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Abstract: Wildfires are important natural drivers of forest stands dynamics, strongly affecting their
natural regeneration and providing important ecosystem services. This paper presents a comprehen-
sive analysis of spatiotemporal burnt area (BA) patterns in the Middle Volga region of the Russian
Federation from 2000 to 2022, using remote sensing time series data and considering the influence
of climatic factors on forest fires. To assess the temporal trends, the Mann–Kendall nonparametric
statistical test and Theil–Sen’s slope estimator were applied using the LandTrendr algorithm on the
Google Earth Platform (GEE). The accuracy assessment revealed a high overall accuracy (>84%) and
F-score value (>82%) for forest burnt area detection, evaluated against 581 reference test sites. The
results indicate that fire occurrences in the region were predominantly irregular, with the highest
frequency recorded as 7.3 over the 22-year period. The total forest BA was estimated to be around
280 thousand hectares, accounting for 1.7% of the land surface area or 4.0% of the total forested area
in the Middle Volga region. Coniferous forest stands were found to be the most fire-prone ecosystems,
contributing to 59.0% of the total BA, while deciduous stands accounted for 25.1%. Insignificant fire
occurrences were observed in young forests and shrub lands. On a seasonal scale, temperature was
found to have a greater impact on BA compared with precipitation and wind speed.

Keywords: wildfires; forest; climatic factors; monitoring; fire recurrence; remote sensing; machine
learning; Landsat; time series; trend analyses

1. Introduction

In recent decades, the incidence of wildfires has remarkably increased in many parts
of the world [1–4]. The frequency of large wildfires in the Russian Federation, for instance,
has nearly doubled from 1991 to 2020 compared with the average statistics from 1960 to
1990, leading to a threefold increase in the area of forest burnt [5]. Similar trends have been
observed in the USA and Europe, where wildfire disturbances have steadily increased over
the past few decades [6–8]. This upward trend is expected to continue in the future due to
human-caused climate change, which will have severe consequences for the environment
and economy [9–11].

Wildfire is an important natural disturbance factor shaping global forest landscapes [12].
Small-scale and medium-sized wildfires are essential ecosystem processes that burn out
ground-level fuels as such leaf litter and fallen branches [13], shape forest structure [14–17],
impact species composition [18–20], and facilitate forest regrowth and regeneration at
the stand level [21–23]. Controlled burning, also known as prescribed burning, is widely
recognised as an effective approach for restoration and forest management [24,25].
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On the other hand, large-scale wildfires pose a serious threat, destroying the ecological
balance of terrestrial ecosystems [26,27], leading to the loss of bioresources [28–30], and
causing extensive damage to both human lives and property [31,32]. These fires have a
detrimental impact on the resilience of ecosystems to climate change, resulting in a loss
of habitats and biodiversity, and a reduction in forest value and productivity, thereby
endangering human life [33]. Additionally, wildfires can lead to a transition from conifer-
dominated forests to deciduous-dominated or mixed forests, and in some cases, even non-
forest ecosystems [34]. In this context, it is crucial to comprehensively monitor the extent
of BA to assess the trends and patterns of forest fire occurrences, identify the underlying
drivers, and anticipate future fire occurrences and patterns. Understanding these processes
is essential for preserving ecosystems affected by wildfires, estimating post-fire vegetation
recovery, and evaluating the effectiveness of different forest management activities [35,36].
Furthermore, it can provide valuable insights for developing targeted climate adaptation
strategies and approaches specific to wildfires [37].

Remotely sensed (RS) data offer powerful tools for monitoring post-fire forest patterns,
providing quantitative details and insights into post-fire risk mitigation, and facilitating the
analysis of historical fire recovery dynamics on multiple spatial and temporal scales [38].
Several studies can be mentioned that have utilised RS to estimate the spatial and temporal
dynamics of forest fire patterns on a regional scale over several decades [39–42]. RS and
numerous algorithms have been applied to assess three temporal fire effect stages: pre-fire
conditions, active fire characteristics, and post-fire ecosystem responses [43–45].

The RS of forest BA mapping is still an active research topic employing advanced
techniques that integrate geo-statistics and machine learning methods [38]. Many studies
of post-fire vegetation responses are based on the discrimination of spectral bands and
vegetation indices (mostly NDVI, dNBR, and EVI) using MODIS, Landsat, SPOT, and Sen-
tinel multitemporal imagery in different regions and forest ecosystems worldwide [46,47].
Another important research direction is the classification of forest succession patterns
after wildfires, which can be used to predict the dynamics of future forest cover [48–51].
However, such studies are generally lacking for the territory of the Russian Federation.

