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Abstract: Here, we study three fundamental climatic phenomena: The seasonal lag, the diurnal
lag, and the asymmetry of daily temperature variation. We write a nonlinear ODE based on an
energy balance for surface temperature and humidity. The model focuses on small regions of the
Earth’s surface; it reproduces the three phenomena with a reasonable accuracy if a few parameters
are chosen according to the climatic type of the regions. The plots in this manuscript compare real
climatic data with numerical solutions of the model we propose. The model takes into account
the doubly periodic forcing of the solar radiation (annual and daily), IR radiation, the existence of
thermodynamic bodies with different thermal inertia (land and oceans), and the effect of humidity
on the thermal inertia of the air. We write the equations using astronomical parameters with the
possibility of applications to exoplanets in mind. We conclude this article investigating the evolution
of temperatures in Catania and Sydney if the Earth was on an orbit around the Sun with the same
mean distance but greater eccentricity.

Keywords: nonlinear dynamical systems; climate modelling; local climates; seasonal lag; diurnal lag;
asymmetric evolution of daily temperatures; earth and planetary climate

1. Introduction

The first models in modern climatology date back to the late 1800s, early 1900s [1–3].
They were based on a combination of incoming and outgoing radiation and Navier–Stokes
equations, since climate is driven by energy balance and motion of fluid masses. Energy
balance has however different effects on the surface temperatures on Earth, because each
region has different composition and hence different effective thermal inertia. Moreover, av-
erage heat exchanges inside the region and between different regions can be very different
depending on their composition.

Relying on these ingredients, early meteorologists considered weather forecasting
impossible [3]. This is not so obvious when dealing with climatology. In climatology,
the evolution of average thermodynamic variables is reasonably not as much influenced
by diffusion phenomena [4]. Some local variations of temperature and other thermody-
namic variables are due to motion of fluid masses. Excluding systematic effects (caused
for example by the rotation of the Earth, the difference between polar and equatorial
temperatures, etc.), these type of variations average out in a climatic period of 30–50 years.
The systematic effects can be accounted for indirectly, by adapting the parameters. For the
reasons above, some climatic phenomena can be investigated including diffusion only as a
marginal effect through a compensation in the parameters. This allows one to reproduce
many climatic effects considering non-sophisticated models which, despite their simplicity,
can be reasonably predictive.
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In this article we focus on three main climatic effects. The first phenomenon is called
seasonal lag, or lag of seasons. With this name one indicates the well known fact that the
warmer days of the year take place a variable number of weeks after the days of maximal
solar irradiance. The second phenomenon is the less celebrated phenomenon of diurnal
lag, or lag of noons. With this name we indicate the fact that the warmer hours of the
day take place from one to a few hours after the moment of strongest solar irradiance.
The third phenomenon is the daily asymmetry of temperature variation. With this name
we indicate the fact that daily temperatures rise much faster in the morning than they fall
in the afternoon. In Figure 1 we graphically represent the three phenomena.
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Figure 1. On the left the seasonal lag in Catania. The blue curve represents the energy that enters each day through a square
meter of higher atmosphere, the red curve is a plot of the temperatures during an average year. In the center the diurnal
lag for a day of January in Catania. The blue curve is the power of solar irradiance during that day and in red the average
temperatures during that day. On the right the plot of that average day together with the symmetrized plot, to emphasize
the daily asymmetry of temperature variation during that day.

The delays are well known in boundary layer meteorology and play an important
role for example in urban climate. What we prove in this manuscript is that the most
basic model that displays these three phenomena must necessarily include two thermo-
dynamic bodies (land and ocean) and the humidity. The two thermodynamic bodies and
their thermal inertia do provide the two distinct and independent delays, which are very
different depending on the climatic zone in which one is performing the investigation.
The evolution of air humidity during the day does provide a changing thermal inertia of
the air, which in turns creates a difference between the morning raise of temperatures and
their afternoon decay.

The ultimate goal of this manuscript is to suggest a model that reproduces the three
climatic effects above but also, where possible, provides a realistic evolution of average
surface temperatures and humidity. In this manuscript with average temperatures of a
region R we mean the function T̄ : [01/01 at 00 : 00, 12/31 at 24 : 00] → R obtained by
averaging the surface temperatures at a chosen day, hour and minute of the years from
1973 to 2020 (48 years) measured at a chosen WMO station insideR. More explicitly

T̄(month, day, hour, min) =
1
48

2020

∑
y=1973

T(y, month, day, hour, min), (1)

with T(year, month, day, hour, minute) being the temperature at a given UTC time. The same
procedure has been used to define the average relative humidity of a region. Nowadays
temperatures and humidity datasets are easily available also to non-professional meteo-
rologists. There are about 10,000 WMO station around the world, each of which makes
from 5000 to 20,000 measures a year since 1973. This allowed us to compute the averaged
functions for temperature and relative humidity with time steps of 1 h, and compare them
with simulations.
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In this work we operate a number of simplifications that might be reasonable or
partially acceptable. For example we do not consider altitude and meridional heat fluxes.
To deal with altitude one could not exclude the contribution of neighbouring cooler regions;
also meridional fluxes have a stationary component. Even worse, stationary heats fluxes
such as the Gulf Stream can be accounted for only with a detailed inclusion of global
geomorphology. We also disregard synoptic storms and eddy-diffusion [5], effects that
could give a sensible deviation the model. This is stated to make it clear that our intent is
not to give an accurate predictive system, but to provide a simple model that supports and
justifies the three climatic phenomena described above.

In [6] the authors discuss a very simple mathematical model to explain the phe-
nomenon of lag of seasons. Elementary mathematics proves that the long-term solution to
the equation

Ṫ(t) = (−λT(t) + µ) + (a cos(ωt) + b) (2)

is
µ + b

λ
+

a√
λ2 + ω2

cos(ω(t− τ)), (3)

where τ = ϕ/ω and ϕ = arg(λ + iω). Equation (2) is an extremely basic model for the
evolution of temperature T of a regionR on the surface of a planet. In this model T is the
temperature ofR. The term −λT + µ is a linearisation of the outgoing radiation fromR,
while the forcing term a cos(ωt) + b models the solar irradiance absorbed byR, and ω is
related to the revolution of Earth. It clearly follows from (3) that the temperature T has
maxima and minima delayed with respect to the maxima and minima of solar irradiance,
and the lag of these extremes τ corresponds to the lag of seasons.

An approach that takes into consideration only Sun’s irradiation and Fourier’s law
cannot reproduce the three phenomena. The simple introduction of a forcing term contain-
ing two frequencies (daily rotation and annual revolution) is not enough to give realistic
predictions of both lags (noon and seasons) [7]. To make such predictions one must increase
the number of degrees of freedom. In fact, the first model whose solutions correctly predict
both effects uses at least two different thermodynamic bodies with different thermal inertia,
which correspond to a system with two degrees of freedom [8]. A quantitative analysis
of the two lags is performed in Appendix A. The asymmetry of temperatures is a further
effect, and to be reproduced it requires the introduction of one more degree of freedom,
that models the evolution of the absolute humidity of the air.

