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Abstract: The effects of neighborhood-scale land use and land cover (LULC) properties on observed
air temperatures are investigated in two regions within Los Angeles County: Central Los Angeles
and the San Fernando Valley (SFV). LULC properties of particular interest in this study are albedo
and tree fraction. High spatial density meteorological observations are obtained from 76 personal
weather-stations. Observed air temperatures were then related to the spatial mean of each LULC
parameter within a 500 m radius “neighborhood” of each weather station, using robust regression
for each hour of July 2015. For the neighborhoods under investigation, increases in roof albedo
are associated with decreases in air temperature, with the strongest sensitivities occurring in the
afternoon. Air temperatures at 14:00–15:00 local daylight time are reduced by 0.31 ◦C and 0.49 ◦C
per 1 MW increase in daily average solar power reflected from roofs per neighborhood in SFV and
Central Los Angeles, respectively. Per 0.10 increase in neighborhood average albedo, daily average
air temperatures were reduced by 0.25 ◦C and 1.84 ◦C. While roof albedo effects on air temperature
seem to exceed tree fraction effects during the day in these two regions, increases in tree fraction are
associated with reduced air temperatures at night.

Keywords: urban heat island; urban climate; Los Angeles; land use land cover; cool roofs; heat
mitigation; vegetation; tree

1. Introduction

The urban heat island (UHI) effect describes a phenomenon whereby temperatures in cities are
higher than their rural surroundings [1] and is the result of land transformations associated with
urbanization, as well as increases in anthropogenic heat. The fraction of the world population that
lives in urban areas was 54% in 2014 and is expected to rise to 66% by the year 2050 (WHO), suggesting
that UHIs may affect more people in the future. Compounding UHIs is the fact that cities are facing
increased warming due to the local impacts of global climate change; Sun et al. [2] found that areas in
the greater Los Angeles region could see an increase of 60–90 extremely hot days per year by end of
century under high emissions scenarios (RCP8.5: A scenario of comparatively high greenhouse gas
emissions), posing threats to public and environmental health in addition to straining energy resources.
While warming from climate change requires global action to mitigate, the UHI is a city-specific
phenomenon with potential local solutions. UHI countermeasures, such as cool roofs and tree canopy
cover, have been found in modeling studies to reduce urban temperatures when implemented at city
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scale [3]. Therefore, there are actions that cities can now take to mitigate UHIs, which will decrease the
threat of future extreme heat dangers from climate warming. To design and implement appropriate
countermeasures, cities need to characterize urban heat and its causes [4,5].

Urban heat islands (UHIs) are categorized as either (a) skin-surface UHIs (i.e., comparing urban
and rural surface temperatures) or (b) air-temperature UHIs (i.e., comparing urban and rural air
temperatures near the surface). Air-temperature UHIs are relevant to building energy use, thermal
comfort, public health, pollutant emissions and formation, and climate, and as such, they are the focus
of this study. While satellite observations can provide spatially extensive temperature observations,
they are able to characterize only surface temperature and not air temperature; the other limitation
with remote sensing is the coarse resolution of images, order tens to hundreds of meters, which results
in homogenous measurements for small neighborhoods [6]. Thus, characterizing air temperatures
relies on ground-based observations such as fixed weather stations or mobile transects.

Acquiring observations from fixed weather stations with sufficiently high spatial density to
be representative at neighborhood-to-city scale is a major challenge in characterizing urban air
temperatures. In addition, mobile transects can be useful for characterizing air temperatures for
a neighborhood on a particular day, but characterizing large areas (e.g., entire cities) over temporal
scales that are relevant for different meteorological regimes is prohibitive. UHI studies that rely on
numerical weather prediction models can simulate both surface and air temperatures. While these
models continue to resolve an increasing number of processes relevant to urban physics, it is helpful to
conduct studies focused on air temperature UHIs using observations of the real world.

The UHI results in part from the transformation of natural land cover, including trees and
vegetation, to pavements, buildings, and other elements of urban infrastructure [7]. Reductions in
vegetation coverage can lead to decreases in evapotranspirative cooling, and thus increases in air
temperatures in urban regions [8]. Man-made materials (e.g., asphalt concrete) used in roads and
buildings usually have low albedo and high thermal inertia, leading to high absorption of shortwave
solar radiation and high storage of thermal energy [9]. In addition, street canyons between buildings
usually have low sky view factors, which can reduce longwave radiative losses from the city [9]. Other
factors such as the size of the city [1], shading from buildings and trees [10], urban irrigation [11],
changes in surface roughness length [12], and changes in anthropogenic heating [8] can also affect
urban temperatures.

The UHI can be defined over a variety of spatial extents, ranging from neighborhood-scale to
city-scale [13]. Most past studies have investigated UHIs at the city-scale by comparing temperatures
of urban regions to surrounding rural areas [14,15]. Investigating the UHI in Los Angeles at the
city-scale is tricky, as this metropolitan region is surrounded by ocean and mountains, and therefore,
there is no obvious rural background for reference. Furthermore, there is a strong temperature gradient
resulting from the onshore sea breeze [12,16], complicating the relationship between temperature
and land use. Temperature variations within the Los Angeles region result from the superposition
of effects from UHIs at multiple spatial scales and the sea breeze [16]. For this reason, this study
focuses on investigating relationships between air temperature and land cover properties for clusters
of neighborhoods within the Los Angeles area. Each cluster is small enough to make the effects of the
sea breeze on temperature differences between stations negligible.

Past studies using satellite data, ground observations, and numerical modeling have highlighted
the importance of albedo and green vegetation fraction in determining temperature differences
between urban regions and rural surroundings. Utilizing global-scale satellite observations for 419
cities, Peng et al. [8] found that the daytime surface urban heat island intensity (SUHII) is related to
urban-rural differences in vegetation cover, while the nighttime SUHII is associated with albedo and
anthropogenic heat differences. Other satellite-based studies highlighted the correlation of SUHII
with albedo and vegetation fraction for Rotterdam in the Netherlands [17] and 32 cities in China [14].
Sun et al. [2] used mobile transects and remote sensing to identify the important role of anthropogenic
heat and vegetation cover on UHI formation in Phoenix during the winter season. Yan et al. [18]
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assessed the correlation between air temperatures measured by mobile transects and different land
cover properties at the neighborhood-scale in Beijing and found that tree fraction at the scale of 20 m
can explain most summertime temperature variations at noon. Model simulations from numerous
studies have found that increasing albedo and vegetation cover can reduce urban peak surface and air
temperatures [13,19]. Therefore, increasing urban albedo and vegetation fraction have been proposed
as measures to reduce the urban heat island effect.

One of the contributing factors to the UHI effect is anthropogenic heating from air conditioning
systems. Ohashi et al. [20] and Salamanca et al. [21] studied the effect of anthropogenic heating on the
urban heat island effect in the Tokyo and Phoenix metropolitan areas, respectively. They found that
the AC systems can contribute to the UHI effect up to 1–2 ◦C in Tokyo, and 1 ◦C in some urban parts
of Phoenix, respectively.

