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Abstract: The numerical weather forecast model Weather Research and Forecasting (WRF) has a
range of applications because it offers multiple physical options, enabling the users to optimizing
WRF for specific scales, geographical locations and applications. Summer rainfall cannot be predicted
well in North West of Iran (NWI). Most of them are convective. Sometimes rainfall is heavy, so that
it causes flash flood. In this research, some configurations of WRF were tested with four summer
rainfall events in NWI to find the best configuration. Five cumulus, four planetary boundary layers
(PBL) and two microphysical schemes were combined. Twenty-six different configurations (models)
were implemented at two resolutions of 5 and 15 km for duration of 48 h. Four events, with over
20 mm convective daily rainfall total, were selected at NWI during summer season between 2010
and 2015. These events were tested by developing 26 unique models. Results were verified using
several methods. The aim was to find the best results during the first 24 h. Although no single
configuration can be introduced for all times, thresholds, and atmospheric system to provide reliable
and accurate forecast, the best configuration for WRF can be identified. Kain-Fritsch (new Eta),
Betts-Miller-Janjic, Modified Kain-Fritsch, Multi-scale Kain-Fritsch and newer Tiedtke cumulus
schemes and Mellor-Yamada-Janjic, Shin-Hong ‘scale-aware’, Medium Range Forecast (MRF) and
Yonsei University (YSU) Planetary Boundary Layer schemes and Kessler, WRF Single Moment 3 class
simple ice (WSM3) microphysics schemes were selected. The result show that Cumulus schemes are
the most sensitive and Microphysics schemes are the less sensitive. The comparison of 15 km and 5 km
resolution simulations do not show obvious advantages in downscaling the results. Configuration
with newer Tiedtke cumulus, Mellor-Yamada-Janjic PBL, WSM3 and Kessler microphysics schemes
give the best results for the 5 and 15 km resolutions. The output image of models and statistical
methods verification indexes show that WRF could not accurately simulate convective rainfall in the
NWI in summer.
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1. Introduction

In the Northwestern area of Iran about half of the annual precipitation occurs between months of
March and May. Less than 4% of the annual precipitation occurs in summer [1], typically with heavy
convective rainfall. Topography and other factors provide favorable conditions for the occurrence of
flood in this area in summer. There is a rising cost and social impact associated with extreme weather,
not to mention the loss of human life [2]. These events have major effects on the society, economy
and the environment [3], and have a direct impact on people, countries and vulnerable regions [4].
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Records show that these events are increasing [5]. There are several methods to predict rainfall-runoff.
Rainfall-runoff modeling was improved in many researches [6–10].

An important thing to predict flash flood is heavy rainfall forecasting. If we can predict
rainfall, it will be very useful to determine flash flood. An attempt to seek a relatively optimal
data-driven model for rainfall forecasting from three aspects: model inputs, modeling methods,
and data-preprocessing techniques. A proposed model, modular artificial neural network (MANN),
is compared with three benchmark models, viz. artificial neural network (ANN), K-nearest-neighbors
(K-NN), and linear regression (LR). The proposed optimal rainfall forecasting model can be derived
from MANN coupled with SSA [11]. In this study, Numerical weather prediction (NWP) was used to
improve rainfall simulation.

According to statistical data from 87 meteorological stations, 132 cases have been recorded with
daily rainfall total over 20 mm in this region during the summer since 1954 to 2015, and 41 cases have
recorded in the last 5 years. These few events during the summer since 1954 to 2015 because there were
a few stations before 2000 and the most of weather stations were stablished after that. For example
41 events were recorded in 5 years between 2010 and 2015. All 87 weather stations had data during
2010 to 2015 and their data is reliable [12], then historical records of 2010 to 2015 are taken.

Most of these events have not been predicted. Then we need to improve our rainfall
simulation. The WRF system is a mesoscale numerical weather prediction system used for operational
forecasting, which allows users to make adjustments for a specific scale and geographical location [13].
Four different WRF microphysics schemes have been tested [14] over southeast India (Thompson, Lin,
WRF Single-Moment 6 class (WSM6) and Morrison). While the Thompson scheme simulated surface
rainfall distribution closer to observations, the other three schemes overestimated observed rainfall.
Furthermore [15], Austral summer rainfall over the period 1991/1992 to 2010/2011 was dynamically
downscaled by the WRF model at 9 km resolution for South Africa, and utilized three different
convective parameterization schemes, namely the (1) Kain-Fritsch (KF), (2) Betts-Miller-Janjic (BMJ)
and (3) Grell-Devenyi-ensemble (GDE) schemes. All three schemes have generated positive rainfall
biases over South Africa, with the KF scheme producing the largest biases and mean absolute errors.
Only the BMJ scheme could reproduce the intensity of rainfall anomalies, and also exhibited the highest
correlation with the observed internal summer rainfall variability. In another study [16], simulations
of a 15 km grid resolution were compared using five different cumulus parameterization schemes for
three flooding events in Alberta, Canada. The Kain-Fritsch and explicit cumulus parameterization
schemes were found to be the most accurate when simulating precipitation across three summer events.