In the literature, climatic models can be roughly divided into two categories: global
circulation models (GCMs) [4] and energy balance models (EBMs) [6]. In GCMs land,
oceans, and atmosphere are discretised into cells, and flows and energy transfer among
cells are integrated over time; in EBMs the evolution of temperature is computed through
low-dimensional systems, and the investigation is typically local or mediated along a
parallel. GCMs can predict climate more accurately, but they require great effort to acquire
data, to set up the simulation, and need large computing capacities. EBMs are possibly
less accurate but require much less computational resources. EBMs have often been
used to investigate climate under hypothetical variations of orbital and environmental
parameters [9,10]. Our work belongs to this second class of models. Our model could be
used to investigate possible climate changes on Earth (e.g., greenhouse effect) and climate
habitability of exoplanets in specific parts of their surface. In particular, at difference from
classical one-dimensional EBMs [11], our approach is applicable when the revolution period
and the rotation period are in 1:1 resonance (tidal locking) or other low-order resonance.

The outline of the work is the following. In Section 2 we give some geometric def-
initions and we write explicitly the expression of solar rays inclination. In Section 3 we
recall the general laws of heat exchange and evaporation, and we write the evolution
equations for temperature and humidity of a region in a generic planet. In Section 4 we
numerically solve the equations for various regions on Earth, showing that our model well
describes different types of climates (according to the Köppen climate classification [12])
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and reproduces the three climatic effects. In Section 5 we discuss the daily and seasonal
lags, and compare simulated and measured ones. In Section 6, we discuss the results and
indicate possible improvements and applications of the model.

2. The Geometry of Solar Radiation

The motion and orientation in space of a regionR on the surface of a planet is in good
approximation due to the composition of the Keplerian revolution of the planet around
its star and the rotation of the planet around its axis. The combination of such motions
determines intensity and angle of the solar radiation responsible for the heating of the
region. Disregarding all possible perturbations to this setting, the power of incoming solar
radiation in R is hence completely determined by its exposition on the planet and the
position of the planet in space.

2.1. Geometrical Definitions

In our model the planet is assumed to be an ellipsoid. Its center of mass, following
Kepler’s laws, revolves around the Sun along an ellipse belonging to a plane called ecliptic
plane. The planet also rotates uniformly around an invariable axis which makes a fixed
angle γ, called obliquity, with respect to the normal of the ecliptic plane. The two points
of the planet whose movement is not due to rotation are called North and South poles,
which are posed respectively at latitude +90 and −90 degrees (or π/2 and −π/2 radians).
The tropics are the two circles of points that have latitude ±γ. We plan to describe the
evolution of temperature in a certain region of the planet situated at a fixed latitude ϕ and
longitude ψ.

Astronomically speaking, significant times are those in which the Sun rays have global
and local minimal (or maximal) angle from the zenith, and they are called solar solstices and
solar noon. Climatically speaking, significant instants are those in which the temperature
has global and local maximum (or minimum).

Definition 1. The thermal solstices are the global extremes (maximum and minimum) of the
temperature in a zone of the planet during the year. The thermal noon is the moment in which the
temperature is at a local maximum.

It is an empirical climatic fact that the thermal solstice and thermal noon are delayed
with respect to the respective solar solstice and noon. Such delays are called seasonal lag
and diurnal lag.

2.2. Inclination of Solar Rays

Let us consider a planet P rotating around its sun S, and let ~e1, ~e2, ~e3 be an orthonormal
reference frame fixed with respect to the stars. The vector ~e1 is parallel to the semi-major
axes of the Keplerian orbit of P and is directed from S to P when P is at the perihelion;
the vector ~e3 is normal to the ecliptic plane and is such that the rotation of P around the
sun is counterclockwise; the vector ~e2 = ~e3 × ~e1 completes the frame and is parallel to the
semi-minor axis.

Following the classical description of Keplerian motions, and supposing that at time
t0 = 0 the planet P is located at a certain angle ϑ0 along the orbit, the position of P with
respect to the sun is given in polar coordinates by the formulas

ρ(t) =
a(1− e2)

1 + e cos(ϑ(t))
, ϑ̇(t) =

2π

Y
√

1− e23 (1 + e cos(ϑ(t)))2, ϑ(0) = ϑ0 (4)

where e is the eccentricity, a is the length of the semi-major axis of the orbit, and Y is
the period of revolution. We also suppose that the planet P rotates with angular velocity
Ω = 2π/D around an axis invariable in space (D is the period of one rotation, also called
sidereal day). Such invariable axis can be determined by two angles, in fact the axis belongs
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to the cone that forms an angle γ with ~e3 and its projection on the ~e1, ~e2 plane forms an
angle δ with the ~e1-axis moving counterclockwise (see Figure 2).

Figure 2. Reference frame fixed to the planet. The angle γ is the inclination of the rotation axis,
the angle δ mismatches aphelion/perihelion from solstices.

It follows that a convenient choice of reference frame ~f1, ~f2, ~f3 attached to the rotating
body with ~f3 parallel to the axis of rotation is

~f1(t) = (cosγ cosδ cos(Ωt + ω0) + sinδ sin(Ωt + ω0)) ~e1+

+(cosδ sin(Ωt + ω0)− cosγ sinδ cos(Ωt + ω0)) ~e2 − sinγ cos(Ωt + ω0) ~e3

~f2(t) = (sinδ cos(Ωt + ω0)− cosγ cosδ sin(Ωt + ω0)) ~e1+

+(cosδ cos(Ωt + ω0) + cosγ sinδ sin(Ωt + ω0)) ~e2 + sinγ sin(Ωt + ω0) ~e3

~f3(t) = sinγ cosδ ~e2 − sinγ sinδ ~e1 + cosγ ~e3.

The reference frame ~f1, ~f2, ~f3 can be computed from ~e1, ~e2, ~e3 composing the rotation
matrices Rz(−δ)Ry(−γ)Rz(Ωt + ω0), where Ry(−γ) is the rotation around the y axis of
an angle −γ and ω0 is needed to pose a specific meridian at midnight when t = 0. The
unit vector pointing from the planet to the sun is

~d(t) = − cos(ϑ(t)) ~e1 − sin(ϑ(t)) ~e2.

Since the regionR at latitude ϕ and longitude ψ has normal to the surface

~n(t) =
Re cos ψ cosϕ ~f1(t) + Re sin ψ cosϕ~f2(t) + Rp sinϕ~f3(t)√

R2
e cos2 ϕ + Rp sin2 ϕ

,

where we take into account the fact that the Earth is an ellipsoid with equatorial radius Re
and polar radius Rp, it follows that

~n(t) · ~d(t) =− Re
cosϕ sin(ψ + Ωt + ω0) sin(δ + ϑ(t))√

R2
e cos2 ϕ + Rp sin2 ϕ

+

− Rp
sinγ sinϕ cos(δ + ϑ(t))√

R2
e cos2 ϕ + Rp sin2 ϕ

− Re
cosγ cosϕ cos(ψ + Ωt + ω0) cos(δ + ϑ(t))√

R2
e cos2 ϕ + Rp sin2 ϕ

.