Solar reflective “cool” surfaces (e.g., cool roofs, walls, and pavements) that increase urban
albedo can decrease urban temperatures because they absorb less solar radiation than traditional
dark surfaces, maintain cooler skin temperatures, and therefore transfer less heat into the atmosphere.
Past modeling studies predict that adopting cool roofs can effectively reduce urban air temperatures
in Los Angeles [12,22], Baltimore-Washington [23], New York [24], and other cities in the United
States [13,25,26]. Zhang et al. [27] found an annual- and global-average reduction of 0.40 ◦C in the
urban heat island effect due to increasing roof albedo globally from 0.15 to 0.90. Mohegh et al. [28]
simulated the effect of cool pavement adoption and found that increasing pavement albedo by 0.40 can
result in near-surface air temperature reductions in California cities ranging from 0.18 ◦C to 0.86 ◦C.
Note that nearly all past studies investigating the influence of cool surface adoption on urban air
temperatures are based on (1) results from computational models and (2) the assumption that cool
surfaces are uniformly adopted citywide. In practice, cool surfaces may be adopted in a patchwork
fashion at the neighborhood-scale. There is a lack of research using real-world observations to assess
the influence of adopting cool surfaces on neighborhood temperatures. Using satellite observations,
Mackey et al. [29] found stronger land surface temperature reductions induced by increasing urban
albedo relative to increasing green vegetation in Chicago. However, the effectiveness of cool roofs in
reducing near-surface air temperatures (as opposed to surface temperatures) still needs to be verified
by observations in various cities.

To fill the aforementioned research gaps, in this study we investigate the influence of two
important land cover properties (albedo and tree coverage) on neighborhood-scale near-surface
air temperatures for two clusters of neighborhoods in the greater Los Angeles area. We use high
spatial density meteorological observations to derive the sensitivity of air temperatures observed at
each weather station to corresponding spatially aggregated albedo and tree coverage. In this way, we
compute associations between air temperatures versus (a) albedo and (b) tree fraction.

Various state and city-level policies [30,31] have led to cool roof adoption on some commercial
and residential buildings in Los Angeles, allowing us to analyze air temperature differences between
neighborhoods with extensive use of cool roofs versus traditional dark roofs. The goals of this study are
to provide observational evidence of the (a) relationships between neighborhood-scale air temperatures
and land use and land cover (LULC) properties, and (b) the effectiveness of cooling strategies. To our
knowledge, this is the first observational study to investigate associations between neighborhood-scale
near-surface air temperatures and roof albedo.

2. Methodology

2.1. Areas of Analysis

The Los Angeles basin contains numerous microclimates leading to summer temperatures that
range from moderate (at the coast) to hot (at the interior of the basin). The onshore sea breeze and
distance from the coast play important roles in determining temperature variations within the basin.
Land use and land cover properties also vary widely across the basin, with some regions consisting
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of primarily industrial/commercial land use, and others that are primarily residential. In this study,
we have chosen two “regions” of interest within the Los Angeles Basin. Each region was chosen to
fulfill two requirements: (1) It should be sufficiently small, such that distance from the coast does not
dominate temperature variations; and (2) there should be sufficient variation in land cover properties
of interest (e.g., roof albedo) to enable discerning effects of land cover on measured air temperatures.
The first region encompasses an area of roughly 500 km2 and includes downtown Los Angeles; we
refer to this region as Central Los Angeles. The second region encompasses roughly 160 km2 and is
located within the San Fernando Valley (SFV). These two regions have distinctly different summertime
baseline climates (Table 1). The monthly averaged daily minimum, maximum, and mean temperature
is 19.4, 30.5, and 24.3 ◦C for SFV and 18.9, 27.7, and 22.5 ◦C for Central Los Angeles. Central Los
Angeles typically experiences afternoon sea breezes, while SFV is largely unaffected by the influence
of coastal air because of the Santa Monica mountains.

Table 1. Statistics of observed temperatures and land use and land cover (LULC) properties under
investigation per region. All values are averaged over July 2015.

Daily
Minimum
Temperature
(◦C)

Daily
Maximum
Temperature
(◦C)

Daily
Mean
Temperature
(◦C)

Diurnal
Temperature
Range
(◦C)

Mean (Standard
Deviation) Building
Height (m)

Mean
(Standard
Deviation)
Tree Fraction

Mean
(Standard
Deviation)
Roof Fraction

SFV 19.4 30.5 24.3 11.1 5.33 (0.49) 0.12 (0.037) 0.26 (0.06)

Central Los
Angeles 18.9 27.7 22.5 8.8 5.20 (2.72) 0.12 (0.075) 0.25 (0.09)

2.2. Defining Aggregation Areas

In this study, we aim to relate observed temperatures to LULC properties, in order to derive
sensitivities of air temperature to aggregated existing LULC properties. We aggregate LULC properties
(see Section 3.1) within a 500 m radius of each weather station (Figure 1). We expect that the LULC
parameters in this aggregation area (referred to as a “neighborhood” from now on) can at least partially
explain the variation in meteorological observations among the neighborhoods within each region. We
are particularly interested in roof albedo as a LULC property to see whether observed temperatures
are lower in neighborhoods that have roofs with higher albedo.
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2.3. Meteorological Data

The meteorological data comes from a network of personal weather stations from Weather
Underground [32]. We acquired all available meteorological parameters per station, including
near-surface outside air temperature (referred to as “temperature” from now on), solar irradiance, air
pressure, precipitation, relative humidity, wind speed, and wind direction for July 2015. This month
was chosen because it was the latest data available at the time of acquisition. (June was intentionally
avoided since Los Angeles generally experiences numerous cloudy days during that month.) Data
from 76 stations were gathered within the two regions, but some stations did not measure certain
meteorological parameters. Note that while we acquired all available parameters, we focused our
analysis on temperature and solar irradiance. Figure 2 locates the weather stations and color codes
them by region.
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The data acquired from the network of personal weather stations, although provided with high
spatial density, does not include quality control flags. We developed a three-step screening procedure
to increase the quality of the meteorological dataset. In the first step, we removed values that were
outside the range of observed minimum and maximum temperatures from the historical record
reported by NOAA weather stations [33] across the LA Basin; corresponding minimum and maximum
temperatures were −17 ◦C and 49 ◦C, determined using historical measurements in the domain for the
past 130 years. Since the main focus of this study is to investigate urban temperature variability, in the
second step we removed stations that were located in non-typical urban settings such as neighborhoods
near golf courses or water reservoirs; the underlying drivers of land cover effects on local meteorology
in these neighborhoods are likely different than neighborhoods with more typical urban cover. In the
third step, stations with unphysical diurnal cycles were removed. Examples of unphysical diurnal
cycles include having daily maximum temperatures at night (i.e., indicating a problem with the
weather station timestamp), or diurnal temperature variations that were near zero (i.e., indicating a
problem with the temperature sensor).
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2.4. Description and Data Sources for Land Use Land Cover Properties

The land use land cover properties (referred to as “LULC” from this point on) are computed using
data from multiple sources for each neighborhood.