The accuracy of South East of United State (SE US) summer rainfall simulations at 15 km resolution
were evaluated [17] using (WRF) model and were compared with those at the 3 km resolution. Results
indicated that the simulations at the 3 km resolution do not show significant advantages over those at
the 15 km resolution using the Zhang-McFarlane cumulus scheme. In this study it was suggested that to
obtain an acceptable simulation, selection of a suitable cumulus scheme that realistically represents the
convective rainfall triggering mechanism is more important than just increasing the model resolution.
Another study [18] has evaluated the WRF model for regional climate applications over Thailand,
focusing on simulated precipitation using various convective parameterization schemes possible in
WRF. Experiments were carried out for the year 2005 using four convective cumulus parameterization
schemes, namely, Betts-Miller-Janjic (BMJ), Grell-Devenyi (GD), improved Grell-Denenyi (G3D) and
Kain-Fritsch (KF) with and without nudging applied to the outermost nest. The results showed
that the experiments with nudging generally performed better than un-nudged experiments and
that the BMJ cumulus scheme with nudging provided the smallest bias relative to the observations.
Another study [19] that examined the sensitivity of the WRF model performance using three different
PBL schemes Mellor-Yamada-Janjic (MYJ), Yonsei University (YSU), and the asymmetric convective
model, version 2 (ACM2) WRF simulations with different schemes over Texas in July–September
2005 showed that the simulations with the YSU and ACM2 schemes gave much less bias compared
to the MYJ scheme. An examination combined different physical scheme for simulation series of
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rainfall events near the southeast coast of Australia known as East Coast Lows. The study [13] was
made using a thirty-six member multi-physics ensemble such that each member had a unique set of
physics parametrisations. These results suggested that the Mellor-Yamada-Janjic planetary boundary
layer scheme and the Betts-Miller-Janjic cumulus scheme can be used with some level of robustness.
The results also suggested that the Yonsei University planetary boundary layer scheme, Kain-Fritsch
cumulus scheme and Rapid Radiative Transfer Model for General circulation model (RRTMG) radiation
scheme should not be used in combination for that region. In other research [20], a matrix of 18 WRF
model configurations were created using different physical scheme combinations, ran with 12 km
grid spacing for eight International H2O Project (IHOP) mesoscale convective system (MCS) cases.
For each case, three different treatments of convection, three different microphysical schemes, and
two different planetary boundary layer schemes were used. The greatest variability in forecasts was
found to come from changes in the choice of convective scheme, while notable impacts also occurred
by changes in the microphysics and PBL schemes. On the other hand [21], 3 km resolution WRF model
was simulated with four different microphysics schemes and two different PBL schemes. The results
showed that simulated rain volume was particularly affected by changes in microphysics schemes
for both initializations. The change in the PBL scheme and corresponding synergistic terms (which
corresponded to the interactions between different microphysical and PBL schemes) resulted in a
statistically significant impact on rain volume.

A simulation [22] of West Africa used combinations of three convective parameterization
schemes (CPSs) and two planetary boundary layer schemes (PBLSs). The different parameterizations
tested showed that the PBLSs have the largest effect on temperature, humidity, vertical distribution
and rainfall amount. Whereas dynamics and precipitation variability are strongly influenced by
CPSs. In particular, the Mellor-Yamada-Janjic PBLS provided more realistic values of humidity and
temperature. Combined with the Kain-Fritsch CPS, the West African monsoon (WAM) onset is
well represented.

More recently [23], several aspects of the WRF modelling systems including two land surface
models and two cumulus schemes have been tested for 4 months at 30 km resolution over the USA.
The two cumulus schemes were found to perform similarly in terms of mean precipitation everywhere
except over Florida where the Kain-Fritsch scheme performed better than the Betts-Miller-Janjic scheme
and hence was chosen for future studies.

The results of research discussed above were used to select convective and planetary boundary
layer schemes for this study. Some new schemes used in WRF 3.8 were also considered. For more
information, visit the WRF USERS PAGE, 2016. Although a unique combination of different schemes
cannot work well to give accurate forecasts for all atmospheric conditions, the best combinations from
the many choices available on WRF could be investigated. But final choices would certainly depend
on geographical area of study and season.

WRF was simulated of four summer rainfall events in NWI. For each event the simulations
were repeated with 26 different model physics configurations. Combinations of 5 cumulus
convection schemes, 4 planetary boundary layer schemes and 2 microphysics schemes were tested.
Each simulation ran for 48 h, and was repeated in two domains; a larger one with 15 km grid spacing
and smaller domain with 5 km grid spacing. The simulation results were compared with a range
of indices based on contingency tables, and also a comparison of standard deviations, root mean
square errors and correlation coefficients. The rainfall patterns from the simulations were also
compared qualitatively with observed rainfall patterns. The overall result of the study is that,
in general, the simulations give a poor representation of the convective rainfall events, but that
specific combinations of the physics schemes perform slightly less poorly.

2. Data and Model Configuration

This study used the rainfall data from the NWI. This area covers four provinces and total area
of 127,394 square kilometers. The area of study is located between latitude 35◦32′54” and 39◦46′36”
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North and longitude 44◦2′5” and 49◦26′27” East. The highest elevation is over 4500 m above sea level.
In this area heavy convective rainfall can’t predict well. That is why this area selected to this study.