(5)

This scalar product will be used in the following section, when writing the solar
irradiance. In Table 1 the values of all parameters for the planet Earth are indicated.
In particular ϑ0 = −3(D/Y)2π to pose January 1st at t = 0, and ω0 = ϑ0− δ = 10(D/Y)2π
to pose Greenwich’s meridian at midnight when t = 0.
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Table 1. Fundamental astronomical parameters for planet Earth.

e 0.0167 Eccentricity of Earth’s orbit
a 1.496× 1011 m Average Earth-Sun distance
γ 23.437◦ Earth’s mean obliquity
δ 12.8219◦ Angle between solstices and perihelion/aphelion
D 8.616409× 104 s Period of rotation of the Earth
Y 3.15569× 107 s Period of revolution of the Earth
Re 6,378,136 m equatorial radius of the Earth
Rp 6,356,751 m polar radius of the Earth

3. The Physics of Heat Transfer

The temperature of a region R on a planet is the result of a balance between the
incoming radiation from the sun, the outgoing radiating energy, latent heats and heat
exchanges within the system. We model the heat dynamics of such limited region R
located at a certain latitude ϕ and a certain longitude ψ. We disregard spatial diffusion and
hence we use ordinary differential equations in which time is the independent variable. This
is not a reasonable assumption when dealing with meteorology, and it is also climatically
unreasonable due to stationary heat flows among regions, such as the meridional heat
transport. In this model such systematical contributions can be taken into account slightly
modifying the parameters which model the incoming and outgoing fluxes (reflectance
and absorbance). All other effects will average out because we do compare numerical
solutions of the system with average temperatures and humidity of a region. For these
reasons we suppose that the region R is physically isolated from the rest of the planet.
Our choice of parameters will clearly be slightly biased by this assumptions. Nonetheless,
the qualitative and quantitative reproduction of the three climatic effects described above
will be a demonstration that their existence strongly relies on the thermodynamic variables
we took into consideration, and dispersion and diffusion do not play an important role.

We restrict our study to the lowest part of the atmosphere and to the superficial layer
of the planet’s surface. As we said in the Introduction, in order to reproduce lags, daily
patterns, and more generally local climates, we consider three different homogeneous
thermodynamic bodies, that in the case of Earth are air (which temperature we measure),
land, and sea. To keep the model simple, for air and sea we consider well mixed unique
layers in which the temperature is constant throughout the layer. This is a reasonable
assumption considering that the depth of these superficial layers is relatively small. In the
following, we refer to the air layer using the index 0, to the land using the index 1, and to
the ocean using the index 2.

This model represents the energy balance of the regionR of the Earth’s surface which
extension is reasonably of the order of 100 km2. The real value of this surface plays no
role in our investigation. In fact all quantities will be expressed “per unit surface”, and the
units will always be multiplied by m−2.

3.1. Solar Irradiance

Approximating our Sun to a black body, σT4
s R2

s is the total energy emitted by the Sun
per second, where σ is the Stephan-Boltzmann constant (Js−1K−4m−2), Rs is the radius
of the Sun, Ts is the temperature of the Sun (see Table 2). The solar irradiance flowing
through a unit area perpendicular to the rays at distance ρ from the Sun is given by the
Stefan-Boltzmann law

I =
σT4

s R2
s

ρ2 . (6)
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Table 2. Fundamental physical parameters for the solar irradiance.

Parameter Value Description

σ 5.670× 10−8 Js−1K−4m−2 Stefan-Boltzmann constant
RS 6.955× 108 m Solar radius
TS 5778 K Sun superficial temperature

In order to have the effective power received by a unit region R on the planet, we
must multiply (6) by the scalar product (5). Considering the fact that during the night the
contribution of the solar radiation is zero, the solar irradiance onR is

W(t) = max
{

σT4
s R2

s
ρ(t)2 n(t) · d(t), 0

}
. (7)

Observe that W is expressed in Js−1m−2 and is the power of solar irradiance per unit
area. When a light ray hits a body, its energy can be absorbed, transmitted or reflected.
These three phenomena can be modelled introducing three parameters: absorbance α,
transmittance τ, and reflectance r such that α + τ + r = 1. We mention here that in the
literature the fraction of reflected radiation is commonly called albedo.

The solar rays cross the whole atmosphere, which absorbs a part of them. When
the rays reach the surface, a part of them is absorbed by the superficial layer, another
part is transmitted to a deeper underlying layer and a last part is reflected back to the
atmosphere. Again, a part of this reflected radiation is absorbed, reflected or transmitted by
the atmosphere. In our model, the layer of land and sea absorb all the incoming radiation,
but in a very different way. For this reason we must keep in mind that each region R is
partly land and partly water. Thus we introduce one of the main climatic parameters in
our model: a number p ∈ [0, 1] which represents the fraction of land and is referred to as
solid fraction parameter. Its complementary parameter q = 1− p is the fraction of ocean.
The constant p models the presence of two thermodynamic bodies which have different
thermal inertia. It is one of the main parameters that allows the model to discriminate
between different climatic zones (for example temperate and continental climates are very
different mostly because parameter p is different). More details will be given in Section 3.7.

The amount of solar radiation absorbed by the three layers follows the laws

dQSR
0

dt
= α0(1 + pτ0r1 + qτ0r2)W(t)

dQSR
1

dt
= pτ0α1W(t)

dQSR
2

dt
= qτ0α2W(t).

(8)

The superscript SR indicates that the contribution comes from Solar Radiation. The quan-
tities Qi are expressed in J m−2 and represent the heat quantity of the three thermodynamic
bodies per unit area. The true amount of energy stored in such bodies can be obtained
multiplying by the surface taken into consideration.

The parameters τi, αi, ri = 1 − αi − τi, p, q = 1 − p are considered constants. We
are aware that they actually are slightly variable, depending on the zenith angle of the
Sun’s rays, the atmosphere composition, the superficial temperature, and other factors.
We will use their average value in the numeric integration. In our simulations, we have
chosen r1 = 0.2 for the reflectance of the land, which is a good approximation for Earth
continents [13]. For other types of surface we can consider values of r1 in the range
[0.1, 0.4] [14]. The lowest values are appropriate for basaltic rocks or conifer forests,
Sahara’s desert has r1 ' 0.4 [15], while grasslands have r1 ' 0.2 [16]. With respect to the
ice, it has been documented a difference between ices over lands and over oceans [16,17].
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Therefore, following [14], we adopt r1 = 0.85 and r2 = 0.62 for ices over lands and ices
over oceans respectively. We also suppose that all of the solar radiation not reflected by
the surface is absorbed, giving α1 = 1− r1, and α2 = 1− r2. For the atmosphere the
absorbance of solar radiation α0 is slightly variable [18], we assign to it the average values
0.25. The transmittances τi are given by the relation τi = 1− αi − ri. In Table 3 the values
of all relevant parameters are listed.

Table 3. Reflectance r, absorbance α and transmittance τ of solar radiation for various thermodynamic
bodies on Earth.