Several studies have investigated the dynamics of forest fire behaviour and burnt
areas in the different regions of the Russian Federation [13,52–56]. These studies have
revealed differences in the sensitivity of forest fire regimes to climate change and fire
return interval (FRI) variability across the territory of the Russian Federation. In central
Siberia, for example, the FRI in pine ecosystems was estimated to be about 50 years, with
low severity and a relatively rapid recovery of litter after a fire [57]. In the southern
Siberia ecotone, which features vegetation from both taiga and steppe, the FRI ranges
from 25 to 50 years [58,59]. The fire cycles (FC) in Karelia of the North-West Russian
Federation increased from 1630 to 1920 (FC = 46 years) and then decreased from 1930
to 2000 (FC = 283 years) [60]. Kukavskaya et al. [16] studied forest disturbances from
1996 to 2015 in Zabaikalsky Krai of the Russian Federation using satellite data and official
national fire statistics. Their results showed that about 13% of the total forest area in the
region (dominated by Scots pine) experienced multiple burnings during the estimated
period. Furthermore, an analysis of Landsat long-term series from 1984 to 2020 revealed
that fires burned over 38 million ha of the middle Amur lowland’s territory in the Russian
Federation, with a high intensity (up to 36) of the FRI [61].

The Middle Volga region, located within the Volga Federal District, is known for
its dense forest cover, making it one of the most heavily forested areas in the European
part of the Russian Federation (http://www.fedstat.ru, accessed on 12 February 2024).
These fires have various environmental impacts, such as loss and fragmentation of natural
habitats, disruption of the hydrological cycle, and negative effects on ecosystem functioning
and resilience [62,63]. A focused study on BA in the Republic Mari El was conducted as
part of the Northern Eurasia Land Cover Dynamics Analysis (NELDA) project (http:
//www.fsl.orst.edu/nelda/, accessed on 12 February 2024). The study revealed that
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approximately one-third (34,228 ha) of the forests that were burned in 2010 were located on
pine (Pinus sylvestris) plantations established after the 1972 wildfire [11].

Despite a number of the above-mentioned studies, the spatiotemporal distribution of
forest BA in the Volga region of the Russian Federation remains understudied. Therefore,
the objectives of this study were to estimate the spatial and temporal BA trend pattern from
2000 to 2022 in the Middle Volga region using remote sensing time series, while considering
the impact of climatic factors. Specifically, the research aimed to (1) characterise the
dynamics of forest fires in the investigated area; (2) estimate trends in the temporal patterns
of forest BA; (3) analyse the effect of climatic factors on forest fires and the distribution
of burnt area. The trend analysis of the Landsat time series products was performed
using the advanced Google Earth Engine (GEE) cloud-based platform, applying JavaScript
programming through its API (application programming interface).

2. Materials and Methods
2.1. Study Area

The study area encompasses the Middle Volga region of the Russian Federation,
including Nizhegorodskaya and Kirovskaya oblasts, as well as the Republics Mari El,
Tatarstan, and Chuvashia (ranging between 54.89556 N and 58.08659 N in latitude and
42.47314 E and 51.5 4785 E in longitude; Figure 1). This region is located in the central part of
the East European Plain and is of particular interest due to its extensive natural forests that
are reported to be a substantial terrestrial carbon sink [64]. According to the national forest
inventory system (https://docs.cntd.ru/document/902268260?marker=6540IN, accessed
on 12 February 2024), the northern part of the study area falls within the South Taiga region
of the European part of the Russian Federation, while the central and southern parts are
classified as coniferous–deciduous (mixed) forests of the European part (Figure 1).
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The Middle Volga region exhibits a diverse relief, ranging from hilly areas to plains,
with elevations ranging from 45 to 316 m above sea level. The transition from lower to
higher parts is quite gradual. Along the Volga River, there is a central lowland characterised
by wide belts of lakes, marshes, and small rivers. The high right bank rises above the valley
of the river in the form of a steep ledge with deep ravines [64].

The region’s climate is classified as moderate-continental, with relatively stable weather
during winter and summer, but significant changes in spring and autumn. The average
annual precipitation varies from 450 to 550 mm, with 250–300 mm falling during the vege-
tation period (spring and summer). Mean annual temperatures vary from +2.2 ◦C in the
north-eastern part of the region to +3.1 ◦C in the south-western part [65].

The area is dominated by natural coniferous and mixed broadleaved forests, mainly
composed of pine (Pinus sylvestris L.), birch (Betula pendula Roth.), spruce (Picea abies
Karst.), lime (Tilia cordata), and aspen (Populus tremula L.). While pine stands dominate
the landscape, particularly in the Republic Mari El, the regeneration of birch and aspen
species following wildfires is common in the study area. Environmental disturbances such
as windstorms, insect outbreaks, and wildfires have become more frequent due to climate
change [66]. The significant proportion of broadleaved trees throughout the Middle Volga
region can be attributed to the increase in birch trees following forest fires in 1921, 1972,
and 2010 [11].

