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Abstract: A new clothing thermal resistance scheme is presented and verified for the Carpathian
region and for the time period 1971–2000. The scheme is as simple as possible by connecting operative
temperature to air temperature, which allows for it to only use air temperature and wind speed
data as meteorological inputs. Another strength of the scheme is that a walking person’s metabolic
heat flux density is also simply simulated without having to regard any thermoregulation processes.
Human thermal load in the above region is characterised by a representative adult Hungarian male
and female with a body mass index of 23–27 kgm−2. Our most important findings are as follows:
(1) human thermal load in the Carpathian region is relief dependent; (2) the scheme cannot be applied
in the lowland areas of the region in the month of July since the energy balance is not met; (3) in the
same areas but during the course of the year, clothing thermal resistance values are between 0.4 and
1 clo; (4) clothing thermal resistance can reach 1–1.2 clo in the mountains in the month of July, but
during the course of the year this value is 1.8 clo; and (5) the highest clothing thermal resistance values
can be found in January reaching about 2.5 clo. The scheme may be easily applied to any another
region by determining new, region-specific, operative temperature–air temperature relationships.

Keywords: human thermal load; clothing thermal resistance; operative temperature; air temperature;
statistical connection; body mass index; Carpathian region

1. Introduction

In our day and age, there are numerous human biometeorological indices. This is the
reason why their systematization is not an easy task. There are also many studies [1,2] on
their review and systematization. Among these, for instance, is the study of de Freitas
and Grigorieva [3], which provides a short and clear insight systematizing 162 biomete-
orological indices with respect to their specific properties. The work clearly shows how
these indices have been developing over time, i.e., how the indices have become more and
more complex. Energy balance-based indices are the most widespread [3,4] ones today.
These include the person with their respective activity and clothing, so that interactions
between the person and the environment can be fully characterized. At first, the models
were using a default indoor environment [5,6] and, later on, they started including out-
doors environments as well [7]. The first index based on energy balance was developed
by Fanger [5]. Fanger greatly influenced the science of biometeorological modelling, as he
conducted very extensive thermal sensation studies, the results of which he incorporated
into the PMV (Predicted Mean Vote) model. Fanger’s thermal perception results refer to
indoor conditions. Fanger’s work was then taken up and continued by Gagge [8], who
introduced the concept of ‘standard man’ and ‘standard environment’. Gagge’s approach
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has spread throughout the world, mainly due to the popularity of the P-E-T (Physiological
Equivalent Temperature) index [9–12], which uses both concepts.

Today, the PMV, P-E-T, and UTCI (Universal Thermal Climate Index) indices are the
most common ones [4]. Note that all three indices use the concept of the ‘standard man’, but
the ‘standard man’ varies from index to index. The P-E-T index is the most commonly used
human biometeorological index [13–17] in the Carpathian Basin. These studies only analyse
a selected group of subregions of the Carpathian Basin. Studies referring to the whole
Carpathian region started appearing from the 2020s [18,19], but the methodology they used
was quite different from the ones used in the PMV, P-E-T, or UTCI indices. They also used
an energy-balance-based [3] method. This is called the clothing thermal resistance (rcl)
method, which does not use the concept of ‘standard human’. The first studies using the rcl
method appeared in the 1970s [20,21], and later on, around the turn of the century [22–24],
some additional ones as well. The schemes are deterministic, treating and analysing both
cold and warm climates.

In [19,25], operative temperature To is also simulated taking into account its depen-
dence on radiation balance, wind speed, and air temperature. Many times, solar radiation
or cloudiness, together with high or low wind speed values, are just as important as air
temperature in the regulation of the environment’s thermal load [26]. So, their consider-
ation is essential, nevertheless, the scheme is less competitive due to the large amount
of input data compared to schemes that only have few inputs [27], as is the case of the
Köppen method [28]. In our case, it is possible to bridge this gap by relating (1) rcl to
potential evapotranspiration (PET), (2) To to PET, or (3) To to air temperature (Ta). PET is
an appropriate variable since, like To, it depends on radiation forcing, wind speed, and
air temperature. The relationship between annual rcl and PET is considered in [18]. The
statistical link is established for the Carpathian region for different human body shapes,
since the link depends strongly on human body somatotype variations. Since rcl is directly
connected to PET, there is no possibility to treat the effect of metabolic heat flux density
M variations on rcl. This shortcoming may be eliminated by relating To to PET or To to Ta.
Both treatments have their advantages and drawbacks. By using PET, the complexity of
the scheme increases, though all relevant variables for heat load are under consideration.
Of course, the rcl-PET link is also less applicable in very cold climates since PET is close to
zero. In these climates, the statistical link between To and Ta seems to work better, though
this link does not contain the effects of radiation forcing, wind speed or air humidity. At
the same time, the To–Ta link is unknown, not only for the Carpathian region, but not
anywhere. Not to mention that by considering the relationship between To and Ta, the
effect of M variations on rcl may be analysed and so the methodology can be applied to any
person if their human characteristics (body mass, body length, sex, and age) are known.