Roof fraction ( froof) represents the ratio of building roof area (assumed equal to building footprint
area) to neighborhood area. Roof fraction is computed using the Los Angeles Region Imagery
Acquisition Consortium (LARIAC) dataset shapefiles for building footprints [34].

Tree fraction ( ftree) is computed using a tree dataset from LARIAC with a spatial resolution of 4′

(1.2 m). This dataset is binary, indicating whether or not each pixel has tree cover. Analogous to roof
fraction, the tree fraction represents the ratio of tree covered area to neighborhood area.

Pavement fraction ( fpavement) represents the area fraction of pavement per neighborhood, with
pavement area contributions from parking lots and paved roadways. Parking lot area is computed
using parking lot boundaries given by LARIAC dataset shapefiles. Paved street area is derived using
a street centerline dataset [35]. The total roadway length is computed by summing roadway length
per neighborhood, and roadway area is then calculated by multiplying by an assumed roadway
width of 12.8 m. Note that this roadway width represents the average street plus sidewalk width for
Los Angeles, calculated using the weighted mean roadway width per building type [36], where the
weighting factor is determined using the relative quantity of different building types in LA.

Reflected solar power from roofs (Proof) represents the average daily solar power (W) reflected
from roofs within the neighborhood. This is computed as:

Proof = I × αroof × froof × A (1)

where I is the average daily incoming solar power (W m−2), αroof is the weighted average roof albedo
in the neighborhood, and A is the neighborhood area (π × (500)2 m2 = 7.85 × 105 m2) (see the next
section for more information on the neighborhood areas). The average daily solar power of the day
includes all 24 hours, not just sunlit hours. The area-weighted mean roof albedo (αroof) is determined
using a dataset for seven California cities that reports building-specific roof albedos using remote
sensing data [37]; the mean roof albedo is computed for each neighborhood using the roof’s area as the
weighting factor. Overall, the metric Proof is used to account for the influence of cool roofs, considering
(a) the mean roof albedo of the neighborhood, (b) the spatial coverage of roofs in the neighborhood,
and (c) the daily solar irradiance. This avoids biases that could occur when, for example, the mean
roof albedo of a neighborhood may be high, but spatial coverage of roofs is low.

Reflected solar power from neighborhood (Pneighborhood) represents the average daily solar
power (W) reflected from the entire neighborhood. This parameter is estimated as:

Pneighborhood = I × αneighborhood × A (2)

where αneighborhood is the average albedo of the neighborhood. The average neighborhood albedo
is estimated using Equation (3), assuming that the neighborhood is comprised of roofs, pavements,
and trees:

αneighborhood =
αroof × froof + αpavement × fpavement + αtree × ftree

froof + ftree + fpavement
(3)

Note that this formula does not consider the interaction between walls and pavements in
the canopy. Since spatial datasets describing pavement and tree albedos do not exist, we assume
values of 0.10 and 0.15, respectively. Due to potential inaccuracies in the GIS datasets, and because
neighborhoods can consist of surface types other than roofs, pavements, and trees, froof + ftree +

fpavement generally does not equal 100%. Thus, the denominator of Equation (3) ensures that
neighborhood-to-neighborhood variability in froof + ftree + fpavement does not lead to variability in
neighborhood albedo. While this calculation provides a relatively crude estimate of reflected solar
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power from the neighborhood, it is sufficient for the purposes of our study since this metric is used
only for supporting analysis.

Reflected solar power from non-roof surfaces (Pnon−roof) represents the average daily solar
power (W) reflected from surfaces other than roofs in the neighborhood. This parameter is computed
as Pneighborhood − Proof.

Other LULC properties: Several other LULC properties were found to have insignificant
associations with neighborhood scale temperatures. Thus, they are described only briefly here and are
addressed further in the Supplemental Material. Impervious fraction is calculated as the sum of roof
and pavement fraction. Building height is the mean height (weighted by footprint area) of buildings
in a neighborhood and is acquired from the LARIAC dataset. Overall albedo (i.e., albedo accounting
for all surfaces) is calculated as presented in Equation (3).

2.5. Deriving Sensitivities of Measured Air Temperature to LULC Properties

We compute sensitivity as the linear regression of temperature to LULC properties within a region
(i.e., SFV or Central Los Angeles) for each hour of every day in July 2015 (i.e., 24 × 31 = 744 regressions
per LULC property). Note that times reported in this study represent hourly averages (e.g., values
reported for hour of day 15 actually represent the hourly average from 14:00–15:00, and all values
are reported in local daylight time (LDT). Thus, each regression looks at temperature versus land
cover variability from station to station within a given region. Figure 3 shows how the sensitivity of
temperature to a LULC property (e.g., reflected solar power from roofs) is calculated for an example
hour of the day, 14:00–15:00 LDT. Each point on the figure represents an hourly average value of
temperature and spatially aggregated LULC property associated with one weather station. After a
multi-step outlier removal process (explained in the next paragraph), the sensitivity of the temperature
to the LULC property is calculated. We perform these regressions for each hour of the day and thus
acquire hourly sensitivities for the entire month of July 2015. Investigating sensitivities for each hour
of the day can help hypothesize physical processes that are driving the observed correlations. We
only compute these regressions for sunny days, defined as those with daily maximum solar irradiance
>700 W m−2.

To ensure that regression results are not dominated by a small number of weather stations, we
take the following steps to remove outlying data:

1. We first detect and remove outlier weather stations for each hour. This is carried out by first
performing a standard least squares linear regression. The influence of each point in determining
the regression slope is then computed using leverage and residuals. Based on the distribution of
influences for each hour and region, data points that have influence beyond 1.5 times the inner
quartile range of the distribution are removed. This tends to eliminate points that have too much
influence in determining the final regression statistics. After these points are removed, another
regression is carried out. This time we use a robust linear regression with a Huber-T objective
function [38]. Regression using the Huber objective function gives higher weights to points with
lower residuals, whereas standard regression using least-squares gives equal weights to each
observation. The combination of outlier removal and robust regression minimizes the role of
observations with high leverage, high residuals, or both. The sensitivity of temperature to the
LULC parameter x is then computed as the slope of the robust regression (i.e., ∆T

∆x ).
2. Next, we determine whether the computed spatial sensitivity is statistically distinguishable from

zero. We do so by computing the probability (“p”) value of the aforementioned robust regression.
We deem the hourly sensitivity significant if the p-value is less than 0.1. The choice of this value
was rather subjective.