2.2. Data and Method
2.2.1. Remote Sensing

The main approach employed to assess forest BA between 2000 and 2022 involved the
processing of Landsat satellite data. A yearly time series of cloud-free surface reflectance
medoid data from Landsat (TM, ETM+, and OLI) was extracted for the study area and
processed using the JavaScript code editor in the Google Earth Engine (GEE) to generate
maps of forest cover and burnt areas. GEE operates in the logic of “Big Data” processing
without the need for access to a supercomputer [67]. The platform provides access to a
multi-petabyte database of remotely sensed imagery, climate weather data, and geophysical
datasets, along with a range of services such as web applications, machine learning tools,
and geospatial data visualisation [68]. Previous studies have demonstrated the effectiveness
of GEE resources and algorithms in estimating and monitoring forest disturbances, burnt
areas, and post-fire vegetation recovery across vast regions [22,45,69]. In particular, the
MODIS BA global products [70] available in GEE can be particularly valuable for large-scale
analyses and comparison with climate data.

To ensure the accuracy of the analyses, clouds and cloud shadows were automatically
detected and removed from Landsat images with the C Function of Mask (CFMASK)
algorithm [71]. The selected images were geometrically and atmospherically corrected
and converted to surface reflectance using the Landsat Ecosystem Disturbance Adaptive
Processing System (LEDAPS) algorithm for TM and ETM+ [72], and the Landsat 8 Surface
Reflectance Code (LaSRC) by the USGS for OLI [73]. Since Landsat 8 OLI has a higher
12-bit radiometric resolution compared with the previous ETM+ sensor, the ordinary least
squares regression reported in Roy et al. [74] was used to harmonise linear differences
between the spectral values of both instruments to normalise the reflectance. To minimise
the effect of phenological changes during the spring–summer period, in total, 2393 images
covering 6 Landsat scenes (Path 171, 172, and 174; Row 20, 21; Figure 2), were acquired
during the forest fire season, which spans from 1 May to 30 September, throughout the
entire study period. The time span corresponds to the main dry and wildfire seasons in the
Middle Volga region.
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Supplementary Materials from the Aerial Forest Protection Service of Russia (Aviale-
sookhrana) (https://gfmc.online/emergency/avialesookhrana.html, accessed on 12 Febru-
ary 2024) was utilised to gather additional data on forest fires in the Middle Volga region.
The environmental management and ecology agencies of the republics and oblasts in the
region also provided valuable information on forest fire occurrences. To distinguish for-
est fires from other types of disturbances such as logging activities, windfalls, diseases,
and pests, MODIS data were also employed. The BA (burnt area) monthly Global 500 m
products from MODIS (MCD64A1) were accessed from the FIRMS (Fire Information for
Resource Management System) (https://firms.modaps.eosdis.nasa.gov, accessed on 12
February 2024). These data, along with the coordinates and dates of forest fire events
between 2000 and 2022, were extracted for the study area. In order to separate the area
affected by forest fires from non-fire events, the extracted forest fire data and MODIS data
were overlaid and compared with potential disturbance points. This process assisted in
accurately identifying the areas impacted by forest fires. Figure 3 illustrates the overall
methodology and workflow used in this research.
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2.2.2. Temperature, Precipitation, and Wind Speed

The climate data for the Middle Volga region from 2000 to 2022 (May to Septem-
ber) were acquired from a number of gridded datasets (Table 1). We used the MOD11A1

https://gfmc.online/emergency/avialesookhrana.html
https://firms.modaps.eosdis.nasa.gov
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and MOD11A2 archive datasets for the estimation of the average monthly land surface
temperature (LST) values in Celsius (◦C) at a 1 km spatial resolution and with an 8-day
composite (https://ladsweb.modaps.eosdis.nasa.gov/archive/allData, accessed on 12
February 2024). We also used the Global Precipitation Measurement (GPM) IMERG (Inte-
grated Multi-satellitE Retrievals for GPM) Final Precipitation L3 Half Hourly 0.1◦ × 0.1◦

V06 (GPM_3IMERGHH) product to determine the gridded monthly average precipitation
(Pr, mm/month) values in the studied region (https://giovanni.gsfc.nasa.gov/giovanni/,
accessed on 12 February 2024). To determine the monthly average surface wind speed
(Ws, m/s) in the research area, we obtained data from the MERRA-2 collection (Modern-
Era Retrospective Analysis for Research and Applications version 2) produced by NASA
Global Modelling and Assimilation Office (GMAO) (https://disc.gsfc.nasa.gov/datasets/
M2TMNXFLX_5.12.4/summary, accessed on 12 February 2024).

Table 1. Data employed for burnt area estimation and climatic factor monitoring in the Middle Volga
region from May to September 2000–2022.