Reflectance r Absorbance α Transmittance τ

Atmosphere (solar light) 0.23 0.25 0.52
Soil 0.2 0.8 0

Desert 0.4 0.6 0
Ocean 0.15 0.85 0

Ice over land 0.85 0.15 0
Ice over oceans 0.62 0.38 0

3.2. Thermal Radiation

All hot objects radiate with a Stefan-Boltzmann law. Unlike the Sun, warm objects
cannot be assumed to be black bodies and hence the power of emitted energy is εσT4,
where ε is the emissivity of the body, a number in [0, 1] which depends on chemical and
physical properties of the hot body. In this model the layer of atmosphere will be assumed
to radiate in two directions, down towards the Earth with emissivity εd

0, and up towards
outer space with emissivity εu

0. We also assume that εd
0 > εu

0 because of lower density and
temperature of the upper part of the atmosphere, and that all downward infrared radiation
is absorbed by soil and water. We choose εd

0 = 0.8 for the radiation towards the surface of
the Earth and εu

0 = 0.45 for the radiation towards outer space.
The correct energy balance at our temperatures must include a parameter αT

0 to model
the absorbance by the atmosphere of the radiation, called thermal radiation, emitted from
Earth [18]. Unlike solar radiation, the spectrum of thermal radiation is mainly infrared,
and αT

0 is much higher than α0. The value assigned to αT
0 is connected to the modelling of

the greenhouse effect and it belongs to the interval [0.8, 0.95].
Summarizing, the power of energy transferred through thermal radiation between the

thermodynamic bodies inR is

dQTR
0

dt
= σ(pαT

0 ε1T4
1 + qαT

0 ε2T4
2 − (εd

0 + εu
0)T

4
0 )

dQTR
1

dt
= pσ(εd

0T4
0 − ε1T4

1 )

dQTR
2

dt
= qσ(εd

0T4
0 − ε2T4

2 ).

(9)

The superscript TR stands for Thermal Radiation. For the thermal radiation, we
consider these values of emissivity εsoil

1 = 0.94 for soil, εsand
1 = 0.75 for deserts, ε2 = 0.96

for oceans, and εice
1 = εice

2 = 0.85 for ices over land and over ocean [19]. We suppose
that the atmosphere absorbs most of the radiation emitted by the surface. All values are
summarised in Table 4.
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Table 4. Atmospheric absorbance αT
0 to thermal radiation and emissivity ε for various thermodynamic

bodies on Earth.

Parameter Value Description

αT
0 [0.8, 0.95] Atmosphere absorbance (infrared light)

εd
0 0.8 Atmosphere emissivity downwards

εu
0 0.45 Atmosphere emissivity upwards

εsoil
1 0.94 Soil emissivity

εsand
1 0.75 Sand emissivity
εice

1 0.85 Ice over land emissivity

εwater
2 0.96 Water emissivity
εice

2 0.85 Ice over oceans emissivity

3.3. Conduction and Convection

According to Fourier’s law, the rate at which two warm bodies exchange heat is
proportional to the negative gradient of the temperature and to the area through which
the heat flows. A similar law exists for convection, and is called Newton’s law of cooling.
Altogether, if T1 and T2 are the temperatures of the two thermodynamic bodies, the heat
flow Q due to conduction and convection between them follows the law

dQ
dt

= h(T2 − T1),

where h is the cumulative heat transfer coefficient. In our model, the contributions of heat
exchange due to conduction and convection are

dQC
0

dt
= ph01(T1(t)− T0(t)) + qh02(T2(t)− T0(t))

dQC
1

dt
= −ph01(T1(t)− T0(t))

dQC
2

dt
= −qh02(T2(t)− T0(t)),

(10)

where hij is the heat transfer coefficient among the two components labelled i and j. In
Table 5 the range for such coefficients are reported.

Table 5. Heat transfer coefficients between air and land and air and water.

Parameter Value Description

h01 [5, 40] J s−1 m−2 land-air heat transfer coefficient
h02 [5, 40] J s−1 m−2 water-air heat transfer coefficient

3.4. Geothermal Heat

In our model we take into consideration geothermal energy, that is heat coming from
the mantle. There is a well defined region separating the mantle from the planet’s crust,
called Mohorovičić discontinuity or Moho. Since the temperature of the mantle is much
higher than the temperatures on the surface, we can assume that the geothermal heat flow
is constant and we write

dQM
1

dt
= p η1,

dQM
2

dt
= q η2,

dQM
0

dt
= 0. (11)
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The parameter ηi is the power of energy conducted from the mantle to the body i per
unit area. Using experimental data from 20201 sites covering 62% of the Earth’s surface,
Pollack et al. in [20] have obtained the values shown in Table 6. The contribution of
geothermal heat is between two and three order of magnitude lower than the contribution
given by solar radiation. Its effect is hence feeble on Earth.

Table 6. Geothermal powers.

Parameter Value Description

η1 0.345 J s−1 m−2 continental geothermal power
η2 0.802 J s−1 m−2 oceanic geothermal power

3.5. Evaporation

The evaporation is a phenomenon that affects the absolute humidity of the air, and it
depends on the wind speed and on the difference between the absolute humidity (the
amount of kilograms of water vapour that a kilogram of dry air contains) and the saturation
humidity of the air (the amount of kilograms of water vapour that a kilogram of dry air can
contain at saturation). Saturated air cannot absorb water vapour, while dry air does absorb
vapour faster. We will assume that evaporation from land and sea is given by the law [21]

µi(Us(T0)−U(t)), (12)

where the rate of evaporation µi from land and sea is expressed as a frequency over square
meter (s−1m−2). The dependence of the evaporation parameters on the environmental
conditions is very variable. The parameter µ2 has very low values when there are no large
bodies of water in contact with the surface to very high. The parameter µ1 has very low
values in the desert and very high values in tropical forests [21].

Another factor that subtracts water vapour from the atmosphere is rain. The physical
process that causes rain is condensation when the moist air rises to higher and colder strata
of the atmosphere. We model this effect assuming a rate of rainfall proportional to the
absolute humidity of the low atmosphere, and we call the coefficient of proportionality ν,
expressed in s−1. The values of ν can be computed knowing average rain precipitation in a
year Π (in meter of rain per square-meter), average humidity of the air U in kilograms of
water vapour per kilogram of dry air. The parameter ν can be obtained using the formula

νUYρ0`0 = ρ2Π.

We indicate with ρ0 the density of air, with ρ2 the density of water, and with `0 the
depth of the atmospheric layer. It turns out that reasonable values for ν are of the order of
10−5. We summarise the relevant parameters in Table 7.

Table 7. Evaporation rate, rainfall rate, and latent heat of evaporation and condensation.

Parameter Value Description

µ1 [10−8, 10−4] s−1 m−2 Evaporation rate from land
µ2 [10−8, 10−4] s−1 m−2 Evaporation rate from water
ν [10−5, 5× 10−5] s−1 m−2 Rainfall rate
λ 2.26× 106 J kg−1 m−2 Latent heat

Summarizing, the law that regulates the evolution of humidity in the air is

dU
dt

(t) = pµ1(Us(T0(t))−U(t)) + qµ2(Us(T0(t))−U(t))− ν U

= (pµ1 + qµ2)(Us(T0(t))−U)− νU,
(13)
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where
Us(T) = e0.0666T−23.96 (14)

is the humidity of saturation, a function of the air temperature T whose values are the
maximal amount of kg of water vapour that a kg of dry air can contain. This function has
been obtained fitting well known values, its graph is represented in Figure 3.

Figure 3. Plot of the saturation humidity function Us(T), T is expressed in Kelvin. The dotted line
represents the empirically measured values, the continuous line is the exponential approximation.