In view of all this, the aims of this study are as follows: (1) to present the new clothing
thermal resistance scheme for determining individual human thermal load, which is based
on To–Ta link, (2) to verify the scheme comparing its performance with the performance of
the original rcl scheme [19], and (3) to analyse annual and monthly human thermal load
of a representative Hungarian male and female in the Carpathian region for the period
1971–2000. We organised the study as follows: methods, region, and data are described
in Sections 2–4. The results are presented and discussed in Section 5; some selected
results regarding the To–Ta relationship in Section 5.1, anthropometric characteristics of
representative Hungarian male and female with respect to the Hungarian population in
Section 5.2, (2) the verification results in Section 5.3, and human thermal load characteristics
in Section 5.4. The discussion regarding the method’s suitability, as well as the future plans
may be found in Section 6 and the main conclusions in Section 7.

2. Methods

The new statistical-deterministic clothing thermal resistance scheme, the monthly
regression line equations for calculating operative temperature and the body mass index
are presented below.
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2.1. Clothing Thermal Resistance Scheme

Although the clothing thermal resistance scheme has been created to describe indi-
viduals, it is simple and based on energy balance considerations. According to [18,26], the
clothing thermal resistance parameter may be expressed via To as:

rcl = ρ·cp·
TS − To

M − λEsd − λEr − W
− rHr, (1)

where ρ is air density [kgm−3], cp is specific heat at constant pressure [Jkg−1◦C−1], rHr
is the combined resistance for expressing the thermal radiative and convective heat ex-
changes [sm−1], TS is skin temperature [◦C], To is operative temperature [◦C], M is metabolic
heat flux density [Wm−2], λEsd is the latent heat flux density of dry skin [Wm−2], λEr is res-
piratory latent heat flux density [Wm−2], and W is mechanical work flux density [Wm−2],
which refers to the activity under consideration. rcl refers to a walking human in outdoor
conditions whose speed is 1.1 ms−1 (4 km·h−1) and skin temperature is 34 ◦C.

The human body is represented by using a one-node model [29]. M is parameterised
according to [30]:

M = Mb + Mw, (2)

where Mb is the basal metabolic flux density [Wm−2] and Mw is the metabolic flux den-
sity [Wm−2] referring to walking. There are many Mb parameterisations, here the formula
of [31] is used according to the recommendation of [32]. Mw is parameterised after [30].
The formulae for Mb and Mw are as follows:

Mmale
b [kcal·day−1] = 9.99·Mbo + 6.25·Lbo − 4.92·age + 5, (3)

M f emale
b [kcal·day−1] = 9.99·Mbo + 6.25·Lbo − 4.92·age − 161, (4)

Mw = 1.1·
3.80·Mbo·

(
Lbo
100

)−0.95

A
, (5)

where Mbo is body mass [kg], Lbo is body length [cm], age is the age of the human considered
expressed in years, and A is body surface [m2]. A is estimated after the well-known formula
of [33]:

A = 0.2·M0.425
bo ·

(
Lbo
100

)0.725
. (6)

M is a personal variable, that is, each person has their own characteristic M value.
However, it is observed [18,19] that M can be categorised according to human body shape.
Latent heat and mechanical work flux densities may be simply parameterised via M
according to [34,35], respectively. The resistance parameter rHr depends upon Ta and wind
velocity [34].