No Purpose Data, Product ID Scale Source

1
BA Mapping

Landsat time series 30 m https://earthengine.google.com/
(accessed on 12 February 2024)2 MODIS MCD64A1

500 m
3 FIRMS https://firms.modaps.eosdis.nasa.gov

(accessed on 12 February 2024)

4 Land surface temperature,
Maximum temperature

8-day composite
MOD11A1 MOD11A2 1 km https://ladsweb.modaps.eosdis.nasa.gov/

archive/allData (accessed on 12 February 2024)

5 Precipitation GPM_3IMERGHH 0.1◦ × 0.1◦ https://giovanni.gsfc.nasa.gov/giovanni/
(accessed on 12 February 2024)

6 Wind speed MERRA-2 GMAO 0.5◦ × 0.625◦
https://disc.gsfc.nasa.gov/datasets/M2

TMNXFLX_5.12.4/summary
(accessed on 12 February 2024)

7 Validation, accuracy
assessment

Google Earth
Yandex Maps 10–30 m

www.googleearth.com
(accessed on 12 February 2024)

https://yandex.ru/maps
(accessed on 12 February 2024)

8 Field plots of Volgatech 90 × 90 m

We also created a regular grid with a cell size of 1 × 1 km covering the BA in the Middle
Volga region for each of the estimated years, 2000–2022. For each cell, we determined the
values of the climatic parameters (LST, precipitation, and wind speed) at the centre of the
cell and estimated the area of burnt forest. Correlation analyses and multivariate linear
regression were then applied for each cell’s centre to assess the degree of influence of
BA and the climatic parameters. We considered all possible temporal aggregations of the
climate variables throughout the study period. The correlation and regression coefficients
calculated for each grid cell were analysed at both monthly and annual spatial scales. To
evaluate the performance of the best-fit regression model, we assessed the estimated BA
against the climatic factors (either jointly or separately) using metrics such as root mean
square error (RMSE), mean square error (MSE), and coefficient of determination (R2).

2.2.3. LandTrendr Algorithm

In order to trace the dynamics of burnt forest areas, the prepared stacks of Landsat
images were analysed using the LandTrendr (LT) algorithm in the GEE platform [75]. The
LT algorithm, implemented in JavaScript, processes the time series of individual values for
each Landsat image pixel in each year. It employs a temporal segmentation algorithm and a
fitting approach to ensure a consistent time series and minimise sensor influences. For our
analyses, we processed the stack of Landsat images using a medoid selection process [76],
which is a multi-dimensional analogue of the median. We used the buildSRcollection

https://ladsweb.modaps.eosdis.nasa.gov/archive/allData
https://giovanni.gsfc.nasa.gov/giovanni/
https://disc.gsfc.nasa.gov/datasets/M2TMNXFLX_5.12.4/summary
https://disc.gsfc.nasa.gov/datasets/M2TMNXFLX_5.12.4/summary
https://earthengine.google.com/
https://firms.modaps.eosdis.nasa.gov
https://ladsweb.modaps.eosdis.nasa.gov/archive/allData
https://ladsweb.modaps.eosdis.nasa.gov/archive/allData
https://giovanni.gsfc.nasa.gov/giovanni/
https://disc.gsfc.nasa.gov/datasets/M2TMNXFLX_5.12.4/summary
https://disc.gsfc.nasa.gov/datasets/M2TMNXFLX_5.12.4/summary
www.googleearth.com
https://yandex.ru/maps
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code to select the medoid technique from Landsat TM/ETM+/OLI data and compared the
spectral values to the median spectral values of each pixel across all visible and infrared
bands in all acquired images. LT then selected the pixel with the minimum sum of squared
differences between observations and median spectral values, using Euclidean distance.
This reduced the data volume and mitigated atmospheric impact [77]. As a result, we
obtained an aggregated stack of Landsat images for a 22-year time series, with interpolated
spectral values and reduced year-to-year noise. To examine the relationship between forest
fires and other factors (LST, Pt, and Ws), we converted the selected pixels of the time series
into a normalised burn ratio (NBR), which is the most widely used index for mapping
burned areas [78]. Additionally, we applied a spatial filter with a minimum burned area
unit of 0.5 ha and excluded isolated and border pixels using neighbourhood filters to
improve the spatial consistency of burnt area mapping.

When applying LT-GEE with the NBR, we employed the following parameter values:
“max-segments = 3”, “p-value = 0.05”, “Recovery threshold = 0.25”, and “Vertex Count
Overshoot = 3” [75]. To generate the BA mosaic, we filtered Landsat imagery dates to
include only the years 2000–2022 and the season from May to September. BAs were
identified if at least 3 segments were detected during the entire study period and there was
a noticeable decrease in the NBR index value within a one-year period.

To estimate the monotonic trend behaviour (p < 0.05) of the factors LST, Pr, and Ws
based on the Landsat time series, we employed the GEE kendallsCorrelation algorithm
to conduct the Mann–Kendall (MK) nonparametric statistical test (TAU-b rank correla-
tion). This test assumes that observations within a time series are independent [79,80]. A
positive value from this test shows an upward trend, while a negative value indicates a
downward trend. The rate of change and magnitude of the trends in estimated factors
were evaluated in GEE using Theil–Sen’s slope estimator, a non-parametric technique for
assessing the median slope [81,82]. These tests have been recommended by the World Me-
teorological Organization for climate studies and have proven successful in trend analyses
of environmental data [83–85].

