplied. For this case,
the slight increase in error when the PCE order is increased beyond a quadratic model is
because the oversampling ratio falls below 2. In fact, a fifth-order model requires at least
56 samples, but with only 50 supplied, the problem becomes underdetermined and the
solution is inaccurate.

Figure 13 also displays the variations in reconstruction and regression errors. The
reconstruction error is an order of magnitude smaller than the regression error, reflecting
the challenge of the PCE model in predicting the latent space variations. As the sample
size increases, the reconstruction error decreases, although it saturates beyond 300 samples,
indicating that the additional data supplied add minimal novel information to the POD
modes. Similar to the trends seen in the CD Nozzle test case, the regression error dictates
the performance of the NRMSE and supports the conclusion that the linear assumptions
used within PCE (although beneficial for analytical moment computation) are a hindrance
to the effectiveness of POD–PCE.
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Table 3. RAE2822—POD modes retained to capture 99.99% variance.

Samples Modes Retained

50 17
100 19
200 21
300 21
400 21

Finally, note that in the first test case, the number of nodes retained was nearly eight
times larger than the current test case (see Table 2). This can be attributed to the fact that
the shock occupies a smaller fraction of the overall computational domain. Consequently, a
smaller number of POD modes are required to meet the RIC and the NRMSE is also lower
(even though the number of nodes is 10 times larger). Together, these findings further
support the hypothesis that POD–PCE models perform well in simulations with few
discontinuities or when the nonlinearities are restricted to a small fraction of the domain.

Figures 14 and 15 present a comparison of the statistical moments. Since the geometry
changes, the results shown are overlaid on the baseline airfoil at zero angle of attack. In
both sets of plots, the error is largest near the shockwave. The analytically calculated
mean closely matches the FOM and is unaffected by the PCE order. The variance, being
much harder to predict, has errors that are an order of magnitude larger. The flow has the
largest variation in pressure coefficient near the leading edge and on the upper surface of
the airfoil. However, the error is restricted to the upper surface and reaches a maximum
value at the shock location. This suggests that even if the variance is high, the POD–PCE
method can predict it accurately. However, if the variations are accompanied by or due
to shockwave movements, there is rapid decrease in precision as the ROM exhibits the
Gibbs phenomenon. As expected, as PCE order increases, both the extent of error and its
magnitude decrease for the variance.

Figure 16 shows the impact of varying training samples and PCE order on the inte-
grated error for the mean and variance. Overall, the mean response is predicted accurately,
and performance improves marginally if PCE order increases and the uncertain PDFs are
sampled more densely. For variance, there is a decrease in error with increasing samples
and PCE order, but since RIC is fixed, all curves asymptote to nearly the same value as
higher-order polynomials are used. Thus, if the variance or any higher-order statistic is
to be better captured, the PCE order, the RIC, and the training sample size should all
be increased.

It is essential to not only understand how well the models perform over the entire
domain, but also to isolate their ability to reconstruct the variations of integrated quantities.
As such, Figure 17 shows the variation of the lift coefficient for the airfoil. It is seen that the
ROM is able to accurately reconstruct the distribution. This indicates that lift coefficient
can be predicted precisely even if the shockwaves in the flow are not.

4.3. Uncertain Supersonic Flow over Commercial Passenger Aircraft

The test case below assesses the performance of the methodology in predicting 3D
uncertain supersonic flow over a supersonic transport aircraft (SST). While this test case
also uses a CFD solver to obtain the snapshots, the number of nodes in the mesh is seven
times larger compared to the airfoil test case. Moreover, since this is a fully 3D flow, there
are strong interactions between components of the aircraft.

The geometry used is based on a notional 60-passenger SST designed for a cruise
Mach number of 1.6 (see Figure 18). The nacelle and tail were removed to simplify the
computational domain and reduce convergence time. Uncertainty is introduced in the
problem through two variations in the operating conditions: Specifically, the Mach number
is normally distributed with a mean of 1.6 and a standard deviation of 0.05. The angle
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of attack is also normally distributed with a mean of 2◦ and a standard deviation of
0.5◦. Together, these parameters change the flow over the entire aircraft by varying the
shockwave structure and shape around the body. To resolve the flow, a computational
mesh with 118 M nodes is created around the aircraft. Since the computational mesh is
large, an inviscid analysis was executed with the compressible Euler equations. The Barth–
Jespersen limiter [25] is used for controlling numerical dissipation along with the flux-vector
splitting approach of van Leer [26]. An LHS DOE was used to obtain 300 training and
1500 validation snapshots.

Based on the results from the airfoil test case, only a fifth-order PCE model is used to
fit the latent space since it is expected to be highly nonlinear. Given the large size of the
computational domain, the ROM is fit only on the extracted surface data, which resulted in
a snapshot having n = 77,500 nodes.
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Figure 14. RAE2822—Comparison of the predicted mean CP and relative prediction error for different
PCE orders (400 samples).
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Figure 15. RAE2822—Comparison of the predicted CP variance and relative prediction error for
different PCE orders.
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Figure 16. RAE2822—Variation of integrated errors for statistical moments.
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Figure 17. RAE2822—Distribution of lift coefficient.