2.2. Determination of Operative Temperature

Operative temperature is estimated by using monthly regression line equations, which
refer to the Carpathian region in the period 1971–2000. The statistical interconnection
between To and Ta is analysed for each month. The regression line equations determined
are as follows:

T January
o = 1.05·T January

a − 0.83, (7)

TFebruary
o = 0.99·TFebruary

a + 0.32, (8)

TMarch
o = TMarch

a + 2.34, (9)

TApril
o = 1.06·TApril

a + 4.30, (10)

TMay
o = 1.11·TMay

a + 5.79, (11)
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T June
o = 1.15·T June

a + 6.03, (12)

T July
o = 1.18·T July

a + 5.09, (13)

TAugust
o = 1.17·TAugust

a + 3.86, (14)

TSeptember
o = 1.13·TSeptember

a + 1.82, (15)

TOctober
o = 1.06·TOctober

a + 0.25, (16)

TNovember
o = 1.02·TNovember

a − 0.65, (17)

TDecember
o = 1.01·TDecember

a − 1.15, (18)

2.3. Body Mass Index

The body mass index (BMI) is defined as follows:

BMI =
Mbo(
Lbo
100

)2 . (19)

Human data on the Hungarian population [36] are determined by using the InBody
720 body composition analyser [37] (bioelectrical impedance analyser).

3. Region

The region considered is presented in Figure 1. This is the region of CarpatClim
database. It encompasses a territory between the 17◦ E–27◦ E longitude lines and the
44◦ N–50◦ N latitude lines. It contains both lowland and mountain areas.
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Figure 1. The region studied. Geographical designations used in the study and the basic elevation
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4. Data
4.1. Climatic Data

The daily air temperature and wind speed data, together with geographical latitude
data, are taken from the CarpatClim dataset [38–40]. The spatial resolution of the data
is 0.1◦ × 0.1◦, and the data refer to the period 1971–2000. The air temperature and wind
speed data are homogenised data by using the MASH (Multiple Analysis of Series for
Homogenization) technique, more precisely its latest version MASHv3.03 [41] without
using metadata. Thirty-year monthly averages are obtained from daily values.

4.2. Human Data

The following human state variables are used: body mass (most important), body
length, sex, and age. These data and the metabolic heat flux densities associated with
activity levels (basal metabolism, walking, and the sum of the two) for two individuals are
shown in Table 1.

Table 1. Human state variables and metabolic heat flux densities of a man representing the average
Hungarian man and a woman representing the average Hungarian woman.

Persons Sex Age
[Years] Body Mass [kg] Body Length [cm]

Basal Metabolic
Heat Flux

Density [Wm−2]

Walking Energy
Flux

Density [Wm−2]

Total Energy Flux
Density [Wm−2]

Person 1 male 19 85.5 179 45.2 101.7 146.9
Person 2 female 33 65.5 169 38.8 96.1 134.9

The metabolic heat flux density of the 1st and 2nd persons is as close as possible to the
metabolic heat flux density value of the average Hungarian man and woman [36], respectively.

5. Results

Four result types are presented and discussed: (1) some chosen results, which illus-
trate To–Ta point-clouds; (2) results characterising the relationship between M and BMI;
(3) verification results; and (4) results characterising the human thermal load in the region
depicted above.

5.1. Statistical Relationship between To and Ta

The To–Ta point-clouds, together with the regression lines for the months of July
and January, as examples, are presented in Figures 2 and 3, respectively. The statistical
relationship is very strong in both cases. It is described by Equations (7) and (13).

5.2. Interpersonal Variations of the Relationship between M and BMI

The scatter chart of total (basal plus walking) energy flux density as a function of BMI
for all people in the Hungarian dataset together with persons 1 (black triangle) and 2 (black
circle) [36] is presented in Figure 4. Red circles represent females, whilst blue triangles
males. BMI values vary between 15 and 45 kgm−2, but the vast majority of points are
located between 17 and 35 kgm−2. The BMI values of persons 1 and 2 are very close to
25 kgm−2, which is the median of BMI values. For the median value of BMI, M varies
between 135 and 148 Wm−2, that is the interpersonal variability of M is roughly 10%. In
all other cases, the interpersonal variability of M is less than 10%. Note that M increases
linearly with increasing of BMI. The less M values are about 120 Wm−2, the largest ones
can reach 180 Wm−2.
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5.3. Verification Results

Scatter plots between clothing thermal resistance values obtained calculating opera-
tive temperature on the basis of air temperature (statistical deterministic model) and by
calculating operative temperature according to its definition (deterministic model, [19])
are presented in Figure 5. The results refer to the month of July and to the year for
subjects 1 and 2. Subjects 1 and 2 are chosen since their total energy flux densities are
as close as possible to the total energy flux densities of an average Hungarian male and
female, respectively.