2.2.4. Reference Data and Statistical Validation

In order to validate the forest BA mapping and trend analysis, we randomly identified
546 forest BA samples from 2000 to 2022 on the basis of high-resolution satellite imagery
from publicly available Google Earth and Yandex Maps platforms for the investigated
territory using the visual interpretation method [86]. In addition, field campaigns were
carried out by the Volgatech team during the summer period (June–August) of 2011, 2012,
2014, 2017, 2019, 2020, and 2022 in the BA of the Middle Volga region. Sample plots,
measuring at least 90 by 90 m, were chosen to represent a range of stand age groups, tree
species, and typical structures found in the region. Measurements such as diameter at
breast height (DBH) at 1.3 m, tree height, char height, and crown length were collected
for each tree using a laser clinometer and metre tape to assess tree mortality (standing or
fallen). The sample plots, totalling 323, were randomly distributed primarily in conifer and
broadleaved mixed stands within the burnt areas of the investigated territory. Furthermore,
for the estimation of woody detritus on the sample plots, stumps and logs with a diameter
exceeding 10 cm and a length of more than 1 m in length were measured [13]. These sample
plots were representative of the overall characteristics of the investigated area, including
forest type, altitude, and climate.

The gathered set of sample plots served as input data for the confusion matrices and
served to estimate the accuracy of burnt area detection derived from the Landsat images.
Only two classes (burnt area and non-burnt area) were considered in the confusion matrix.
The accuracy assessment of the BA maps was based on comparing the proportions for each
pixel detected as burnt or unburnt in the Landsat images with the prepared reference data.
Four accuracy metrics derived from confusion matrices were calculated to validate the BA
detection: the user’s accuracy (UA), the commission error (CE), the producer’s accuracy
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(PA), and the omission error (OE) [87]. Additionally, we computed the overall accuracy
(OA) and F-score, which provide an estimate of the test’s accuracy.

3. Results
3.1. Accuracy Assessment

The Landsat time series imagery from 2000 to 2022 was utilised to analyse the spatial
distribution of burnt areas (BAs) in the Middle Volga region using the NBR LandTrendr
data. Figure 4 shows the spatial distribution of BAs in the region, while Table S1 (Supple-
mentary Materials) presents the error matrix derived from the reference set of samples.
To validate the statistical accuracy of BA mapping, a visual interpretation of 869 test sites
(equivalent to 7901 pixels) was conducted to evaluate the user’s accuracy (UA), producer’s
accuracy (PA), overall accuracy, and F-score between the Landsat time series and the refer-
ence set of samples. The BA mapping demonstrated high accuracy, with an overall accuracy
of 84.5% over the 22-year period (Table S1 in the Supplementary Materials). Both the user’s
and producer’s accuracies exceeded 80%, while the F-score value reached 82%. These
results indicate that the LandTrendr mapping analyses were consistently accurate and
reliable, making the final BA map suitable for subsequent analysis with climatic factors.
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3.2. Spatial and Temporal Distribution of BA in the Middle Volga

We observed that occurrence of BA is widespread throughout the study region, with
burnt areas predominantly spatially located in the western and central parts of the Middle
Volga forests. Over the course of the past 22 years, the total forest BA covered approximately
280 thousand ha, which accounts for 1.7% of the land surface area or 4.0% of the total
forested area (6881 mln. ha) in the studied territory of the Middle Volga region. We observed
significant inter-annual variations among the 318 identified BAs across the investigated
forest area, ranging from 0.075 to 244 thousand ha (Figure 4a). As can be seen from Figure 4,
there are BAs in all oblasts and republics of the region, while most of them are concentrated
in the forest cover of the Republic Mari El and Nizhegorodskaya oblast. The smallest
identified wildfire in the Middle Volga region affected a forest area of 0.5 ha, while the
largest identified BA covered 86.6 thousand ha in the Nizhegorodskaya oblast (Figure 5b).

Climate 2024, 12, x FOR PEER REVIEW 10 of 20 
 

 

 
Figure 5. NDVI of the forest cover in Nizhegorodskaya oblast on the Landsat 5 TM images: (a) Sep-
tember 2009; (b) October 2010 (after the wildfire). 

The largest forest BA observed on the investigated territory was 244.2 thousand ha, 
which occurred after the disastrous wildfires of 2010 (Figure 6a). This event had a signifi-
cant impact on the distribution of BAs during the study period. To analyse the spatial and 
temporal distribution of BAs during years with relatively few wildfires, some calculations 
and figures in the study were made without considering this anomalous year (Figure 6b–
d). 

Figure 5. NDVI of the forest cover in Nizhegorodskaya oblast on the Landsat 5 TM images: (a) Septem-
ber 2009; (b) October 2010 (after the wildfire).