Synoptic systems are generally associated with shallow and weak troughs in the level of 500 mb
in selected events. It causes cold air advection from higher latitudes regions to this area. Black sea is a
source of moisture for these synoptic systems. Positive vorticity increases the instability in front of
500 mb troughs in the reign. These synoptic systems can only increase the amounts of cloud and wind
speed due to the shortage of humidity and weak trough. The mountain effect intensifies the instability,
so heavy precipitation occurs in some parts of NWI. The altitude of 4.32% of NWI is between 1600
and 2000 m [24]. In this research, different models were tested to simulate precipitation by changing
convective parameters. However WRF model cannot fully show the effects of the mountains well.

The models were generated using the WRF system with Advanced Research WRF (ARW) version
3.8 hosted at the National Center of Atmospheric Research (NCAR) [25]. The WRF model has been
updated to version 3.8 on 8 April 2016. It was the last version of WRF, when this study was done.

It is necessary to choose between many parametrizations for each physics option to run WRF. The
wide of applications is possible due to the presence of multiple options for the physics and dynamics
of WRF, enabling the user to optimize WRF for specific scales, geographical locations and applications.
Determining the optimal combination of physics parameterizations to use is an increasingly difficult
task as the number of parameterizations increases [13]. A range of physics combinations are used to
simulate rainfall events for the purpose of optimizing WRF for dynamical downscaling in this region.
There are 15 cumulus schemes, 14 PBL schemes and 23 microphysics scheme options in WRF 3.8.
According to most studies, cumulus schemes are very important on summer models. Therefore five
different cumulus schemes were used. Kain-Fritsch (new Eta) (KF) (cu = 1) and Betts-Miller-Janjic (BMJ)
(cu = 2) were selected due to result of the recent research some of them mentioned in introduction.
Modified Kain-Fritsch (MKF) (cu = 10) which is new in WRF 3.8 was also selected as a candidate.
This scheme modifies the Kain-Fritsch ad-hoc trigger function with one linked to boundary layer
turbulence via probability density function using the cumulus potential scheme of Berg and Stull
(2005) [26]. Multi-scale Kain-Fritsch (MsKF) (cu = 11) and newer Tiedtke (NT) (cu = 16) were selected,
as well [27]. Three planetary boundary layer schemes (PBL) were selected based on the results from a
previous researches as mentioned in introduction. Mellor-Yamada-Janjic (MYJ) (pbl = 2), Shin-Hong
‘scale-aware’ (SHsa) (pbl = 11) and Medium Range Forecast (MRF) (pbl = 99) were selected. MsKF
cumulus scheme had to combine with YSU (pbl = 1) planetary boundary layer scheme, then this
PBL was used. Based on the results of previous researches, microphysics scheme are less sensitive.
Therefore, Kessler (mc = 1) and WSM 3 class simple ice (WSM3) (mc = 3) were used. Finally five
cumulus, four PBL and two microphysics schemes were selected as shown in Table 1. Combination of
these schemes lead to 26 different configurations.

Table 1. Schemes and different configuration.

No Cumulus Scheme PBL Scheme Microphysics Scheme Number of
Configuration

1 =1, Kain-Fritsch (new Eta) =2, Mellor-Yamada-Janjic TKE =1, Kessler

4 × 3 × 2 = 24
2 =2, Betts-Miller-Janjic =11, Shin-Hong ‘scale-aware’ =3, WSM 3-class simple ice
3 =10, Modified Kain-Fritsch =99, MRF
4 =16, A newer Tiedtke
5 =11, Multi-scale Kain-Fritsch =1, YSU =1, Kessler scheme

1 × 1 × 2 = 2=3, WSM 3-class simple ice
Total number of configuration 26

Four events were selected randomly from forty-one events with more than 20 mm of daily rainfall
total in summer in the last five years (2010–2015), see Table 2.
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Table 2. Date of events.

No
Date

Year Month Day

1 2010 6 24
2 2010 7 11
3 2013 9 22
4 2015 8 26

3. Domains

The National Centers for Environmental Prediction (NCEP’s) Global Forecast System (GFS) model
output with a 0.25-degree resolution was used as an input for the WRF models. GFS 0.25 is the highest
resolution available of global modeling.

Twenty-six WRF models ran for 48 h and four events in two domains for both 5 km and 15 km
resolutions. Simulation of convective rainfall need to highest resolution. Increases in the model
resolution may not lead to improved NWP forecasts [28]. Consequently, Resolution, hardware facilities
and model accuracy should balance to each other. Resolution 5 km was chosen for these reasons.
Resolution 15 is an intermediate to achieve resolution 5 km. in the other hand, we want to compare
accuracy of high resolution and low resolution.