3. Lastly, for each hour of the day, we compute the number of days in July with statistically
distinguishable sensitivities for each land cover property. Those sensitivities with >10 significant
days are deemed as having significant relationships for that hour of the day. Those with ≤10 are
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deemed insignificant. This threshold was chosen subjectively, but roughly corresponds to half
the number of sunny days for this month.
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Figure 3. Afternoon (14:00–15:00 LDT) temperature versus daily average reflected solar power from
roofs per neighborhood (500 m radius circle around each station) in Central Los Angeles for each
day during July 2015. Each subpanel represents one day, and each point represents a single weather
station and associated LULC parameter. Slopes from least squares regressions are used to obtain daily
sensitivities of the temperature to the LULC parameter under investigation. The mean irradiance
(W/m2) at 14:00–15:00 LDT is shown above each subpanel. Red dots are removed from regressions as
outliers. The red dotted regression line corresponds to linear regressions using all points (including
outliers) and the black line corresponds to those using only the black squares (non-outliers). The size of
each point (area) is proportional to its influence.

3. Results

3.1. The Sensitivity of Temperature to Solar Power Reflected from Roofs

Panels a and b of Figure 4 present sensitivities of temperature to daily average solar power
reflected by roofs for Central Los Angeles and SFV, respectively. Note that sensitivities for morning
hours before sunrise use the average solar power of the previous day in Figure 4. Each box and whisker
set shows the distribution of values for sensitivity per hour over all sunny days (daily maximum solar
irradiance >700 W/m2) in July 2015.
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Figure 4. Boxplots for the diurnal cycle of sensitivity of temperature to (a,b) daily average solar power reflected by roofs, and (c,d) tree fraction. Panels (a,c) are for
Central Los Angeles, and panels (b,d) are for San Fernando Valley (SFV). Each box contains the sensitivities per hour for the entire month (July 2015). The hours with
statistically insignificant sensitivities (see Methodology section for details) have red hatching. Boxes show the inner-quartile range (IQR); whiskers show [(Q1 − 1.5
IQR), (Q3 + 1.5 IQR)], and the black line within the box represents the median. Hour of day 1 = 00:00 to 01:00 LDT.
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Median sensitivities for Central Los Angeles (Figure 4a) are negative at all times of day, with most
hours exhibiting statistically significant values. The largest negative sensitivity (0.49 ◦C per 1 MW
increase in daily average solar power reflected) occurs at 14:00–15:00 LDT, which is consistent with the
hottest time of day in this region (Figure S1). This matches our expectation based on the underlying
physical processes involved since cooling occurs via increases in reflected solar radiation. While
reflected solar radiation peaks at 13:00 LDT, there is an apparent lag between maximum radiation and
maximum cooling. As the sun sets, sensitivities trend toward zero, and reach the lowest (negative)
sensitivity right before sunrise. This again matches our expectation based on physical mechanisms
since temperature reductions induced by increasing reflected solar radiation are expected to diminish
after the sun goes down. The observed lag between peak temperature reduction and peak solar
irradiance and the non-zero sensitivities at night are likely caused by the thermal inertia of roofs.
Note that in Los Angeles, the peak temperature occurs earlier than in many other cities that do not
experience an afternoon sea breeze.

Sensitivities of temperature to daily average solar power reflected by roofs for SFV (Figure 4b)
show a similar diurnal shape as that of Central Los Angeles. However, most hours of the day have
sensitivity values that are not statistically significant in SFV. Sensitivities at 13:00–14:00 and 14:00–15:00
LDT are significant, however. While sensitivities for some hours of the night are positive, indicating
counterintuitively that temperatures are positively correlated with increased daily reflected solar
power, these values are not statistically significant. At 14:00–15:00, sensitivities are 0.31 ◦C per 1 MW
increase in daily average solar power reflected from roofs.

3.2. The Sensitivity of Temperature to Tree Fraction

Panels c and d of Figure 4 present sensitivities of temperature to tree fraction for Central Los
Angeles and SFV, respectively. In Central Los Angeles, these sensitivities are positive for most sunlit
hours of the day, and negative at night. The maximum positive sensitivity is observed in the early
afternoon (13:00–14:00 LDT). The apparent positive sensitivities during daytime counter expectations
based on the underlying physical mechanisms since increased tree cover should be associated with
temperature reductions through increased evaporative cooling and shading of surfaces. We suggest
that these positive daytime sensitivities are actually driven by co-variations between temperature, tree
fraction, and daily average reflected power from roofs.

To investigate this hypothesis, we present daily average solar power reflected from roofs versus
tree fraction for each neighborhood (Figure 5). Solar power reflected from roofs is anti-correlated to
tree fraction, with a coefficient of determination of 0.36 for Central Los Angeles. This is consistent
with our assertion that solar power reflected from roofs drives temperature reductions (and apparent
positive sensitivities between temperature and tree fraction) since (a) neighborhoods with lower tree
fraction are associated with higher solar power reflected from roofs and lower temperatures; and (b) the
underlying physical mechanisms suggest that increases in solar power reflected from roofs should lead
to temperature reductions, while increases in tree fraction should not lead to temperature increases.
Additional evidence for this assertion is that the diurnal cycles for the sensitivity of temperature to (a)
daily average solar power reflected from roofs (Figure 4a) versus (b) tree fraction (Figure 4c) nearly
mirror each other. The largest negative and positive sensitivity values occur in the early afternoon in
both Figure 4a,c, respectively. To summarize, we assert that daily average solar power reflected from
roofs is likely driving both observed temperature reductions and the apparent positive association
between temperature and tree fraction in this region. This suggests that variations in solar power
reflected from roofs (and thus roof albedo) appear to dominate variations in observed air temperature
relative to the effects of tree fractions in Central Los Angeles.
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For SFV, sensitivities of temperature to tree fraction are mostly statistically insignificant, though
some values are significant during nighttime. These significant nighttime values are negative,
suggesting that increased tree fraction is associated with temperature reductions, as expected based on
the underlying physical mechanisms. Observations suggest a temperature reduction of up to about
1.5 ◦C per 0.1 increase in tree fraction at night (hours 00:00–7:00 LDT). We do not observe significant
positive sensitivity during the day in SFV, as was observed for Central Los Angeles. We suggest that
this is because solar power reflected by roofs has lower correlation with tree fraction in SFV (R2 = 0.09)
than in Central Los Angeles (R2 = 0.36). The reduced coefficient of determination would lead to less
co-variation among temperature, solar power reflected from roofs, and tree fraction.

We note that the sensitivities reported above are likely specific to the region under investigation.
Other regions with different baseline (a) tree coverage, (b) tree physical properties, (c) soil moisture,
and (d) meteorology, among other factors, are likely to show different relationships between air
temperature and tree fraction.

Sensitivities of temperature to other LULC properties are presented in Figures S2–S4.