Straight lines at 45 degrees are also plotted. The agreements presented are very good.
The agreements for a year seem to be slightly better than those obtained for the month of
July. The estimate obtained by the statistical-deterministic scheme for the month of July is
slightly lower than the estimate obtained using the original scheme in the zones of higher
rcl values (rcl is higher than 0.6 clo, such cases are obviously in the mountainous areas).
Note that the male and female scatter plots are very similar.

The agreements are also presented in terms of spatial distribution for the month of
July, separately for persons 1 and 2 in Figures 6 and 7, respectively.
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Figure 5. Comparison of clothing thermal resistances obtained by calculating operative temperature
by using statistical deterministic and deterministic procedures for persons 1 and 2 representing an
average adult Hungarian male and female, respectively, in the month of July (top) and in the year
(bottom) in the CarpatClim dataset region for the period 1971–2000. Each point-cloud contains about
6000 points. All figures, except Figure 3, are constructed by the R programming language [42].

5.4. Human Thermal Load

Human thermal load in terms of clothing thermal resistance will be separately analysed
for the months of January and July and for the year.

5.4.1. January

The spatial distributions of clothing thermal resistance for persons 1 and 2 represent-
ing the average adult Hungarian male and female for the month January are presented
in Figure 8.



Climate 2022, 10, 131 9 of 17Climate 2022, 10, x FOR PEER REVIEW 9 of 17 
 

 

 
Figure 6. Spatial distribution of clothing thermal resistance values for year obtained by calculating 
operative temperature by using deterministic (a) and by statistical deterministic (b) procedures for 
person 1 representing the average adult Hungarian male in the CarpatClim dataset region for the 
period 1971–2000. 

Figure 6. Spatial distribution of clothing thermal resistance values for year obtained by calculating
operative temperature by using deterministic (a) and by statistical deterministic (b) procedures for
person 1 representing the average adult Hungarian male in the CarpatClim dataset region for the
period 1971–2000.

Note that the rcl ranges in the categories are non-linear. These are obtained using
the main percentiles (0th, 25th, 50th, 75th, 100th) of the rcl values as category boundaries,
we think this is an objective and reproducible categorisation method. Clothing thermal
resistance values vary from 1.35 to 2.62 clo. The warmest areas are in Bačka, Banat, Oltenia,
where the clothing thermal resistance values vary between 1.35–1.64 clo for person 1 and
between 1.55 and 1.85 clo for person 2. The coldest areas (rcl values between 1.84 and
2.62 clo) may be found in mountain regions, such as the Retezat Mountains, Fagaras
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Mountains, Maramures Mountains, and in the north-eastern parts of the region. Areas
with the largest thermal contrasts (large thermal load differences over small distances) are
located in northern parts of Oltenia, i.e., on the southern slopes of the Carpathians. The
largest rcl differences can reach 1 clo irrespective of which person is under consideration.
Note that differences between the spatial structure of clothing thermal resistance fields
representing the average adult Hungarian male and female are negligible; the greatest may
be observed in the Great Hungarian Plain.
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5.4.2. July

The same spatial distributions but for the month July are presented in Figure 9.
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Figure 9. Spatial distributions of July clothing thermal resistance values obtained by using the
new statistical deterministic scheme for persons 1 and 2 representing the average adult Hungarian
male (top) and female (bottom) in the CarpatClim dataset region for the period 1971–2000.