These domains are shown in Figure 1 and Table 3. There are 91 grid points in the west-east
direction and 64 in the north-south direction with 15 × 15 km resolution in domain 1. The number
of horizontal grid in both directions are 130 with 5 × 5 km resolution in domain 2.5 km grid domain
nested within the 15 km grid domain in the same run. Thirty vertical levels were used in domain 1
and 2. The highest (in altitude) input pressure level was at 50 hPa (5000 Pa). The default datasets
used to produce landuse is interpolated from 30-arc-second the U.S. Geological Survey (USGS) Global
Multi-resolution Terrain Elevation Data 2010 (GMTED2010). The vegetation is interpolated from
the moderate-resolution imaging spectroradiometer (MODIS) fraction of photosynthetically active
radiation (FPAR) (400–700 nm) absorbed by green vegetation are interpolated from 21 class MODIS.Climate 2017, 5, 48  6 of 19 
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Table 3. Latitude and longitude was used in domains.

Point
Domain 1 Domain 2

Latitude Longitude Latitude Longitude

Lower left 32◦47′36.74” N 38◦27′38.95” E 34◦45′26.24” N 42◦10′28.6”3 E
Upper left 41◦18′55.26” N 38◦27′38.95” E 40◦36′31.93” N 42◦10′28.63” E

Lower right 32◦47′36.74” N 53◦57′42.55” E 34◦45′26.2”4 N 49◦42′41.58” E
Upper right 41◦18′55.26” N 53◦5′742.55” E 40◦363′1.93” N 49◦42′41.58” E

4. Verification

There are many methods for forecast verification, including their characteristics, pros and
cons. Although the correct term is simulation, the words “forecast” and “simulation” are used
interchangeably here for convenience. The methods range from simple traditional statistics and
scores, to methods with more detailed diagnostic and scientific verification. The forecast is compared,
or verified, against a corresponding observation of what actually occurred, or some good estimate of
the true outcome [29].

In this work, several methods were used to verify the models. These method included all
of Standard verification methods [30]. Methods for dichotomous (yes/no) forecasts, Methods for
ulti-category forecasts, Methods for forecasts of continuous variables, Methods for probabilistic
forecasts and Taylor diagram were used for verification. Observation data was collected from
87 stations gridded by kriging method [31] to produce 5 km and 15 km grids to match the WRF output.

Several statistical tests have been developed to detect significance of the contingency.
The chi-square contingency test [32] is used for goodness-of-fit when there are one nominal
variable with two or more values [33]. Therefore, Chi-square contingency test was ran for the
models. The results were significance. Categorical statistics that could be computed from the
yes/no-contingency table. The indexes were determined from Table 4. Result of seven Scalar quantities
and five skill scores that were computed from yes/no-contingency table and Root Mean Square Error
(RMSE) are shown in Tables 5 and 6.

The scalar quantity indexes are included Proportion Correct (PC) [34], Bias score (B), Treat Score
(TS) or Critical Success Index [35], odds ratio (θ) [36], False Alarm Ratio (FAR), Hit Rate (H) and False
Alarm Rate (F).

Heidke skill score (HSS) [37,38], Peirce skill score (PSS) [39,40], Clayton skill score (CSS), Gilbert
skill score (GSS) [41] and Q skill score (Q) [42,43] are skill scores indexes.

Table 4. Contingency table.

Observed

yes No Total

Forecast
Yes a B forecast yes
No c D forecast no

Total observed yes observed no n = a + b + c + d = total

a = event forecast to occur, and did occur; b = event forecast to occur, but did not occur; c = event forecast not to
occur, but did occur, d = event forecast not to occur, and did not occur.

These Indexes, mentioned above, were obtained from the following formula:

PC =
a + d

n
(1)

B =
a + b
a + c

(2)

TS =
a

a + b + c
(3)
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θ =
ad
bc

(4)

FAR =
b

a + b
(5)

H =
a

a + c
(6)

F =
b

b + d
(7)

HSS =
2(ad− bc)

(a + c)(c + d) + (a + b)(b + d)
(8)

CSS =
a

a + b
− c

c + d
(9)

Q =
ad− bc
ad + bc

(10)

GSS =
a− are f

a− are f + b + c
are f =

(a + b)(a + c)
n

(11)

PSS =
ad− bc

(a + c)(b + d)
= H − F (12)

RMSE = Root Mean Square Error, RMSE =

[
1
N

N
∑

i=1
(Fi −Oi)

2
]1/2

(Hydman and Koehler 2006),

F = forecast and O = observation, PC = indicate percent of correct forecasts.
Models and observation were compared spatially with among of daily rainfall total. Number of

comparison in a, b, c and d indexes in Tables 5 and 6 are different because number of grids in 5 km
resolution are more than 15 km resolution.

Green and red cells in the tables represent the best models verified. The smallest value represents
the best model as shown by green cells for some indexes. For other indexes, the highest value represents
the best model as shown by red cells.