3.3. Roof versus Non-Roof Surfaces as Contributors to Variability in Solar Power Reflected from Neighborhoods

Here we test whether or not apparent temperature reductions associated with increases in solar
power reflected by roofs are driven by co-variations in solar power reflected by non-roof surfaces,
such as vegetation and pavement. To do so, we first present the daily average solar power reflected
from roofs versus solar power reflected from the neighborhood (Figure 6a). In this analysis, each
point represents a different neighborhood. High values of coefficient of determination (R2 = 0.80 in
SFV and 0.65 in Central Los Angeles) indicate that a large proportion of the variance in solar power
reflected from the neighborhood is explainable through variations in solar power reflected from roofs.
In Figure 6b, we present the daily average reflected solar power from non-roof surfaces versus solar
power reflected from the neighborhood. In this case, coefficients of determination are much lower
(R2 = 0.07 in SFV and 0.10 in Central Los Angeles). This suggests that variations in daily average solar
power reflected from the neighborhood are dominated by variations in solar power reflected by roofs
rather than non-roof surfaces. This provides additional evidence that observed temperature reductions
are driven by increases in solar power reflected by roofs in these regions.



Climate 2018, 6, 98 13 of 19Climate 2018, 6, x FOR PEER REVIEW  14 of 20 

 

a) b) 

  
Figure 6. Comparison of daily average solar power reflected from (a) roof and (b) non-roof surfaces versus daily average solar power reflected from all surfaces in 
each corresponding neighborhood. Least squares linear regressions are also shown separately for the two areas (i.e., SFV and Central Los Angeles). The higher 
coefficients of determination (R2) in panel (a) versus (b) suggest that variations in roof albedo are responsible for the majority of variations in neighborhood albedo.  

 

Figure 6. Comparison of daily average solar power reflected from (a) roof and (b) non-roof surfaces versus daily average solar power reflected from all surfaces
in each corresponding neighborhood. Least squares linear regressions are also shown separately for the two areas (i.e., SFV and Central Los Angeles). The higher
coefficients of determination (R2) in panel (a) versus (b) suggest that variations in roof albedo are responsible for the majority of variations in neighborhood albedo.



Climate 2018, 6, 98 14 of 19

4. Discussion

4.1. Comparison with Literature

In this section, we report sensitivities of air temperature to roof and overall albedos from our
study and compare them to previous work. All relevant values are summarized in Table 2.

In our study, values for mean daily temperature reductions are 0.25 ◦C and 1.84 ◦C per 0.1
increase in roof albedo for SFV and Central Los Angeles, respectively, although the sensitivity for SFV
is statistically insignificant. Note that the hottest time of day in the regions under investigation is
14:00–15:00 in Central Los Angeles and 16:00–17:00 LDT in SFV (Figure S1). We can also convert the
sensitivities of air temperature to roof albedo ( ∆T

∆αroof
) derived in the current study to the sensitivities to

overall albedo ( ∆T
∆αneighborhood

) using the computed average roof fractions of 26% and 28% for SFV and
Central Los Angeles (values are calculated for neighborhoods that are not outliers), respectively, as:

∆T
∆αneighborhood

=
∆T

∆αroof
× 1

froof
(4)

Computed daily average air temperature reductions are 0.96 ◦C and 6.56 ◦C per neighborhood
albedo increase of 0.1 for SFV and Central Los Angeles, respectively.

Santamouris [3] reviewed past modeling work on urban heat mitigation strategies. Most previous
modeling studies reviewed in that paper had investigated the simulated temperature reductions
attainable through hypothetical city-wide adoption of reflective surfaces. Santamouris [3] reported
daily average air temperature reductions of 0.2 ◦C per 0.1 increase in roof albedo, and reductions
in peak temperature of 0.4 ◦C per 0.1 increase in roof albedo. Per 0.1 increase in overall albedo, the
average and peak temperature reductions were 0.3 ◦C and 0.9 ◦C, respectively.

In a more recent study, Vahmani et al. [12] investigated the effects of city-wide adoption of cool
roofs on near-surface air temperatures in southern California. They found near-surface air temperature
reductions of 0.9 ◦C at 15:00 LDT per increase of 0.26 in roof albedo. (Note that climate model results
are generally reported as local standard time (LST). Modeling results from other studies are converted
here to LDT for consistency with our observational results. In addition, model results are generally
reported as snapshots of the reported time rather than hourly averages. Thus, we report exact times
rather than hourly ranges for modeling studies.) This translates to air temperature reductions of
0.35 ◦C per 0.1 increase in roof albedo, and 1.84 ◦C per 0.1 increase in overall albedo. Zhang et al. [22]
investigated the influence of city-wide adoption of cool roofs (and also cool walls) on canyon air
temperatures in Los Angeles County. They found that adopting cool roofs led to decreases of 0.72 ◦C
at 15:00 LDT and 0.48 ◦C in daily average temperature per increase of 0.8 in roof albedo. These
sensitivities translate to canopy air temperature reductions at 15:00 LDT of 0.09 ◦C per 0.1 increase
in roof albedo, and 1.03 ◦C per 0.1 increase in overall albedo, and daily temperature reductions of
0.06 ◦C per 0.1 increase in roof albedo, and 0.34 ◦C per 0.1 increase in overall albedo. In our study,
air temperature reductions at 14:00–15:00 LDT are 0.05 ◦C and 5.5 ◦C per 0.1 increase in roof albedo
for SFV and Central Los Angeles, respectively. These sensitivities translate to 0.19 ◦C and 19.7 ◦C air
temperature reductions at 14:00–15:00 LDT per 0.1 increase in overall albedo.

Perhaps a more direct comparison is to a companion paper, by Taha et al. [39], who reported
results of mobile temperature measurements. They found air temperature reductions of 1 to 9.2 ◦C
per increase of 0.1 in overall albedo in the afternoon. The highest sensitivity stems from mobile
measurements within our Central Los Angeles region during August 2017. These measurements were
conducted from 11:00–14:00 LDT. The sensitivities reported in the work of Taha et al. [39] are more
consistent with the calculated sensitivities in our study. Corresponding air temperature reductions for
the afternoon period in the Central Los Angeles region in our study are 15.3 ◦C per increase of 0.1 in
overall albedo.
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Table 2. Temperature reductions per unit increase in roof or neighborhood average albedo.