The largest forest BA observed on the investigated territory was 244.2 thousand ha,
which occurred after the disastrous wildfires of 2010 (Figure 6a). This event had a significant
impact on the distribution of BAs during the study period. To analyse the spatial and
temporal distribution of BAs during years with relatively few wildfires, some calculations
and figures in the study were made without considering this anomalous year (Figure 6b–d).

The annual average BA in the region was 12.2 thousand ha. The overall polynomial
trend (R2 = 0.65) indicates that the averaged BA after the 2010 wildfires has been increasing
by 1.970 thousand ha/year (Figure 6b). The second and third largest forest BAs were
detected in 2002 and 2021–2022, with areas of about 5.1 thousand ha and 18.4 thousand
ha, respectively. Both of these peaks in BA followed a decade-long period of relatively
infrequent wildfires. This is particularly evident in the case of the 2021 forest fires, where
only 5.325 thousand ha (0.08% of the forested area) burned between 2010 and 2020. The
smallest BA of 76 ha was observed in this region in 2008.

The BA data analysis reveals that the majority of forest fires in the Middle Volga region
occurred during the summer dry season, specifically between June and August. During this
period, the average monthly precipitation was less than 50 mm, the average wind speed
was 5 m/s, and the average temperature was 26.4 ◦C. The largest forest BA, averaging
21.232 thousand ha, was observed in July (Figure 6c,d); it was 1.5 thousand ha when not
considering the abnormal wildfires in 2010. Throughout the vegetation season, the average
BA was 0.256 thousand ha in May, 2.575 thousand ha in June, and 0.656 thousand ha
in August.
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(e) Cumulative BA according to the forest classes.

The analysis also revealed that most wildfires occurred in coniferous and deciduous
forest stands, while young forests and shrub-dominated lands were less susceptible to fire
hazards. Coniferous forest stands, primarily consisting of middle-aged and mature pine
and spruce species, accounted for 59.0% (164.9 thousand ha) of the total BA (Figure 5e).
Deciduous stands, mainly composed of middle-aged and mature birch and poplar species,
accounted for 25.1% (70.2 thousand ha) of the BA. Mixed forest stands accounted for 9.6%
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(approximately 26.8 thousand ha) of the BA, while young forests, including plantations
and shrublands, accounted for 6.3% (17.7 thousand ha) (Figure 6e).

3.3. Fire Recurrence in the Middle Volga Region

The recurrence of wildfires in certain forested areas of the Middle Volga region has led
to significant disturbances. Between 2000 and 2022, approximately 279.524 thousand ha
(4%) of forests in the analysed region experienced at least one fire. The other 96% of the
forested area remain unburnt, but there were significant variations across the study area.
The Republic Mari El and Nizhegorodskaya oblast were particularly affected, with fires
occurring in 7.8% and 4.9% of their forested areas, respectively. The Chuvashia Republic
exhibited high forest fragmentation, resulting in a cumulative burnt area covering only 3.2%
of the forested area with low connectivity. Additionally, this region experienced minimal
fire recurrence, with most of the burnt area having no repeated fires over the 22-year period.

The analysis of forest fire frequency from 2000 to 2022 (see Figure 4) reveals that fire
occurrences in the region are predominantly irregular, with the highest wildfire frequency
recorded as 7.3 over the 22-year period. The maximum fire recurrence (three times) during
the study period was observed in a small area of 363 hectares, accounting for 0.1% of
the overall burnt area, in the forests of Nizhegorodskaya oblast (see Figure 4b). Only
8593 hectares (3%) of the burnt area experienced two fires within the same location over
the 22-year period (see Figure 4c,d), with these wildfires primarily occurring in the Mari El
and Nizhegorodskaya oblast. The analysis of burnt area occurrence within the research
area boundaries indicates that the highest fire activity mainly affected the territory of
coniferous–deciduous (mixed) forests (99.5%) in the European part of the Russian Feder-
ation. The South Taiga region experienced relatively fewer disturbances, with wildfires
mainly occurring in 2010 on a small area (0.5%) in the Kirov region of the Middle Volga
region. Most of the recurrent wildfires were observed in coniferous and deciduous forest
areas, while mixed stands showed fewer instances of repeated burnt areas.

3.4. Effect of Climatic Factors on BA in the Middle Volga Region
3.4.1. Spatiotemporal Trend Analyses

Based on the Mann–Kendall τ (tau) correlation coefficient and Theil–Sen’s slope (TSS)
analysis, the trend of the climatic parameters on a pixel scale was analysed for the forest
area during the vegetation season in the Middle Volga region over the period 2000–2022
(Table 2). Figure 7 shows the monotonic trends of tau and TSS in the Landsat time series
for the mean LST, Pr and Ws, highlighting areas with an increasing trend (in red) and a
decreasing trend (in blue).

Table 2. Trends of climatic factors in the Middle Volga region over the period 2000–2022 at a 95%
confidence level.