Verification by Taylor diagram [44] is illustrated in Figures 2 and 3. Taylor diagrams provide a
way of graphically summarizing how closely a pattern matches observations. The similarity between
two patterns is quantified in terms of their correlation, their centered root-mean-square difference
and the amplitude of their variations (represented by their standard deviations). These diagrams are
especially useful in evaluating multiple aspects of complex models or in gauging the relative skill of
many different models [45]. The position of each point appearing on the plot quantifies how closely
that model’s simulated precipitation pattern matches observations. The reason that each point in the
two-dimensional space of the Taylor diagram can represent three different statistics simultaneously
(the centered RMS difference, the correlation, and the standard deviation) is that these statistics are
related by the following formula:

E′2 = σ2
f + σ2

o − 2σf σoR (13)

where R is the correlation coefficient between the forecast and observation fields, E’ is the centered
RMS difference between the fields, and σ2

f and σ2
o are the variances of the forecast and observation

fields, respectively. Given a “forecast” field (f ) and a observation field (O), the formulas for calculating
the correlation coefficient (R), the centered RMS difference (E’), and the standard deviations of the
“forecast” field (σf ) and the observation field (σo) are given below:

R =

1
N ∑N

n=1

(
fn − f

)
(on − o)

σf σo
(14)



Climate 2017, 5, 48 8 of 17

E′2 =
1
N

N

∑
n=1

[(
fn − f

)
− (on − o)

]2
(15)

σ2
f =

1
N

N

∑
n=1

(
fn − f

)2
(16)

σ2
o =

1
N

N

∑
n=1

(on − o)2 (17)
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5. Results

Based on results of a, b, c and d indexes were shown in Tables 5 and 6 configuration NT cumulus,
MYJ pbl and WSM3 or Kessler microphysics have most correct forecast frequency. This result is
accepted by PC, TS, odds ratio, H, HSS, PSS, CSS, GSS and Q indexes. These models are shown with
c16-p2-m1 and c16-p2-m3 symbols. Also combination BMJ (cu = 2) cumulus, MRF pbl, WSM 3 and
Kessler microphysics schemes as shown with c2-p99-m1 and c2-p99-m3 models (cu = 2, pbl = 99,
mc = 1 and mc = 3) show good results. RMSE results represented in c2-p99-m1 and c2-p99-m3 appear
better than other models.

Looking at Table 6, it is apparent that for 5 km resolution, KF cumulus (cu = 1), MYJ (pb l = 2)
planetary boundary layer and Kessler (c1-p2-m1 model) gives good results in odds ratio, FAR, HSS,
PSS, CSS, GSS and Q. However, the best answer is achieved by models c16-p2-m1 and c16-p2-m3
(cu = 2, pbl = 99, mc = 1 and mc = 3). Also Models c2-p11-m1 and c2-p99-m1 show the lowest RMSE.

Model c2-p99-m1 had the best RMSE. It is 1.96 for 15 km resolution and 1.75 for 5 km resolution.
It indicates the absolute fit of the model to the data—how close the observed data points are to the
model’s predicted values. This model has the lowest standard deviation as shown in Figures 4 and 5.
81.86% of the simulated values are within +/−1 mm deviation from the interpolated values from
observation data.
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Table 5. Verification results for a resolution of 15 km.

No Models A B C D PC TS Odds Ratio B FAR H F HSS PSS CSS GSS Q RMSE

1 c1-p2-m1 920 621 351 717 0.63 0.49 3.026 1.21 0.4 0.72 0.46 0.26 0.26 0.27 0.15 0.5 8.07
2 c1-p2-m3 937 636 334 702 0.63 0.49 3.097 1.24 0.4 0.74 0.48 0.26 0.26 0.27 0.15 0.51 7.11
3 c1-p11-m1 882 588 389 750 0.63 0.47 2.892 1.16 0.4 0.69 0.44 0.25 0.25 0.26 0.15 0.49 7.56
4 c1-p11-m3 899 602 372 736 0.63 0.48 2.955 1.18 0.4 0.71 0.45 0.26 0.26 0.26 0.15 0.49 6.76
5 c1-p99-m1 815 512 456 826 0.63 0.46 2.883 1.04 0.39 0.64 0.38 0.26 0.26 0.26 0.15 0.49 5.95
6 c1-p99-m3 833 520 438 818 0.63 0.47 2.992 1.07 0.38 0.66 0.39 0.27 0.27 0.27 0.15 0.5 5.61
7 c2-p2-m1 892 584 379 754 0.63 0.48 3.039 1.16 0.4 0.7 0.44 0.26 0.27 0.27 0.15 0.51 3.23
8 c2-p2-m3 894 589 377 749 0.63 0.48 3.016 1.17 0.4 0.7 0.44 0.26 0.26 0.27 0.15 0.5 3.73
9 c2-p11-m1 875 561 396 777 0.63 0.48 3.06 1.13 0.39 0.69 0.42 0.27 0.27 0.27 0.16 0.51 2.88