Area

Daily Average
Temperature
Reduction per 0.1
Increase in Roof
Albedo (◦C)

Daily Average Temperature
Reduction per 0.1 Increase in
Neighborhood Albedo (◦C)

Afternoon a

Temperature
Reduction per 0.1
Increase in Roof
Albedo (◦C)

Afternoon Temperature
Reduction per 0.1 Increase in
Neighborhood Albedo (◦C)

Notes

Current study SFV 0.25 b 0.96 b 0.05 0.19

Current study Central Los
Angeles 1.84 6.56 5.52 19.7 Values from a network of weather

stations. Afternoon = 14:00–15:00 LDT

Santamouris [3] Various 0.2 c 0.3 d 0.4 c 0.9 d

Values come from a meta-analysis of
previous climate modeling studies. Time
of “peak” afternoon temperature
reductions vary by study

Vahmani et al. [12] Southern
California 0.35 1.84

Values from climate modeling using the
default near-surface air temperature
model output. Afternoon = 15:00 LDT

Zhang et al. [22] Southern
California 0.06 0.34 0.09 1.03

Values from climate modeling.
Temperatures represent “canyon air
temperature” rather than the default
near-surface temperature model output.
Afternoon = 15:00 LDT

Taha et al. [39] Downtown Los
Angeles 1.0–9.2

Values from mobile measurements taken
at various times of day, with the highest
sensitivity derived from 11:00–14:00
LDT. Note that sensitivity values for
measurements taken at night fall within
the reported range.

a The definition of “afternoon” varies by study (see the Notes column). b Values are statistically insignificant. c Values are from two previous studies reported in Table 1 of Santamouris [3].
d Values are from several previous studies reported in Figures 1 and 2 of Santamouris [3].
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Overall, the sensitivities of temperature to the roof and overall albedo derived in our study are
much higher than those reported in previous modeling studies. This can be attributed to multiple
factors. Model simulations can isolate the effect of roof albedo, whereas, in observational studies,
differences in meteorology from neighborhood to neighborhood can result from multiple factors. It is
possible that increases in roof albedo covary with other factors that contribute to observed temperature
reductions. There was an insufficient number of data points per region to allow for carrying out
multiple regressions using multiple LULC properties. The observed high sensitivities could be in part
due to co-variation between temperatures, roof albedo, and other LULC properties. Furthermore,
this study focuses on measurements of neighborhood-scale UHIs using data from weather stations,
while most previous studies report modeled near-surface air temperatures. The sensitivities derived in
this study are more similar to the sensitivities reported in Taha et al. [39] than the modeling studies
previously discussed. This could be due to the similarity in the domain, spatial scale, and the use
of observations in both studies, although Taha et al. used a different measurement approach and
analysis period.

4.2. Dependence of Reported Temperature-Landcover Sensitivities to Neighborhood Characteristics

It is important to note that sensitivities of air temperature to land cover properties reported
here are relevant to the neighborhoods under investigation and are not necessarily generalizable
to other neighborhoods and/or cities. We expect the sensitivities to vary by baseline land cover
and meteorology.

4.3. Policy-Relevant Take-Away Points

• Observed air temperature reductions are associated with increases in reflected solar power from
roofs. Temperature reductions are larger during the day than at night, and peak in the afternoon.
The peak effect is 0.31 ◦C and 0.49 ◦C reduction in afternoon air temperature per MW increase
in solar power reflected from the neighborhoods in SFV and Central Los Angeles, respectively.
To put this in more tangible terms, we can report temperature reductions per roof or overall
albedo increase (Table 2). The average daily temperature reductions are 0.25 ◦C and 1.84 ◦C per
0.1 increase in roof albedo, which translates to 0.96 ◦C and 6.56 ◦C reduction per overall albedo
increase of 0.1 for SFV and Central Los Angeles, respectively.

• In Central Los Angeles, variations in solar power reflected from roofs (and thus roof albedo)
appear to dominate variations in observed air temperature relative to the effects of tree fractions.
Note that this is based on current neighborhood-to-neighborhood variability in tree fraction in
this region and should not be interpreted as how future additional tree cover would affect
temperatures. For SFV, observations suggest an overnight (00:00–07:00 LDT) temperature
reduction of up to about 1.5 ◦C per 0.1 increase in tree fraction.

• As with any observational studies, we are correlating temperature and land use/land cover
parameters. Thus, we cannot make definite conclusions about causation. However, we
have hypothesized and provided evidence for appreciable temperature reductions at the
neighborhood-scale due to increasing reflected solar power through roof albedo increases. To our
knowledge, this is the first study to provide observational evidence of roof albedo increases being
associated with temperature reductions.

5. Summary

This paper investigates the effects of LULC properties on observed air temperatures for different
neighborhoods in two regions of the Los Angeles area: San Fernando Valley (SFV) and Central Los
Angeles. Ground observations from a network of personal weather stations have been analyzed for July
2015. LULC properties of particular focus include roof albedo (and solar power reflected from roofs)
and tree fraction. We find that sensitivities between air temperatures and these LULC properties vary
by region, likely due to their different baseline land cover and meteorology. Increases in roof albedo
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are associated with observed air temperature reductions. Average daily sensitivities are 1.84 ◦C and
0.25 ◦C per 0.1 increase in roof albedo for neighborhoods in Central Los Angeles and SFV, respectively.
Observed sensitivities in air temperature to albedo are higher than reported by previous modeling
studies. We note that this could be in part due to co-variation between temperatures, roof albedo, and
other LULC properties. In Central Los Angeles, variations in solar power reflected from roofs (and
thus roof albedo) appear to dominate variations in observed air temperature relative to the effects of
tree fractions. Note that this is based on current neighborhood-to-neighborhood variability in tree
fraction in this region and should not be interpreted as how future additional tree cover would affect
temperatures. For SFV, observations suggest an overnight (00:00–07:00 LDT) temperature reduction
of up to about 1.5 ◦C per 0.1 increase in tree fraction. To our knowledge, this study is the first to
report observational evidence that roof albedo increases are associated with neighborhood-scale air
temperature reductions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2225-1154/6/4/98/s1,
Figure S1: Diurnal range of measured hourly averaged temperature for different stations across the basin. The
black line represents the median station, the red range shows the stations above the median, and the blue color
shows the stations below the median. Figure S2: Boxplots for the diurnal cycle of sensitivity of temperature to
impervious fraction. Panel (a) is for Central Los Angeles and panel (b) is for San Fernando Valley (SFV). Each box
contains the sensitivities by hour of day for July 2015. The hours with statistically insignificant sensitivities have
red hatching. Boxes show the inner-quartile range (IQR), whiskers show the [({first quartile} − 1.5 {Interquartile
range}), ({third quartile} + 1.5 {interquartile range})], and the black line within the box represents the median.
Hour of day 1 = 00:00 to 01:00 LDT. Figure S3: Boxplots for the diurnal cycle of sensitivity of temperature to
building height. Panel (a) is for Central Los Angeles and panel (b) is for SFV. Each box contains the sensitivities by
hour of day for July 2015. The hours with statistically insignificant sensitivities have red hatching. Boxes show the
inner-quartile range (IQR), whiskers show the [({first quartile} − 1.5 {Interquartile range}), ({third quartile} + 1.5
{interquartile range})], and the black line within the box represents the median. Hour of day 1 = 00:00 to 01:00 LDT.
Figure S4: Boxplots for the diurnal cycle of sensitivity of temperature to overall albedo. Panel (a) is for Central
Los Angeles and panel (b) is for SFV. Each box contains the sensitivities by hour of day for July 2015. The hours
with statistically insignificant sensitivities have red hatching. Boxes show the inner-quartile range (IQR), whiskers
show the [({first quartile} − 1.5 {Interquartile range}), ({third quartile} + 1.5 {interquartile range})], and the black
line within the box represents the median. Hour of day 1 = 00:00 to 01:00 LDT.