Figure 18. SST Geometry.

Figure 19 shows the solution predicted for one sample from the validation set. From
the FOM solution, it is seen that the flow has a shockwave that occurs toward the wing tips
and lacks discontinuities everywhere else in the domain. Thus, although the governing
equations themselves are nonlinear PDEs, the solution is largely smooth other than at the
wing tips. Unlike the airfoil test case, the inviscid analysis, combined with the variation
of the uncertainties, results in flows where the Mach number is greater than one for all
points on the surface. In agreement with the previously seen trends, the POD–PCE model
performs well in the regions without shockwaves and is able to accurately reproduce the
pressure distribution with little error. The Gibbs phenomenon is witnessed near the wing
tips where an oscillatory error pattern exists. The region of error increases toward the
trailing edge of the wing where the shockwave has greater variance, which causes an
increase in the nonlinearity of the POD modes. Thus, the data suggest that if the flow
is entirely supersonic (or subsonic) or if the shockwave’s variance is limited, then the
POD–PCE method can predict the pressure distribution accurately.

For different Mach numbers and angles of attack, the intersection of the Mach cone
with the wing leads to variations in the shock location. The aggregate performance of
the models can be assessed using the RMSE, which Figure 20 provides. Given that the
POD–PCE model has shown error near the discontinuity, the RMSE has a large rise near the
wing tips. The region of error increases downstream of the leading edge as the variations
increase and oscillations rise. Away from the shock, the model has near-zero error and
closely matches the FOM data.
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Figure 19. SST—Comparison of the predicted pressure coefficient field (bottom) of the SST upper
surface and its error (top) with respect to the actual solution.
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Figure 20. SST—RMSE distribution.

Figure 21 shows the mean field over the aircraft surface and the componentwise
relative error at each node. For POD–PCE, the mean is precise everywhere except near
the wing leading edge. This results in an integrated error of 8.78× 10−3. The integrated
error for variance is an order of magnitude larger compared to the mean error and equals
5.97× 10−2. As can be seen from the FOM plot in Figure 22, there is a larger variation in the
pressure values for the aircraft toward the leading edge, which results in a corresponding
decrease in accuracy. Other than this isolated region of high error, at all other points,
POD–PCE performs well and enables the rapid computation of moments.



Aerospace 2023, 10, 1017 22 of 24

Error
0.0 0.0025 0.0075 0.010.005

Cp
−0.25 −0.13 0.13 0.250

Figure 21. SST—Mean surface pressure distribution.
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Figure 22. SST—Variance of surface pressure distribution.

5. Conclusions

The design of novel aircraft, especially those which deviate significantly from previous
designs, is challenging due to the lack of historical data and high cost of experimental data
acquisition. This challenge is further exacerbated by uncertainty during the manufacturing
process, flight conditions, and atmospheric properties, which can cause significant changes
to the aircraft performance. In some cases, the variations in performance can lead to
program delays that increase overall cost.

While the methods used for reduced order modeling and accelerating uncertainty
quantification are closely related, the two disciplines have largely operated in isolation until
recently. This research provides a comprehensive characterization of the POD–PCE method,
a parametric, non-intrusive, ROM-based strategy for accurately and efficiently predicting
high-dimensional fields. Using three CFD-based test cases from quasi-1D internal flow to
2D flow over airfoils, to 3D flows over aircraft, a thorough assessment of the POD–PCE
method is provided.

The findings show that, even with sparse datasets, the current methodology enables
the efficient propagation of uncertainty in fields with shockwaves as the dimensionality
is reduced by over two orders of magnitude. Specifically, it was observed that if the flow
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is entirely supersonic (or subsonic) or if discontinuities are limited to a small fraction of
the overall computational domain, then the POD–PCE method can predict the pressure
distribution accurately. However, near shocks, the above method has a sharp rise in
error due to the inherent limitations of the PCE model in capturing the highly nonlinear
variations of POD modes.

The POD–PCE method is limited by the effectiveness of the UQ model in the latent
space. In fact, the regression error contributes to over 75% of the total error in some cases
and reflects the challenges of capturing the dynamics of the latent space. The RMSE, and
the error of the variance field, are near zero throughout the domain except near the vicinity
of the shockwaves. However, as the PCE regression order and training sample size are
increased, the models become increasingly more accurate, albeit less parsimonious.

Together, these findings further support the hypothesis that the proposed method
performs well in simulations seen in subsonic aircraft design. In the future, the use of
alternative dimensionality reduction methods, such as those that rely on manifold learning
to identify a nonlinear latent space, will be explored. It is hypothesized that nonlinear DR
methods may alleviate the challenges of approximating shocks and therefore reduce error.
Future studies will also investigate extensions to PCE models, such as multi-element and
kernel-based approaches, to improve latent space regression.
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