10 c2-p11-m3 881 562 390 776 0.64 0.48 3.119 1.14 0.39 0.69 0.42 0.27 0.27 0.28 0.16 0.51 3.66
11 c2-p99-m1 815 485 456 853 0.64 0.46 3.143 1.02 0.37 0.64 0.36 0.28 0.28 0.28 0.16 0.52 1.96
12 c2-p99-m3 798 487 473 851 0.63 0.45 2.948 1.01 0.38 0.63 0.36 0.26 0.26 0.26 0.15 0.49 2.5
13 c10-p2-m1 925 604 346 734 0.64 0.49 3.249 1.2 0.4 0.73 0.45 0.28 0.28 0.29 0.16 0.53 7.11
14 c10-p2-m3 931 625 340 713 0.63 0.49 3.124 1.22 0.4 0.73 0.47 0.26 0.27 0.28 0.15 0.52 6.75
15 c10-p11-m1 890 583 381 755 0.63 0.48 3.025 1.16 0.4 0.7 0.44 0.26 0.27 0.27 0.15 0.5 6.76
16 c10-p11-m3 898 604 373 734 0.63 0.48 2.926 1.18 0.4 0.71 0.45 0.25 0.26 0.26 0.15 0.49 6.41
17 c10-p99-m1 804 513 467 825 0.62 0.45 2.769 1.04 0.39 0.63 0.38 0.25 0.25 0.25 0.14 0.47 5.16
18 c10-p99-m3 818 505 453 833 0.63 0.46 2.979 1.04 0.38 0.64 0.38 0.27 0.27 0.27 0.15 0.5 5.15
19 c16-p2-m1 973 631 298 707 0.64 0.51 3.658 1.26 0.39 0.77 0.47 0.29 0.29 0.31 0.17 0.57 5.19
20 c16-p2-m3 980 641 291 697 0.64 0.51 3.662 1.28 0.4 0.77 0.48 0.29 0.29 0.31 0.17 0.57 5.09
21 c16-p11-m1 951 627 320 711 0.64 0.5 3.37 1.24 0.4 0.75 0.47 0.28 0.28 0.29 0.16 0.54 5.02
22 c16-p11-m3 951 632 320 706 0.64 0.5 3.32 1.25 0.4 0.75 0.47 0.27 0.28 0.29 0.16 0.54 4.89
23 c16-p99-m1 931 610 340 728 0.64 0.5 3.268 1.21 0.4 0.73 0.46 0.28 0.28 0.29 0.16 0.53 4.39
24 c16-p99-m3 933 609 338 729 0.64 0.5 3.304 1.21 0.4 0.73 0.46 0.28 0.28 0.29 0.16 0.54 4.25
25 c11-p1-m1 887 576 384 762 0.63 0.48 3.056 1.15 0.39 0.7 0.43 0.27 0.27 0.27 0.15 0.51 6.47
26 c11-p1-m3 898 592 373 746 0.63 0.48 3.034 1.17 0.4 0.71 0.44 0.26 0.26 0.27 0.15 0.5 5.17
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Table 6. Verification results for resolution of 5 km.

No Models A B C D PC TS Odds Ratio B FAR H F HSS PSS CSS GSS Q RMSE

1 c1-p2-m1 5945 2779 4708 6100 0.617 0.443 2.772 0.819 0.319 0.558 0.313 0.241 0.245 0.246 0.137 0.470 5.87
2 c1-p2-m3 6099 3053 4554 5826 0.611 0.445 2.556 0.859 0.334 0.573 0.344 0.225 0.229 0.228 0.127 0.438 5.99
3 c1-p11-m1 5162 2513 5491 6366 0.590 0.392 2.381 0.720 0.327 0.485 0.283 0.196 0.202 0.209 0.109 0.409 5.34
4 c1-p11-m3 5519 2720 5134 6159 0.598 0.413 2.434 0.773 0.330 0.518 0.306 0.207 0.212 0.215 0.115 0.418 5.42
5 c1-p99-m1 3967 2029 6686 6850 0.554 0.313 2.003 0.563 0.338 0.372 0.229 0.138 0.144 0.168 0.074 0.334 4.02
6 c1-p99-m3 4312 2214 6341 6665 0.562 0.335 2.047 0.613 0.339 0.405 0.249 0.150 0.155 0.173 0.081 0.344 4.41
7 c2-p2-m1 5928 3005 4725 5874 0.604 0.434 2.452 0.839 0.336 0.556 0.338 0.215 0.218 0.218 0.120 0.421 2.34
8 c2-p2-m3 6102 3111 4551 5768 0.608 0.443 2.486 0.865 0.338 0.573 0.350 0.219 0.222 0.221 0.123 0.426 3
9 c2-p11-m1 5488 2731 5165 6148 0.596 0.410 2.392 0.772 0.332 0.515 0.308 0.203 0.208 0.211 0.113 0.410 2.21