Author Contributions: G.A.B.-W., H.T., R.L. and H.G. conceived and designed the study; A.M. gathered
and analyzed all observations under the mentorship of G.A.B.-W.; A.M. and G.A.B.-W. wrote the paper with
contributions from J.Z., Y.L. and T.T.; R.L., H.T. and H.G. edited the paper.

Funding: This research was supported by the California Energy Commission under contract EPC-14-073 and
the National Science Foundation under grants CBET-1512429, 1752522, and CCF-1539608. The researchers from
Lawrence Berkeley Laboratory were also supported by the Assistant Secretary for Energy Efficiency and Renewable
Energy, Building Technologies Office of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Acknowledgments: We would like to thank Steve Prinzivalli from EarthNetworks for access to weather data.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Oke, T.R. City size and the urban heat island. Atmos. Environ. 1973, 7, 769–779. [CrossRef]
2. Sun, C.Y.; Brazel, A.J.; Chow, W.T.L.; Hedquist, B.C.; Prashad, L. Desert heat island study in winter by mobile

transect and remote sensing techniques. Theor. Appl. Climatol. 2009, 98, 323–335. [CrossRef]
3. Santamouris, M. Cooling the cities—A review of reflective and green roof mitigation technologies to fight

heat island and improve comfort in urban environments. Sol. Energy 2014. [CrossRef]
4. Taha, H. Meteorological, emissions, and air-quality modeling of heat-island mitigation: Recent findings for

California, USA. Int. J. Low Carbon Technol. 2013, 10, 3–14. [CrossRef]
5. Sailor, D.; Shepherd, M.; Sheridan, S.; Stone, B.; Kalkstein, L.; Russell, A.; Vargo, T.; Andersen, T. Improving

heat-related health outcomes in an urban environment with science-based policy. Sustainability 2016, 8, 1015.
[CrossRef]

6. Voogt, J.A.; Oke, T.R. Effects of urban surface geometry on remotely-sensed surface temperature. Int. J.
Remote Sens. 1998, 19, 895–920. [CrossRef]

7. Pomerantz, M.; Akbari, H.; Berdahl, P.; Konopacki, S.J.; Taha, H.; Rosenfeld, A.H. Reflective surfaces for
cooler buildings and cities. Philos. Mag. B 1999, 79, 1457–1476. [CrossRef]

http://www.mdpi.com/2225-1154/6/4/98/s1
http://dx.doi.org/10.1016/0004-6981(73)90140-6
http://dx.doi.org/10.1007/s00704-009-0120-2
http://dx.doi.org/10.1016/j.solener.2012.07.003
http://dx.doi.org/10.1093/ijlct/ctt010
http://dx.doi.org/10.3390/su8101015
http://dx.doi.org/10.1080/014311698215784
http://dx.doi.org/10.1080/13642819908216984


Climate 2018, 6, 98 18 of 19

8. Peng, S.; Piao, S.; Ciais, P.; Friedlingstein, P.; Ottle, C.; Bréon, F.M.; Myneni, R.B. Surface urban heat island
across 419 global big cities. Environ. Sci. Technol. 2012, 46, 696–703. [CrossRef]

9. Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [CrossRef]
10. Kusaka, H.; Kondo, H.; Kikegawa, Y.; Kimura, F. A simple single-layer urban canopy model for atmospheric

models: Comparison with multi-layer and slab models. Bound.-Lay. Meteorol. 2001, 101, 329–358. [CrossRef]
11. Vahmani, P.; Ban-Weiss, G. Climatic consequences of adopting drought tolerant vegetation over Los Angeles

as a response to California drought. Geophys. Res. Lett. 2016, 43, 8240–8249. [CrossRef]
12. Vahmani, P.; Sun, F.; Hall, A.; Ban-Weiss, G. Investigating the climate impacts of urbanization and the

potential for cool roofs to counter future climate change in Southern California. Environ. Res. Lett. 2016, 11.
[CrossRef]

13. Taha, H. Urban climates and heat islands: Albedo, evapotranspiration, and anthropogenic heat. Energy Build.
1997, 25, 99–103. [CrossRef]

14. Zhou, D.; Zhao, S.; Liu, S.; Zhang, L.; Zhu, C. Surface urban heat island in China’s 32 major cities: Spatial
patterns and drivers. Remote Sens. Environ. 2014, 152, 51–61. [CrossRef]

15. Imhoff, M.L.; Zhang, P.; Wolfe, R.E.; Bounoua, L. Remote sensing of the urban heat island effect across
biomes in the continental USA. Remote Sens. Environ. 2010, 114, 504–513. [CrossRef]

16. Taha, H. Characterization of urban heat and exacerbation: Development of a heat island index for California.
Climate 2017, 5, 59. [CrossRef]

17. Klok, L.; Zwart, S.; Verhagen, H.; Mauri, E. The surface heat island of Rotterdam and its relationship with
urban surface characteristics. Resour. Conserv. Recycl. 2012, 64, 23–29. [CrossRef]

18. Yan, H.; Fan, S.; Guo, C.; Hu, J.; Dong, L. Quantifying the impact of land cover composition on intra-urban
air temperature variations at a mid-latitude city. PLoS ONE 2014, 9. [CrossRef]

19. Sailor, D.J. Simulated Urban Climate Response to Modifications in Surface Albedo and Vegetative Cover. J.
Appl. Meteorol. 1995. [CrossRef]

20. Ohashi, Y.; Genchi, Y.; Kondo, H.; Kikegawa, Y.; Yoshikado, H.; Hirano, Y. Influence of Air-Conditioning
Waste Heat on Air Temperature in Tokyo during Summer: Numerical Experiments Using an Urban Canopy
Model Coupled with a Building Energy Model. J. Appl. Meteorol. Climatol. 2007, 46, 66–81. [CrossRef]

21. Salamanca, F.; Georgescu, M.; Mahalov, A.; Moustaoui, M.; Wang, M. Anthropogenic heating of the urban
environment due to air conditioning. J. Geophys. Res. Atmos. 2014, 119, 5949–5965. [CrossRef]

22. Zhang, J.; Mohegh, A.; Li, Y.; Levinson, R.; Ban-Weiss, G.A. Systematic Comparison of the Influence of Cool
Wall versus Cool Roof Adoption on Urban Climate in the Los Angeles Basin. Environ. Sci. Technol. 2018, 52,
11188–11197. [CrossRef]

23. Li, D.; Bou-Zeid, E.; Oppenheimer, M. The effectiveness of cool and green roofs as urban heat island
mitigation strategies. Environ. Res. Lett. 2014, 9. [CrossRef]

24. Lynn, B.H.; Carlson, T.N.; Rosenzweig, C.; Goldberg, R.; Druyan, L.; Cox, J.; Civerolo, K. A modification
to the NOAH LSM to simulate heat mitigation strategies in the New York City metropolitan area. J. Appl.
Meteorol. Climatol. 2009, 48, 199–216. [CrossRef]