3.6. Latent Heat of Evaporation and Condensation

As we have seen in last section, humidity plays a crucial role in the thermodynamics
of the system under investigation. In fact, given a certain temperature and atmospheric
composition, evaporation and condensation of water take place, depending on the differ-
ence between the absolute humidity and the saturation humidity. As we know, for each
phase transition there is a latent heat, that is heat used for phase transition. During the
process of evaporation part of the solar energy is used to change from liquid to vapour
phase. That energy is not used to increase the temperature of the thermodynamic body.
Therefore, if the mass of water undergoing evaporation per unit time and area is given by
ρ0`0dU/dt > 0, the related latent heat of evaporation is given by the formula

dQLE
1

dt
= −pλρ0`0

dU
dt

+

,
dQLE

2
dt

= −qλρ0`0
dU
dt

+

, (15)

where λ is the specific latent heat for evaporation of water [22] and the superscript +
indicates the “positive part”. If dU/dt < 0, the opposite process, called condensation, takes
place. During this process, heat is released to the environment, with the same law as that
for evaporation. In our system, the latent heat of condensation is released directly to the
atmosphere, with the law

dQLC
0

dt
= λρ0`0

dU
dt

−
, (16)

where the superscript “−” indicates the “negative part” (which is non-negative). Averaging
for the year, it is known that heat exchanged through these processes amounts to about
25% of the solar irradiance [23]. To compare the magnitude of this process, heat transfer
through convection amounts to about 5% of the solar irradiance, and the energy absorbed
directly by the atmosphere is between 18% and 25% of solar irradiance.

3.7. Thermal Inertia

Under the effect of heat transfers, the rate at which the temperature of a thermody-
namic body change depends on its thermal capacity. In our case

dQ0

dt
= C0(U)

dT0

dt
,

dQ1

dt
= pC1

dT1

dt
,

dQ2

dt
= qC2

dT2

dt
. (17)



Climate 2021, 9, 78 12 of 24

The parameters Ci are the thermal capacities per unit surface (J K−1 m−2). For a body i
with density ρi (kg/m3), specific heat capacity ci (JKkg), and depth `i, the thermal capacity
per unit surface is Ci = ρi ci `i. We will assume the thermal capacities constant for all
thermodynamic bodies except for the air. This is justified by the fact that the thermal
capacity of the air depends on its content of water vapour. Recalling that U is the absolute
humidity of the air, measured in kg of water per kg of air, we will assume that the heat
capacity of the air is

C0(U) = cd
0ρd

0`0 + cv
0ρd

0`0U = Cd
0 + Cv

0U,

where cd
0 is the specific heat capacity of dry air, and cv

0 is the specific heat capacity of water
vapour, ρd

0 is the density of dry air, and `0 is the effective depth of the layer of air. The new
independent variable U here introduced will in turn depend, via a differential equation,
from the temperature of the air. The specific heat of dry air is 711.28 J kg K, the specific heat
of water vapour is 2050.16 J kg K. In our model we consider a layer of lower atmosphere
`0 = 400 m.

Following [13,16], we choose `1 ∈ [0.3, 0.5]m for soil, `2 ∈ [40, 60]m for oceans.
The thermal characteristics of land and water differ from region to region. For this reason
in different cases we use different heat capacities. For details on such values see [14,24–26].
Using the arguments above one obtains the values shown in Table 8.

Table 8. Heat capacities.

Parameter Value Description

Cd
0 3.5× 105 J K−1 m−2 dry air thermal capacity

Cv
0 1× 106 J K−1 m−2 water vapor thermal capacity

Csoil
1 1.0× 106 J K−1 m−2 soil thermal capacity

Cice
1 1.0× 106 J K−1 m−2 ice thermal capacity

C f orest
1 1.7× 106 J K−1 m−2 forest thermal capacity

Csand
1 3.2× 106 J K−1 m−2 sand thermal capacity

C2 [1.7, 2.5]× 108 J K−1 m−2 ocean thermal capacity

3.8. Final System

Summarizing Equations (4), (5), (7)–(11), (13) and (15)–(17), with some minimal alge-
bra, the dynamical system that models the temperature evolution ofR is modelled by the
evolution of the 4 independent variables T0, T1, T2, U, and the variable ϑ, whose evolution
is fixed for planet Earth,

(Cd
0 + UCv

0)
dT0
dt = α0(1 + pτ0r1 + qτ0r2)W + σαT

0 (pε1T4
1 + qε2T4

2 )+

−σ(εd
0 + εu

0)T
4
0 + ph01(T1 − T0) + qh02(T2 − T0) + λρ0`0

dU
dt
−

C1
dT1
dt = τ0α1W + σ(εd

0T4
0 − ε1T4

1 )− h01(T1 − T0) + η1 − λρ0`0
dU
dt

+

C2
dT2
dt = τ0α2W + σ(εd

0T4
0 − ε2T4

2 )− h02(T2 − T0) + η2 − λρ0`0
dU
dt

+

dU
dt = (pµ1 + qµ2)Us ◦ T0 − (pµ1 + qµ2 + ν)U

dϑ
dt =

2π

Y
√

1− e23 (1 + e cosϑ)2.

(18)
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4. Numerical Analysis

In this section we choose regions with various types of climate. For each region we
choose the parameters depending on its climatic type, and we run the simulation of the
model proposed above. We then compare the plots of the numerical computed tempera-
tures and humidities with those of the real averaged ones. The numerics, the acquisition
of real temperatures, and their manipulation have been done using the software Math-
ematica Wolfram Research Inc. [27]. In particular WeatherData[] allowed us to acquire
the dataseries of temperatures and humidity with respect to coordinated universal time
(UTC) from weather stations belonging to a variety of different Köppen climates. The real
temperatures are averaged over a period of 48 years (from 1973 to 2020) using a sampling
step of 60 min whenever possible. The creation of the datasets, the numerical simulation of
temperature and humidity, the comparison of the results, can all be produced using the
Mathematica notebook provided in the supplementary material.

We consider 5 regions: Hilo–Hawaii, Kufra–Lybia, Catania–Italy, Lincoln–USA,Vostok–
Antarctica. Each region belongs to one of the Köppen climate zones [12]: Tropical (A), Arid
(B), Temperate (C), Continental (D), and Polar (E), respectively. In the following subsections
we choose the local parameters by taking into consideration the type of climate and surface
composition and by optimising them in their given ranges. For each simulation we estimate
its accurateness by computing a discretized L1-distance,

dist(Tre, Tsim) =
1

24 ∗ 365

24∗365

∑
i=1
|Tre(ti)− T0(ti)|,

where Tre(ti) are the average real values of temperature at the 24 ∗ 365 times ti equally
distributed during a year made by the meteorological stations (assuming we have 24 mea-
sures per day), and T0(ti) are the values of the function T0 solutions of our model at the
same times (same for humidity separately). The plot comparison is done superimposing
the real mean temperature and humidity with those obtained with our model for each
region. In the yearly plots we indicate with dashed lines the solstices and equinoxes; in the
daily plots we indicate middays and midnights.