Note that clothing thermal resistance values for both persons vary between 0 and
1.2 clo. It can also be seen that the method is not applicable in the lowland and hilly regions
of the Carpathian Basin. In such cases, the energy balance of the human body covered with
clothing is not met because the model does not simulate the sweating process. Areas with
the largest thermal contrast may be found on the southern slopes of the Retezat Mountains,
the Fagaras Mountains, the Maramures Mountains, and very close to the location of the
Iron Gates on the River Danube. In these areas, the largest rcl differences can reach 1 clo.
Similarly to the month of January, the spatial distribution structures of the rcl maps of the
average adult Hungarian male and female are very similar.
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5.4.3. Year

The spatial distributions of annual clothing thermal resistance for the region and
individuals considered are presented in Figures 6b and 7b. As we can see, rcl values for
both persons vary between 0.38 and 1.85 clo. Of course, the lowest rcl values are located
in the southern (Bačka, Banat, Oltenia, Wallachian Plain) lowland areas of the region. The
thermal load is somewhat greater (rcl values are between 0.77 and 1 clo) in the Great
Hungarian Plain and the Transylvanian Plateau, and progressing towards the mountains
rcl values become increasingly larger reaching maximum values of about 1.8 clo. Note that
in the Podolian Upland (north-eastern part of the region) thermal load can be as large as
in the mountains, such as in the Maramures Mountains, the High Tatras or Mount Papuk
in the southern part of the region. Areas with the largest thermal contrast (rcl differences
of about 1 clo over short distances) may be found in the southern parts of the region, for
instance, at areas around Mount Papuk. As in the former cases, the spatial distribution
structures of the rcl fields of persons 1 and 2 representing the average adult Hungarian
male and female are quite similar. The greatest differences between them can be found in
the areas of Podolian Upland.

6. Discussion

According to [27], those models may be used for climate classification purposes that:
(1) are as simple as possible, (2) use as little as possible input data, (3) are physically well
established, (4) define climate types simply and unequivocally, (5) treat both annual and
seasonal characteristics, and (6) display the results transparently. Viewing all these points
in turn, we will now examine the situation with our model. This model is a one-node
model [29], metabolic heat flux density is simulated as simply as possible, only human
body–air environment heat exchange processes are treated and there is no modelling of
any thermoregulation processes, so the model is unable to simulate physiological processes
on the basis of which the degree of the thermal stress could be estimated. So, the scheme is
not suitable for estimating human thermal comfort issues [43], however, in our opinion it
can be used for human thermal climate characterisation in terms of thermal load. In this
paper, the issue of human thermal perception is not handled given the extreme subjectivity
of the topic. We have also seen that the methodology is not applicable in warm climates,
which is a clear disadvantage of the methodology. As regards point 2, the scheme uses less
input data than the original scheme [19], using only air temperature and wind speed data
as inputs. In connection with point 3, we can say that operative temperature is statistically
evaluated via air temperature, although this reduces the physical basis of the model, the
To–Ta statistical relationships are well correlated, therefore the scheme works well, at least
in the Carpathian region. Climate types can be differentiated according to thermal load,
which is expressed in terms of clothing thermal resistance values. In this study, different
thermal load categories are not named. As regards point 5, the scheme is able to treat both
the annual and the seasonal variations of clothing thermal resistance. In this study, we
focused only on treating annual values, as well as the monthly values of the months of
January and July. Lastly, there is no doubt that the transparent presentation of the results in
the form of the maps is very important.

As regards human factors, it should be noted that the chosen persons representing
average adult Hungarian male and female differ in their M values only 12 Wm−2. Despite
small differences in M, differences in thermal load between the sexes were noticeable in
some cases.

The spatial distribution results of clothing thermal resistance can be compared with
the spatial distribution results of Physiologically Equivalent Temperature (P-E-T) obtained
in [14]. In [14], the conditions and the tool used are as follows: the considered region
is Hungary; CRU (Climatic Research Unit) data referring to the period 1961—1990 are
used; among meteorological data air temperature, relative humidity, sunshine, cloudiness,
and wind speed are taken as input data; the spatial resolution of meteorological data is
1 km × 1 km; some selected (not specified) surface morphological parameters are also used;
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the human data of the ‘standard human’ in P-E-T index are taken; and finally the P-E-T
index calculation software together with the GIS (Geographical Information system) are
applied as basic tools. Comparing our results of the month of January with the winter
season results in [14], we can see two things: (a) both methodologies show cooling trend
moving from southwest to northeast and (b) the spatial distribution of thermal load is
orographically dependent. In the summer, the highest rcl values (about 1 clo) are in the
mountains, where the lowest P-E-T values (about 15–16 ◦C) can be found. In contrast, in
the lowland and hilly areas, where the rcl model is not applicable, the highest P-E-T values
can reach 24 ◦C. For a more exact comparison, thermal perception results would be needed.
This is a task for the future.