10 c2-p11-m3 5578 2785 5075 6094 0.598 0.415 2.405 0.785 0.333 0.524 0.314 0.206 0.210 0.213 0.115 0.413 2.92
11 c2-p99-m1 4261 2079 6392 6800 0.566 0.335 2.180 0.595 0.328 0.400 0.234 0.159 0.166 0.188 0.087 0.371 1.75
12 c2-p99-m3 4540 2247 6113 6632 0.572 0.352 2.192 0.637 0.331 0.426 0.253 0.167 0.173 0.189 0.091 0.373 2.35
13 c10-p2-m1 5572 2636 5081 6243 0.605 0.419 2.597 0.770 0.321 0.523 0.297 0.221 0.226 0.230 0.124 0.444 5.88
14 c10-p2-m3 5977 2995 4676 5884 0.607 0.438 2.511 0.842 0.334 0.561 0.337 0.220 0.224 0.223 0.124 0.430 5.89
15 c10-p11-m1 5027 2422 5626 6457 0.588 0.384 2.382 0.699 0.325 0.472 0.273 0.193 0.199 0.209 0.107 0.409 5.06
16 c10-p11-m3 5415 2733 5238 6146 0.592 0.405 2.325 0.765 0.335 0.508 0.308 0.196 0.201 0.204 0.109 0.398 5.41
17 c10-p99-m1 3727 1957 6926 6922 0.545 0.296 1.903 0.534 0.344 0.350 0.220 0.124 0.129 0.156 0.066 0.311 3.63
18 c10-p99-m3 4151 2188 6502 6691 0.555 0.323 1.952 0.595 0.345 0.390 0.246 0.138 0.143 0.162 0.074 0.323 4.31
19 c16-p2-m1 6869 3664 3784 5215 0.619 0.480 2.584 0.989 0.348 0.645 0.413 0.232 0.232 0.232 0.131 0.442 4.4
20 c16-p2-m3 6852 3656 3801 5223 0.618 0.479 2.575 0.986 0.348 0.643 0.412 0.231 0.231 0.231 0.131 0.441 4.34
21 c16-p11-m1 6505 3413 4148 5466 0.613 0.462 2.512 0.931 0.344 0.611 0.384 0.225 0.226 0.224 0.127 0.430 4.33
22 c16-p11-m3 6485 3359 4168 5520 0.615 0.463 2.557 0.924 0.341 0.609 0.378 0.229 0.230 0.229 0.129 0.438 4.27
23 c16-p99-m1 5922 3257 4731 5622 0.591 0.426 2.161 0.862 0.355 0.556 0.367 0.187 0.189 0.188 0.103 0.367 3.91
24 c16-p99-m3 5918 3242 4735 5637 0.592 0.426 2.173 0.860 0.354 0.556 0.365 0.188 0.190 0.190 0.104 0.370 3.8
25 c11-p1-m1 5292 2658 5361 6221 0.589 0.398 2.310 0.746 0.334 0.497 0.299 0.193 0.197 0.203 0.107 0.396 4.95
26 c11-p1-m3 5683 2929 4970 5950 0.596 0.418 2.323 0.808 0.340 0.533 0.330 0.200 0.204 0.205 0.111 0.398 4.2
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PC values indicating that more than 62% of all forecasts were correct in models c16-p2-m1 and
c16-p2-m3. B index indicates forecast with these models have a slight tendency to under forecasting in
15 km resolution, while the best choosing model according this index in 5 km resolution is c2-p99-m1
with slight over forecasting of rain frequency. H index value show that roughly 3/4 of the observed
rain events were correctly predicted with c16-p2-m1 and c16-p2-m3 models in the both resolutions.
FAR index indicating that in roughly 1/3 of the forecast rain events, rain was not observed with
c2-p99-m1 and c2-p99-m3. F index representing that for 36% of the observed “no rain” events the
forecasts were incorrect with c2-p99-m1 and c2-p99-m3 models in 15 resolution and it is 22% with
c10-p99-m1 model in 5 resolution. TS index value in c16-p2-m1 and c16-p2-m3 models meaning that
approximately half of the “rain” events (observed and/or predicted) were correctly forecast. The GSS
index is often used in the verification of rainfall in NWP models because its “equitability” allows scores
to be compared more fairly across different regimes. It does not distinguish the source of forecast error.
GSS in models c16-p2-m1, c16-p2-m1 and c1-p2-m1 have best results and gives a lower score than TS.
PSS score may be more useful for more frequent events. Can be expressed in a form similar to the
GSS [46]. Range of values are between −1 and 1. Zero indicates no skill. Perfect score is one. The best
model according this index is c16-p2-m1.

According Figure 2 in 15 km resolution, Models with number 25 and 26 (c11-p1-m1 and
c11-p1-m3) show better correlation than other models. However, models 11 and 12 (c2-p99-m1
and c2-p99-m3) show correlation similar to those of models 25 and 26, and better result in RMSE and
Standard deviations.

Taylor diagram in Figure 3 shows that models 11 and 12 (c2-p99-m1 and c2-p99-m3) Are more
suitable than other models in the 5 km resolution.

To summarize the results of verifications indexes made here, the scalar quantity, the skill scores of
contingency table (2 × 2), the RMSE and the Taylor diagrams are summarized in the Tables 7 and 8.
In each verification method, two of the best models were identified. Four of the best models are also
identified in Taylor diagram maximum. The best models are scored 1 in each verification method and
the others are scored 0.

For resolution 15 km: c16-p2-m1, c16-p2-m3 models have the highest total scores (11 points).
C2-p99-m1 and c2-p99-m3 models are the runner ups (7 points).

For resolution 5 km: c16-p2-m1 (with 9 points), c1-p2-m1 (with 7 points) and c16-p2-m3 (with
6 points) are the optimum models. The model c2-p99-m1 has the best rating from RMSE and
Taylor diagram.