Parameter Trend Tau (τ) Theil–Sen’s Slope p-Value

Temperature Increasing 0.05 0.014 0.02

Precipitation Decreasing −0.29 −0.27 0.05

Wind Increasing 0.03 0.09 0.03

The values presented in Table 2 represent the average correlation of each pixel in
the time series. The eastern part of the investigated region, which experienced infre-
quent wildfire occurrences, shows the largest decreasing trend with a slope of −0.27 in Pr
(Figure 7b, Table 2). Conversely, the central and western parts of the region (Mari El and
Nizhny Novgorod), corresponding to the main forest BA, show increasing trends in LST.
This indicates a rise in temperature in these areas during the vegetation season. The impact
of precipitation (Pr) on BA is generally positive throughout the investigated territory, as
shown in Figure 7b. Increased precipitation, particularly in the eastern part of Mari El and
the western part of Tatarstan, leads to a reduction in forest fire occurrences. Furthermore,
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the magnitude of wind speed (Ws) is generally high in the eastern and central forested
parts of the region, while it is low in the west (Figure 7c). Overall, the analysis suggests
that the contribution of LST to BA in the Middle Volga region during the vegetation season
is more significant compared with that of Pr and Ws.
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3.4.2. Regression Analyses of Climate Data and BA

The correlation analyses results (Figure 8) indicated that climatic factors played a
relatively important role in the BA trend during the investigated period. Among the climatic
variables, temperature (LST) shows a stronger impact on BA compared with precipitation.
To further understand the relationship between climate and BA, a multivariable regression
model was developed, taking into account the monthly mean values of LST, wind speed
(Ws), and precipitation (Pr) averaged from May to September over the entire study period
(2000–2022). The best equation with a higher fit of combined climatic factors considered
(p-value < 0.05) was the one using the monthly mean of LST, Wt and Pr averaged over the
estimated period (May to September):

BA = −16.4 + 0.32 ∗ LST − 0.01 ∗ Pr + 2.2 ∗ Ws, R2 = 0.36

The model, with a fitted R2 statistic of 36%, indicates that the combined climatic factors
of LST, Ws, and Pr significantly influence the distribution of BA (Figure 8). The spatial
correlation between BA and Ws was particularly strong in the western and central parts of
the region during May and July (R2 = 0.48). In September, there was a positive correlation
between LST and BA (R2 = 0.58), while the effects of Pr and Ws were weak (<0.28) and
insignificant. Meanwhile, in July, both Pr and Ws were considered important variables.
The main driving climatic factors for BA were different during the vegetation season, and
therefore it is challenging to determine a single one as the main contributor to the forest
fires in the region.
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4. Discussion

This study provided a trend analysis of the spatial and temporal patterns of forest
burnt areas in the Middle Volga region of the Russian Federation from 2000 to 2022 using
Landsat time series images. We took advantage of the LandTrendr algorithm in the GEE
cloud computing environment to estimate the influence of the degree of climatic factors
(LST, Pt, and Ws) on the BA distribution and forest fire recurrence on a large spatiotemporal
scale. Our results confirmed the high potential of using the GEE platform to consistently
and cost-effectively estimate BA on large forest lands, since the platform provides easy
access to a large number of satellite data resources. The GEE also offers many useful ready-
made products, machine learning algorithms, and the possibility of simple programming
in a JavaScript environment [67,68].

To evaluate the accuracy of the produced maps, a confusion matrix and various indices
were employed, using reference data from publicly available platforms like Google Earth
and Yandex Maps. Ground sample plots were also randomly distributed throughout the
studied burnt areas. The inclusion of field survey data was crucial as it helped identify
small burnt areas that were not recognised from Landsat imagery alone. The overall
accuracy was higher than 84%, and the F-score value was 82%, which shows that the results
of the proposed algorithm were reliable for detecting burnt and unburnt forest areas in the
investigated region.
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During the study period of 2000–2022, our analysis revealed that approximately
280 thousand ha (4.0% of the total forested area) in the Middle Volga region was affected
by wildfires. Across this area, a significant proportion consisted of burnt coniferous stands,
accounting for 59% of the total burnt area. The distribution of burnt areas varied across
different republics and oblasts within the Middle Volga region, with the Republic of Mari
El and Nizhegorodskaya oblast experiencing the highest levels of fire activity.

The occurrence of wildfires in the forested areas was predominantly sporadic, with
the years 2002, 2010, and 2021 exhibiting the highest frequency of fire events (Figure 6a,b).
The South Taiga region, on the other hand, experienced relatively lower levels of wildfire
disturbance. Notably, around 3% of the burnt areas was affected by wildfires twice during
the 22-year period, primarily in coniferous plantation forests, particularly those dominated
by Scots pine. These dense young stands are particularly vulnerable to fire, as the lower
branches act as ladder fuels, facilitating the spread of fire from the ground to the tree
crowns [11]. While pine species are favoured for their natural ability to release seeds after a
wildfire and their suitability for industrial wood production, the regeneration of coniferous
stands in the Middle Volga region increases the risk of wildfires, posing a direct threat
to local communities and property. It is important to consider these factors in post-fire
management plans and take necessary measures to mitigate the danger of wildfires in
the region.