4.1. Tropical Climate: Hilo, Hawaii

Hilo belongs to a region with Tropical, Rainforest Köppen climate (AF type). It is
situated at latitude 19.72 and longitude −155.05. Belonging to an Hawaiian island, we
choose p = 0.05. The presence of forest makes it reasonable to choose an higher value
for the land’s thermal capacity C1 = 1.7× 106 J K−1m−2, while considering `2 = 50 m for
oceans gives C2 = 2.1× 108 J K−1m−2. We also consider the following values for other
location-dependent parameters:

αT
0 = 0.8, h01 = 1

J
sm2 , h02 = 43

J
sm2 ,

pµ1 + qµ2 = 1× 10−5s−1 m−2, ν = 0.3× 10−5s−1 m−2.

The computed evolution of temperature (red) and humidity (blue) of the air and the
real averaged temperatures and humidities (black) from 1973 to 2020 are represented in
Figure 4. The L1 distance of the temperatures is 0.60K, of the relative humidities is 0.036.
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Figure 4. The left plots displays average real temperature T̄ (in gray) and numerically computed temperature (in red).
The top plot ranges over a year, the bottom plots display the behaviour over three days in two different periods of the year,
from day 172 (summer sostice) to day 175 and from day 355 (winter solstice) to 358. The right plots display average real
relative humidity H̄ (in gray) and numerically computed humidity (in blue). The region taken into consideration is Hilo.
The grid lines represent solstices, equinoxes (top plots), noons and midnights (bottom plots).

4.2. Arid Climate: Kufra, Libya

Kufra belongs to the eastern part of Sahara with Arid, Hot Desert (BWH type) Köppen
climate. It is situated at latitude 24.18 and longitude 23.31. Being in a desert, water
has almost no influence and we hence have chosen p = 0.88. We use the parameters of
sand C1, r1, α1, ε1 in Tables 3, 4 and 8, the optimal parameters for this type of climate are
`2 = 40 m and

αT
0 = 0.89, h01 = 9.5

J
sm2 , h02 = 23

J
sm2 ,

pµ1 + qµ2 = 3.4× 10−8s−1 m−2, ν = 1.3× 10−7s−1 m−2.

The computed evolution of temperature (red) and humidity (blue) of the air and the
real averaged temperatures and humidities (black) from 1973 to 2020 are represented in
Figure 5. In this case the sampling rate is every 3 h. The L1 distance of the temperatures is
1.16 K, of the relative humidities is 0.026.

Being on a desert, in this case the chosen evaporation and rainfall parameters are very
low. This is necessary to reproduce the large annual variability of humidity observed in
the data.

4.3. Temperate Climate: Catania, Italy

Catania is one of the cities on the Mediterranean Sea with Temperate, Hot-summer,
Mediterranean Köppen climate (CSA type). It is situated at latitude 37.47 and longitude
15.05. Given its location, we choose p = 0.6. Considering that the top layer of Mediter-
ranean sea mix to a depth of up to `2 = 40 m, we consider the optimal parameters

αT
0 = 0.86, h01 = 12

J
sm2 , h02 = 28.5

J
sm2 ,

pµ1 + qµ2 = 2.8× 10−5s−1 m−2, ν = 1× 10−5s−1 m−2.
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In Figure 6 the computed evolution of temperature (red) and humidity (blue) of
the air and the real averaged temperatures and humidities (black) from 1973 to 2020 are
represented. The L1 distance of the temperatures is 1.42 K, of the relative humidities
is 0.052.
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Figure 5. Mean and computed temperature (left) and relative humidity (right) in Kufra during the year (top) and on
solstices and equinoxes (bottom). In black the average temperatures and humidities, in red simulated temperatures, in blue
simulated humidity, the grid lines represent solstices, equinoxes, noons and midnights.
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Figure 6. Mean and computed temperature (left) and relative humidity (right) in Catania during the year (top) and on
solstices and equinoxes (bottom). In black the average temperatures and humidities, in red simulated temperatures, in blue
simulated humidity, the grid lines represent solstices, equinoxes, noons and midnights.
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4.4. Continental Climate: Lincoln, USA

Lincoln belongs to the central USA, a region with Continental, Hot-summer, Humid
Köppen climate (DFA type). It is situated at latitude 40.85 and longitude −96.75. For its
location, we choose p = 0.79, `2 = 40 m. We adopt the optimal parameters

αT
0 = 0.84, h01 = 8.5

J
sm2 , h02 = 22

J
sm2 ,

pµ1 + qµ2 = 2× 10−5s−1 m−2, ν = 9.7× 10−6s−1 m−2.

The computed evolution of temperature (red) and humidity (blue) of the air and the
real averaged temperatures and humidities (black) from 1973 to 2020 are represented in
Figure 7. The L1 distance of the temperatures is 1.38 K, of the relative humidities is 0.039.
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Figure 7. Mean and computed temperature (left) and relative humidity (right) in Lincoln during the year (top) and on
solstices and equinoxes (bottom). In black the average temperatures and humidities, in red simulated temperatures, in blue
simulated humidity, the grid lines represent solstices, equinoxes, noons and midnights.

4.5. Polar Climate: Vostok, Antarctica

Vostok is a weather station close to a lake in Antartica, it is located almost at the South
Pole and it has Polar, Ice cap Köppen climate (EF type). This region is situated at latitude
−78.45 and longitude 106.87 and is always covered with ice and snow, living in eternal
winter. The thermal inertia of the ice cap is very high and so, even if located on land, we
have chosen p = 0.425 and the optimal parameters are

αT
0 = 0.75, h01 = 16

J
sm2 , h02 = 6

J
sm2 ,

pµ1 + qµ2 = 1.9× 10−4 s−1 m−2, ν = 1.1× 10−4 s−1 m−2.

All other parameters are in the Tables, and we have used the coefficients for ice over
land and over water.

The computed evolution of temperature (red) and humidity (blue) of the air and
the real averaged temperatures and humidity (black) from 1973 to 2020 are represented
in Figure 8. The sampling rate in this case is made every 6 h. The L1 distance of the
temperatures is 1.76 K, of the relative humidities is 0.021.
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Figure 8. Mean and computed temperature (left) and relative humidity (right) in Vostok during the year (top) and on
solstices and equinoxes (bottom). In black the average temperatures and humidities, in red simulated temperatures, in blue
simulated humidity, the grid lines represent solstices, equinoxes, noons and midnights.

4.6. More Eccentric Cases

The long-time stability of the orbital parameters of Earth is still a debated problem [28].
In our model the orbital parameters can be easily changed to model the temperatures in
an Earth-like planet. The small eccentricity of the orbits in the solar system are well
known to be non-generic [29]. In the following plots we investigate the temperatures that
Catania would have if the eccentricity of Earth was e = 0.2 or e = 0.5, and we compare
the same effect on Sydney, a city in the southern hemisphere. We recall that, because of
Earth’s orientation of the rotation axis, during the summer of the northern hemisphere
the Earth is at the aphelion, while during the summer of the southern hemisphere the
Earth is at the perihelion. It follows that the effect of a change in eccentricity is mild in
Catania (see Figure 9 top) and severe in Sydney (see Figure 9 bottom). Let us note however
that the precession of the equinoxes would switch the situation every half Platonic year
(12,886 years).