25. Georgescu, M.; Mahalov, A.; Moustaoui, M. Seasonal hydroclimatic impacts of Sun Corridor expansion.
Environ. Res. Lett. 2012, 7. [CrossRef]

26. Millstein, D.; Menon, S. Regional climate consequences of large-scale cool roof and photovoltaic array
deployment. Environ. Res. Lett. 2011, 6. [CrossRef]

27. Zhang, J.; K Zhang, K.; Liu, J.; Ban-Weiss, G.A. Revisiting the climate impacts of cool roofs around the globe
using an Earth system model. Environ. Res. Lett. 2016, 11, 084014. [CrossRef]

28. Mohegh, A.; Rosado, P.; Jin, L.; Millstein, D.; Levinson, R.; Ban-Weiss, G. Modeling the climate impacts
of deploying solar reflective cool pavements in California cities. J. Geophys. Res. 2017, 122, 6798–6817.
[CrossRef]

29. Mackey, C.W.; Lee, X.; Smith, R.B. Remotely sensing the cooling effects of city scale efforts to reduce urban
heat island. Build. Environ. 2012, 49, 348–358. [CrossRef]

30. Los Angeles Building Code. Available online: http://www.ladbs.org/docs/default-source/publications/
code-amendments/2017-l-a-amendment-to-ca-codes.pdf?sfvrsn=8 (accessed on 1 September 2016).

http://dx.doi.org/10.1021/es2030438
http://dx.doi.org/10.1002/qj.49710845502
http://dx.doi.org/10.1023/A:1019207923078
http://dx.doi.org/10.1002/2016GL069658
http://dx.doi.org/10.1088/1748-9326/11/12/124027
http://dx.doi.org/10.1016/S0378-7788(96)00999-1
http://dx.doi.org/10.1016/j.rse.2014.05.017
http://dx.doi.org/10.1016/j.rse.2009.10.008
http://dx.doi.org/10.3390/cli5030059
http://dx.doi.org/10.1016/j.resconrec.2012.01.009
http://dx.doi.org/10.1371/journal.pone.0102124
http://dx.doi.org/10.1175/1520-0450-34.7.1694
http://dx.doi.org/10.1175/JAM2441.1
http://dx.doi.org/10.1002/2013JD021225
http://dx.doi.org/10.1021/acs.est.8b00732
http://dx.doi.org/10.1088/1748-9326/9/5/055002
http://dx.doi.org/10.1175/2008JAMC1774.1
http://dx.doi.org/10.1088/1748-9326/7/3/034026
http://dx.doi.org/10.1088/1748-9326/6/3/034001
http://dx.doi.org/10.1088/1748-9326/11/8/084014
http://dx.doi.org/10.1002/2017JD026845
http://dx.doi.org/10.1016/j.buildenv.2011.08.004
http://www.ladbs.org/docs/default-source/publications/code-amendments/2017-l-a-amendment-to-ca-codes.pdf?sfvrsn=8
http://www.ladbs.org/docs/default-source/publications/code-amendments/2017-l-a-amendment-to-ca-codes.pdf?sfvrsn=8


Climate 2018, 6, 98 19 of 19

31. CEC. 2016 Building Energy Efficiency Standards for Residential and Nonresidential Buildings; Publication
CEC-400-2015-037-CMF; California Energy Commission: Sacramento, CA, USA, 2016. Available online:
http://www.energy.ca.gov/2015publications/CEC-400-2015-037/CEC-400-2015-037-CMF.pdf (accessed
on 1 May 2017).

32. WunderGround API. A Weather API Designed for Developers. Available online: https://www.
wunderground.com/weather/api (accessed on 1 September 2016).

33. NOAA. Land-Based Station Data–National Climatic Data Center–NOAA. Available online: https://www.
ncdc.noaa.gov/data-access/land-based-station-data (accessed on 1 September 2016).

34. LARIAC. Countywide Building Outlines. 2008. Available online: https://egis3.lacounty.gov/dataportal/
2011/04/28/countywide-building-outlines/ (accessed on 1 November 2016).

35. CAMS. LA County Street & Address File. 2011. Available online: https://egis3.lacounty.gov/dataportal/
2014/06/16/2011-la-county-street-centerline-street-address-file/ (accessed on November 2016).

36. CARB. Life-Cycle Assessment and Co-Benefits of Cool Pavements. 2017. Available online: https://www.arb.
ca.gov/research/apr/past/12-314.pdf (accessed on 20 September 2017).

37. Ban-Weiss, G.A.; Woods, J.; Levinson, R. Using remote sensing to quantify albedo of roofs in seven California
cities, Part 1: Methods. Sol. Energy 2015, 115, 777–790. [CrossRef]

38. Huber, P.J. Robust Statistics; John Wiley and Sons: New York, NY, USA, 1981.
39. Taha, H.; Levinson, R.; Mohegh, A.; Gilbert, H.; Ban-Weiss, G.; Chen, S. Air-temperature response to

neighborhood-scale variations in albedo and canopy cover in the real world: Fine-resolution meteorological
modeling and mobile temperature observations in the Los Angeles climate archipelago. Climate 2018, 6, 53.
[CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.energy.ca.gov/2015publications/CEC-400-2015-037/CEC-400-2015-037-CMF.pdf
https://www.wunderground.com/weather/api
https://www.wunderground.com/weather/api
https://www.ncdc.noaa.gov/data-access/land-based-station-data
https://www.ncdc.noaa.gov/data-access/land-based-station-data
https://egis3.lacounty.gov/dataportal/2011/04/28/countywide-building-outlines/
https://egis3.lacounty.gov/dataportal/2011/04/28/countywide-building-outlines/
https://egis3.lacounty.gov/dataportal/2014/06/16/2011-la-county-street-centerline-street-address-file/
https://egis3.lacounty.gov/dataportal/2014/06/16/2011-la-county-street-centerline-street-address-file/
https://www.arb.ca.gov/research/apr/past/12-314.pdf
https://www.arb.ca.gov/research/apr/past/12-314.pdf
http://dx.doi.org/10.1016/j.solener.2014.10.022
http://dx.doi.org/10.3390/cli6020053
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology 
	Areas of Analysis 
	Defining Aggregation Areas 
	Meteorological Data 
	Description and Data Sources for Land Use Land Cover Properties 
	Deriving Sensitivities of Measured Air Temperature to LULC Properties 

	Results 
	The Sensitivity of Temperature to Solar Power Reflected from Roofs 
	The Sensitivity of Temperature to Tree Fraction 
	Roof versus Non-Roof Surfaces as Contributors to Variability in Solar Power Reflected from Neighborhoods 

	Discussion 
	Comparison with Literature 
	Dependence of Reported Temperature-Landcover Sensitivities to Neighborhood Characteristics 
	Policy-Relevant Take-Away Points 

	Summary 
	References