The significance of climatic factors in estimating burnt areas (BA) using satellite
imagery has been recognised in various regions worldwide [88,89]. Our study findings
indicate that Theil–Sen’s slope estimate and the Mann–Kendall tau test, applied in the long-
term Landsat trend analysis of climatic factors, serve as suitable indicators for predicting
the occurrence and spread of wildfires across the vast territory of the Middle Volga region.
Through LandTrendr and regression analyses, we observed a significant influence of
estimated climatic factors on wildfires (burnt areas) in the region, with a confidence level of
95%. Among the climatic factors, LST emerged as the most important, exhibiting a stronger
correlation with forest BA compared with the other two factors. During the spring–autumn
seasons, the central and western parts of the region (Republic Mari El and Nizhegorodskaya
oblast), characterised by coniferous and deciduous forest stands, experienced trends of
increasing LST.

The precipitation (Pr) factor is also important, following LST, in evaluating the spa-
tiotemporal distribution of BA in terms of the correlation coefficient and trend analyses
during the burning seasons (see Figures 7 and 8). Since the 21st century, there has been
a decreasing trend for precipitation in the majority of BA in the Middle Volga region.
The central and southwestern forest areas are more prone to drought compared with the
northwestern parts of the region. Therefore, if these climatic trends continue in the future,
high temperatures and low rainfall during the spring–summer season can easily lead to
wildfires. The wind speed (Ws) factor, which shows an increasing spatiotemporal trend
throughout the forest area, is also positively correlated with BA. The significant positive
correlations between Ws and BA mainly occur in May and July. Strong winds and higher
LST in spring and summer also reduce the moisture content of the forest floor combustibles,
thereby increasing the probability and duration of fire outbreaks. Ultimately, these three
climatic factors (LST, Pr, and Ws) are crucial in understanding the impacts of climate change
on the increased fire activity observed over the past two decades.

Although important results were obtained in this study, further research is needed to
improve and broaden the scope of the analyses carried out. Besides climatic factors, forest
BA can also be influenced by various other driving factors, including topography, forest
stand structure, undergrowth composition, soil moisture, forest litter, and socio-economic
data specific to each satellite image. However, due to the lack of reliable ground truth
data in remote forest areas of the Middle Volga region and the limited temporal, spectral,
and spatial resolution capabilities of Landsat imagery [90], some smaller BA values were
not detected in the estimated time series data. One potential solution to address these
limitations could be the combination of Landsat and Sentinel imagery [91–93], the utilisation
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of more sensitive spectral indices, and supplementation with field survey data. Future
research in the field of BA should also aim to improve attribution algorithms and explore
alternative climate change scenarios for improved forest management policies, land use
practices, and resilience strategies that explicitly consider the prevention or adaptation of
forest ecosystems to the changing environment.

We suggest that our methodology can be applied to map forest BA and estimate trends
in climatic factors in other coniferous–deciduous forest regions of the Russian Federation,
as it has demonstrated high detection accuracy in the diverse and extensive landscapes of
the Middle Volga region. The generated maps, regression models, and trend analysis of
climatic factors, at a spatial resolution relevant to forest management and monitoring, can
be valuable tools for local authorities and decision makers in strategic planning to prevent
or mitigate the risk of wildfires. Priority should be given to regions prone to widespread
forest fires, such as the Republic Mari El and Nizhegorodskaya oblast, when implementing
fire protection activities.

5. Conclusions

This research demonstrates the practicality of using the LandTrendr algorithm in the
Google Earth Engine platform to analyse long-term trends in pre-processed NBR Landsat
time series data. The study focuses on detecting and mapping the temporal dynamics of
forest burnt areas in the Middle Volga region of the Russian Federation. By analysing the
interaction between forest burnt areas and climatic factors, the study provides valuable
insights into the characteristics and patterns of burnt areas from 2000 to 2022 on both
regional and seasonal scales. This research achieves a high overall accuracy (>84.0%) using
deep learning algorithms, indicating our methodology’s cost-effectiveness and success
in analysing large-scale spatiotemporal remote sensing data of wildfire-affected forests.
This study reveals an increasing trend for forest BA annually across the Middle Volga
region, with the highest concentration found in the central and western parts, particularly
in coniferous ecosystems (59%). This study also identifies three climatic factors, namely
LST (land surface temperature), Ws (wind speed), and Pr (precipitation), as indicators
for projecting the occurrence and dynamics of wildfires during the late spring–summer
period. These findings have significant implications for environmental studies, including
carbon forecasting in forest ecosystems, vegetation regeneration, and climate-smart forestry.
Furthermore, this research can inform management decisions by providing cost-effective
strategies for preventing forest fires under changing climatic conditions.
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