Similar speculations could be applied to exoplanets, whose habitability has been
highly investigated in the last decade. Our simple model could help validate or broaden in-
formation on astronomical parameters and composition of the surface of the planet [30,31].
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Figure 9. Temperatures in Catania (above) and in Sydney (below) if the eccentricity of Earth’s orbit was 0.2 (left) or 0.5
(right). In black the real temperatures, in red the ones obtained with the model.

5. Analysis of the Lags

In Figure 10 we expose the phenomenon of the lag of seasons in the six locations
examined in the previous section. In Orange we plot the energy that a square meter of
higher atmosphere receives from the sun each day of the year. In black we plot the recorded
average temperature of that day, in red the simulated average temperature. The days of
highest average temperature and highest solar irradiation are then computed estimating the
maximum with the Mathematica function FindArgMax[]. The real lag oscillates between
the 23 days of Lincoln and the 72 days of Hilo (the special case of Vostok has a lag of only
8 days). The relative error of our simulated lag with respect to the real one is small.

The lag of noon is a much more delicate issue, mainly because the datasets retrieved
do not have a time-step fine enough to allow this type of analysis. For each zone, we have
computed the time of highest temperature during each day, and we have averaged that
time over the year. We compare the results in Table 9.

The lag is highly sensitive to the depth of the atmospheric layer, and our estimated
lag is typically later than the measured one, sometimes much later, and earlier in the case
of Kufra, which is not so significant since in that case the temperatures are measured every
3 h. A change in the depth of the atmospheric layer we consider can adjust not only this
number, but also noticeably improve the simulations. For example in Lincoln one can
obtain a simulated temperature evolution whose L1 distance from the real one is 1.10 K
and the new average time of maximal simulated temperature takes place at 21 h 12 m.
For Catania the same distance and time are 1.07 K and 13 h 06 m. A justification of these
facts goes beyond the scope of this paper.
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Figure 10. For each location, the left plots displays the daily energy of solar radiation in orange and the average daily
temperature in black. The seasonal lag is clearly indicated in the ticks. On the right plot the average daily temperature in
black and the simulated average daily temperature in red. The simulated lag is always higher but reasonably similar.

Table 9. Average time of daily maximal solar irradiation, and average times of daily maximal
temperature measured and simulated.

City Max Power of Solar Rad. Max Temp. Max Simulated Temp.

Hilo 22 h 21 m UTC 23 h 21 m UTC 0 h 9 m UTC
Kufra 10 h 27 m UTC 14 h 43 m UTC 13 h 46 m UTC

Catania 11 h 00 m UTC 11 h 50 m UTC 14 h 04 m UTC
Lincoln 18 h 27 m UTC 21 h 23 m UTC 22 h 00 m UTC
Sydney 1 h 56 m UTC 3 h 45 m UTC 4 h 55 m UTC

6. Conclusions

In this article, starting from basic physical laws, the dynamics of solar systems, and the
structure of a given planet, we design a simple model able to reproduce basic features of
local climates (based on Köppen climatic zones). Although the proposed model has been
developed for a generic planet, our investigation is here restricted to Earth, for which the
parameters involved are mostly given by experimental evidence. Once chosen a region on
Earth, and fitted some parameters, the model reproduces the evolution of temperatures of
land, water, air and its humidity. In doing so it also reproduces climatic phenomena like
seasonal lag, diurnal lag, daily asymmetry of temperatures variations.

The simulated temperatures, computed solving the equations, are similar to the real
ones. In particular, as the real temperatures, they display lags and asymmetric daily
evolution. They could have a better behaviour adding other phenomena to the equations.
Despite the fact that humidity creates an asymmetric raise and fall of temperatures, the raise
of real temperatures in the morning is often faster than simulated ones.

The model still displays some criticality and it can be improved in many ways. In par-
ticular we indicate the following issues:
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1. the model requires the inclusion of some water also when dealing with desert or
ice-caps, because the stabilising effect of water is necessary to avoid too high annual
temperature excursions;

2. we only consider the lowest part of the atmosphere;
3. spatial diffusion has been disregarded;
4. the equations that model humidity is not completely satisfactory, it probably should

take into account other factors;
5. altitude in not considered explicitly;
6. absorbance, transmittance and reflectance should be dependent on the solar zenith

angle.

The first and second issues could be dealt with by adding other layers, one below
the soil and one above the lower atmosphere. This would grant a better annual excursion
without compromising the daily one.

The spatial diffusion has been intentionally excluded to keep the model as simple
as possible. The introduction of diffusion completely changes the approach, forcing a
discretisation of the surface of the planet and the creation of a GCM which requires
a detailed description of the planet surface and a large computational effort. In this
manuscript we compensate the lack of meridional heat transport by a slight change in the
effective absorbance parameters.

The evaporation depends on wind velocity, and probably non-constant wind speed
should be taken into account, as well as seasonal variations in the rainfall rate. We have
not made a deep investigation on this facts, and we do not propose solutions.

Altitude can very likely be modelled with a change of absorbance, transmittance and
reflectance, because at higher altitudes the air pressure is lower. In this manuscript we do
not take into consideration pressure variations, but we have a minor discretionality in the
choice of the parameters.

Radiation parameters of the atmosphere should change with the solar zenith angle,
because of the laws of optics and because the depth of the atmospheric section crossed by
the solar rays depends on such angle. Also diffraction could be taken into consideration
with small changes. Similar considerations can be made for oceanic and land surfaces.

The investigation is suitable for applications to exoplanets. Some astronomical param-
eters of exoplanets are known, but the choice of most other parameters is a delicate issue
and will be subject of future works. In particular we think that the model could be useful
in the investigation of habitable and tidally locked planets.

In conclusion, we reckon that this article convincingly demonstrates the existence of a
connection between the three phenomena discussed and the existence of two thermody-
namic bodies with different thermal inertia and a varying humidity.

Supplementary Materials: A Wolfram Mathematica notebook is available online at https://www.
mdpi.com/2225-1154/9/5/78/s1. It produces the dataset of average temperature and humidity and
numerically computes the simulated temperature and humidity. The reader can choose any WMO
station in the world and then adapt the parameters.
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Appendix A. The Mathematical Essence

In this appendix we make a cumbersome mathematical analysis of the fundamental
reason that justifies the double-lag phenomenon. To model the temperature evolution of
two thermodynamic bodies driven by a doubly periodic forcing term, we consider a system
of two differential equations:

Q̇1 = −(a + c)Q1 + d Q2+

+δ1
[
α sin(ω t) sin(Ω t) + β cos(ω t) cos(Ω t) + γ sin(ω t)

]
Q̇2 = c Q1 − (b + d)Q2+

+δ2
[
α sin(ω t) sin(Ω t) + β cos(ω t) cos(Ω t) + γ sin(ω t)

]
.

(A1)

We have discussed in Section 3 how this system models the temperature evolution
of two different thermodynamic bodies in a zone of a planet. The only difference with
Equation (18) lays on the fact that the longitude is absent and the exchange of heat is not
mediated by a layer of air. The two bodies are irradiated by solar rays modulated by two
frequencies ω and Ω that are respectively 2π times the reciprocal of a year and 2π times
the reciprocal of a day. The terms a Q1 and b Q2 model the heat flow from the bodies to
space, the terms c Q1 and d Q2 model the rate of heat exchange among the two bodies.