The results obtained can also be compared with the results obtained by generic meth-
ods. In this region, all three well known methods, the Köppen, Feddema and Holdridge
methods were also used. According to Köppen [44], the heat availability in the region is
mostly ‘warm temperate’ (symbol C), or ‘snow climate’ (symbol D). Köppen [28] defined
the boundary between them analysing the territorial distribution and the heat demand
of beeches and oaks as two typical climate marker plant species. According to our re-
sults, the ‘beech climate’, denoted as D, corresponds to annual rcl values of 1 clo and
greater than 1 clo. The ‘oak climate’, denoted as C, represents a warmer climate, which is
characterised by rcl values less than 1 clo. This agrees well with results obtained in [45].
We can see that in Köppen’s C climate rcl is between 0 and 0.8 clo. In Feddema climate
classification method [46] thermal types are differentiated according to annual sums of
potential evapotranspiration (PETa-sum). PETa-sum values are evenly distributed from 0
to maximum PETa-sum values, which may be higher than 1500 mm·year−1. The thermal
type categories used are ‘torrid’, ‘hot’, ‘warm’, ‘cool’, ‘cold’, and ‘frost’. Note that there
is no intermediate thermal type category between ‘cool’ and ‘warm’, which seems to be
reasonable from the point of view of human thermal climate classification. After [18], rcl
values of mesomorphic human between 0.78 and 1.17 clo are obtained for PETa-sum values
of 600 and 450 mm·year−1, respectively. The main spatial distribution characteristics of
annual human thermal load can also be recognised in the results obtained by the Holdridge
method [47–49]. In lowland areas, where the rcl values are between 0.4 and 1 clo, the corre-
sponding Holdridge life zone (HLZ) types are ‘cool temperate steppe’ and ‘cool temperate
moist forest’. In Bačka and Banat, as the warmest (rcl values between 0.4 and 0.7 clo) area
in the Carpathian Basin, the corresponding HLZ type is ‘warm temperate dry forest’. In the
Carpathians, where the rcl values are above 1 and can reach 1.8 clo, the HLZ types ‘boreal
wet forest’ and/or ‘boreal rain forest’ can be found. The mentioned HLZ types are obtained
by using the CRU TS 1.2 database [50] and refer to the period 1971–2000 [48]. Note that
the Holdridge method [47] is based on using potential evapotranspiration, just like the
Feddema method [46].

The biggest shortcoming of the model is that it cannot be used in warm climates, but
the concept of surface resistance that we have just applied to clothing can be extended to
the unclothed skin surface in warm climates as well. In this case, one needs to estimate
the evaporative resistance of the skin’s surface, which is changeable due to the sweating.
Sweating is governed by thermal load: the greater the thermal load, the greater the sweat-
ing, and, conversely, the lower the thermal load, the less we sweat. Consequently, the
evaporative resistance of the skin is high in the thermal perception category ‘neutral’, and
conversely, it is very low (close to zero) in the thermal perception category ‘warm’ or ‘very
warm’. This approach is also based on energy balance and is even more simple than the
clothing resistance model. This model is currently being tested. Simplicity is an important
requirement for the model to be suitable for use in everyday climate education and its
simplicity also makes it possible to apply it to determine climate types. Going forward we
would like to use a simple, easily applicable human-based climate classification method
instead of the Köppen method.
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7. Conclusions

A new clothing thermal resistance model is presented for climate classification pur-
poses. Its main strengths are as follows: (1) only air temperature and wind speed data are
used as meteorological inputs and (2) it is constructed for individual use, simulating the
metabolic heat flux density of the walking human as simply as possible.

The following main conclusions can be drawn from the results obtained: (1) the annual
rcl values in lowland and hilly areas are between 0.4 and 0.9 clo; (2) in the mountains, the
highest rcl values can reach 1.8 clo; (3) the method is not applicable in the lowland and
hilly areas of the region in the month of July; (4) thermal load differences between sexes
are usually negligible, but in some places these differences are noticeable; (5) thermal load
depends strongly on topography: rcl is roughly about 1 clo greater in mountains than in the
lowlands; (6) the inter-season variations of rcl can reach 2 clo; and, finally, (7) the scheme
can easily be adapted to any other region by determining new To–Ta relationships.
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