Finally, the results were checked by eyeball verification to identify the best model amongst the
models selected by statistical methods. The output of these models was compared with observations
obtained by interpolation with kriging in two resolutions (5 km & 15 km). Figures 4 and 5 display the
result of models and observation in four events. One of the oldest and best verification methods is the
good old fashioned visual, or “eyeball”, method. Comparison the results, show that heavy rain in large
area Conformity with the models, except of event on date of 7 November 2010. For example, Models
C16-P2-M3 and C16-P2-M1 were simulated heavy rainfall in the upper right of area in event date 22
September 2013 in Figure 4. There is a clear difference in rainfall amount in the north central region
between the c16 models and c2 models at 15 km resolution. It is shown c16 models are closer than c2
models to observations. Also, Figure 4, especially in event 26 August 2015, are shown that precipitation
are simulated better by c16 models in the south central. Finally, comparing the model output images
with map observations leads to a final decision on the best model. According to Figures 4 and 5,
models c16-p2-m1 and c16-p2-m3 show a very close similarity to the observations in both 5 and 15 km
resolutions. They have used newer Tiedtke cumulus, Mellor-Yamada-Janjic PBL, WSM3 and Kessler
microphysical schemes.
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Table 7. Scoring the best results for verification methods 15 km resolution.

No Models A B C D PC TS Odds Ratio B FAR H F HSS PSS CSS GSS Q RMSE Taylor Diagram Total Score

1 c1-p2-m1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 c1-p2-m3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 c1-p11-m1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 c1-p11-m3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 c1-p99-m1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 c1-p99-m3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 c2-p2-m1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 c2-p2-m3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 c2-p11-m1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 c2-p11-m3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 c2-p99-m1 0 1 0 1 0 0 0 1 1 0 1 0 0 0 0 0 1 1 7
12 c2-p99-m3 0 1 0 1 0 0 0 1 1 0 1 0 0 0 0 0 1 1 7
13 c10-p2-m1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 c10-p2-m3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 c10-p11-m1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 c10-p11-m3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 c10-p99-m1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
18 c10-p99-m3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
19 c16-p2-m1 1 0 1 0 1 1 1 0 0 1 0 1 1 1 1 1 0 0 11
20 c16-p2-m3 1 0 1 0 1 1 1 0 0 1 0 1 1 1 1 1 0 0 11
21 c16-p11-m1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 c16-p11-m3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 c16-p99-m1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 c16-p99-m3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 c11-p1-m1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
26 c11-p1-m3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1



Climate 2017, 5, 48 14 of 17

Table 8. Scoring the best results for verification methods 5 km resolution.

No Models A B C D PC TS Odds Ratio B FAR H F HSS PSS CSS GSS Q RMSE Taylor Diagram Total Score

1 c1-p2-m1 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 1 0 0 7
2 c1-p2-m3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 c1-p11-m1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 c1-p11-m3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 c1-p99-m1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 3
6 c1-p99-m3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 c2-p2-m1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 c2-p2-m3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 c2-p11-m1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
10 c2-p11-m3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 c2-p99-m1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2
12 c2-p99-m3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 c10-p2-m1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 3
14 c10-p2-m3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 c10-p11-m1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 c10-p11-m3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 c10-p99-m1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 3
18 c10-p99-m3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 c16-p2-m1 1 0 1 0 1 1 0 1 0 1 0 1 1 1 1 0 0 0 9
20 c16-p2-m3 1 0 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 6
21 c16-p11-m1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 c16-p11-m3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 c16-p99-m1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 c16-p99-m3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 c11-p1-m1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
26 c11-p1-m3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
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Since there are only 87 actual data points, the interpolated grid points are not all statistically
independent of each other as there must be a spatial correlation between the interpolated points that
is related to the average spacing of the original stations. It is suggested that in additional studies,
radar data or more events can be used to more accurately control the models, then the comparison
would be improved if the simulation data are interpolated to the station positions.

6. Conclusions

Most rainfalls in the Northwest of Iran in summer season are convective, with heavy rainfall
occurring in some smaller areas. The results of verification by all of the methods clearly shows that
NWP models cannot accurately predict this type of precipitation.

On the other hand, the result in Tables 4 and 5 indicate that cumulus schemes are the most
sensitive. Microphysical schemes are the least sensitive. This is also illustrated in the Taylor diagrams,
in Figures 2 and 3. In the Tayor diagrams, the models with the same cumulus and different PBL and
microphysics show very similar outcomes. Comparison of 15-km resolution simulation with 5 km
resolution simulation does not show obvious advantages, according to the verification score.

Configuration with the newer Tiedtke cumulus, Mellor-Yamada-Janjic PBL, WSM3 and Kessler
microphysics schemes demonstrate the best results in both resolutions (5 and 15 km). There is little
difference in the results between WSM3 and Kessler microphysics schemes. However, the results of
WSM3 microphysics scheme are better than Kessler microphysical scheme.

No single configuration of the multi-physics performed best for all cases. In the first 24 h forecast
of these 26 configurations, it has been observed, based on the output image of models and statistical
methods, that convective rainfall in the NWI could not be simulated with high accuracy using WRF
model in summer. This conclusion is based on statistical indexes and Eyeball verifications. Therefore,
accuracy in the first 24 h forecast with the other methods needs to be improved. A method such as
extrapolation of observation data using satellite and radar data can be used to improve forecast in first
24 h.
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