Using Prostaferesi-Werner formulaes one can rewrite the equations as
Q̇1 = cQ2 − (a + c)Q1 + δ1

[
(α + β) cos(Ω−t) + (β− α) cos(Ω+t) + γ sin(ω t)

]
Q̇2 = cQ1 − (b + c)Q2 + δ2

[
(α + β) cos(Ω−t) + (β− α) cos(Ω+t) + γ sin(ω t)

]
,

with Ω− = Ω− ω and Ω+ = Ω + ω. The homogeneous linear system associated to the
equations has a stable node for every choice of parameters. In fact the determinant of the
associated matrix is

(a + c)(a + d)− dc = a2 + ad + ca > 0

and the discriminant tr2 − 4 det is

((a + c) + (b + d))2 − 4(a + c)(b + d) + 4cd =

= (a− b)2 + (c + d)2 + 2(c− d)(a− b) ≥
≥ (a− b)2 + (c− d)2 + 2(c− d)(a− b) = ((a− b) + (c− d))2 ≥ 0.

With a linear change of variables of matrix (S1, S2) = P(Q1, Q2) the system becomes{
Ṡ1 = −λ1S1 + χ1

[
(α + β) cos(Ω−t) + (β− α) cos(Ω+t) + γ sin(ω t)

]
Ṡ2 = −λ2S2 + χ2

[
(α + β) cos(Ω−t) + (β− α) cos(Ω+t) + γ sin(ω t)

]
,

where the vector (χ1, χ2) = P(δ1, δ2), P is the matrix of change of basis, S = PQ, and λ1, λ2
are the two eigenvalues of the linear system. The actual expression of the coefficients λ1,
λ2, χ1, χ2 is irrelevant for our purposes. What is important is that the asymptotic solutions
to these equations have the form
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
S1 = χ1

[
(β + α)

cos(Ω−(t−τ−1 ))√
λ2

1+Ω2
−

+ (β− α)
cos(Ω+(t−τ+1 ))√

λ2
1+Ω2

+

+ γ
sin(ω(t−τ1))√

λ2
1+ω2

]
S2 = χ2

[
(β + α)

cos(Ω−(t−τ−2 ))√
λ2

2+Ω2
−

+ (β− α)
cos(Ω+(t−τ+2 ))√

λ2
2+Ω2

−
+ γ

sin(ω(t−τ2))√
λ2

1+ω

]
,

with

τ±i = ϕ±i /Ω±, ϕ±i = arg(λi + iΩ±), τi = ϕi/ω, ϕi = arg(λi + iω)

for i = 1, 2. Turning back to the temperatures T1, T2 one has

(
Q1
Q2

)
= P−1

χ1

[
(β + α)

cos(Ω−(t−τ−1 ))√
λ2

1+Ω2
−

+ (β− α)
cos(Ω+(t−τ+

1 ))√
λ2

1+Ω2
+

+ γ
sin(ω(t−τ1))√

λ2
1+ω2

]
χ2

[
(β + α)

cos(Ω−(t−τ−2 ))√
λ2

2+Ω2
−

+ (β− α)
cos(Ω+(t−τ+

2 ))√
λ2

2+Ω2
−

+ γ
sin(ω(t−τ2))√

λ2
2+ω2

]
.


The term

γP−1

 χ1√
λ2

1+ω2
sin(ω(t− τ1))

χ2√
λ2

2+ω2
sin(ω(t− τ2))


is responsible of the yearly delay, that can be estimated with the following algebraic steps:

γP−1

 χ1√
λ2

1+ω2
sin(ω(t− τ1))

χ2√
λ2

2+ω2
sin(ω(t− τ2))

 = γP−1

( χ1
λ2

1+ω2 (λ1 sin(ωt)−ω cos(ω t))
χ2

λ2
2+ω2 (λ2 sin(ωt)−ω cos(ω t))

)

= γ

( χ11χ1
λ2

1+ω2 (λ1 sin(ωt)−ω cos(ω t)) + χ12χ2
λ2

2+ω2 (λ2 sin(ωt)−ω cos(ω t))
χ21χ1

λ2
1+ω2 (λ1 sin(ωt)−ω cos(ω t)) + χ22χ2

λ2
2+ω2 (λ2 sin(ωt)−ω cos(ω t)

)

= γ


(

χ11χ1λ1
λ2

1+ω2 + χ12χ2λ2
λ2

2+ω2

)
sin(ω t)−ω

(
χ11χ1

λ2
1+ω2 +

χ12χ2
λ2

2+ω2

)
cos(ω t)(

χ21χ1λ1
λ2

1+ω2 + χ22χ2λ2
λ2

2+ω2

)
sin(ω t)−ω

(
χ21χ1

λ2
1+ω2 +

χ22χ2
λ2

2+ω2

)
cos(ω t)

.

The lag of seasons for the bodies 1 and 2 are the two components of the vector

arg
[(

χ11χ1λ1
λ2

1+ω2 + χ12χ2λ2
λ2

2+ω2

)
+ iω

(
χ11χ1

λ2
1+ω2 +

χ12χ2
λ2

2+ω2

)]
arg
[(

χ21χ1λ1
λ2

1+ω2 + χ22χ2λ2
λ2

2+ω2

)
+ iω

(
χ21χ1

λ2
1+ω2 +

χ22χ2
λ2

2+ω2

)]
 =

= arg

P−1

 λ1+iω
λ2

1+ω2 0

0 λ2+iω
λ2

2+ω2

P
(

δ1
δ2

) =

(
σ1
σ2

)
.

The lag of noon is more delicate. In fact the delay can be estimated only if the ratio
Ω/ω is large (as it happens on Earth). In such case the evolution of temperatures is the
sum of two terms:

P−1

(α + β)

χ1
cos(Ω−(t−τ−1 ))√

λ2
1+Ω2

−

χ2
cos(Ω−(t−τ−2 ))√

λ2
2+Ω2

−

+ (β− α)

χ1
cos(Ω+(t−τ+1 ))√

λ2
1+Ω2

+

χ2
cos(Ω+(t−τ+2 ))√

λ2
2+Ω2

+


.
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If the ratio Ω/ω is large, then

τ−i ' τ+
i '

arg(λi + iΩ)

Ω
:= ζi,

√
λ2

i + Ω2
± '

√
λ2

i + Ω2.

It follows that the lag of noon of the two bodies is given by

arg

P−1

 λ1+iΩ
λ2

1+Ω2 0

0 λ2+iΩ
λ2

2+Ω2

P
(

δ1
δ2

) =

(
ν1
ν2

)
.

More precisely, one has that the solutions to the Equation (A1) are

(
Q1
Q2

)
'


δ̂1
[
α sin(ω (t− ν1)) sin(Ω (t− ν1)) + β cos(ω (t− ν1)) cos(Ω (t− ν1))

]
+

+γ̂1 sin(ω (t− σ1))

δ̂2
[
α sin(ω (t− ν2)) sin(Ω (t− ν2)) + β cos(ω (t− ν2)) cos(Ω (t− ν2))

]
+

+γ̂2 sin(ω (t− σ2))

.
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